Cavity QED Construct:

Quantum Information Processing and Quantum Optics for Solid State Artificial Atoms

Chang-Pu Sun (孙昌璞)

Institute of Theoretical Physics, Chinese Academy of Sciences

suncp@itp.ac.cn
http://www.itp.ac.cn/~suncp

Quantum Physics and Quantum Information Processing

QPQIP in ITP CAS

Zi Song (Nankai), Xue-Feng Liu (PKU), Y.X. Liu, L.F. Wei (Riken, Japan) Franco Nori (UM, US) Paolo Zanardi (ISI, Italy), J.Q. You (Fudan) Z.D. Wang, (HKU)

Outline

Leture1: (Introductions)

Cavity QED Architecture: From Optical to Solid State Systems ---Superconducting Quantum Circuits and Nano-Mechanical Systems Aprial 4, Tue 16: 30-17: 15 & 17: 30-18: 15 2.

Leture2: Superconducting Quantum Circuit QED for Quantum Computing Apr 8, Sat 11: 30-12: 15 (PHY5580)

Lecture 3. Quantum State Transfer and Storage with Quantum Spin System Apr 18, Tue 16: 30-17: 15 & 17: 30-18: 15

Lecture 4: Decoherence induced by Quantum Phase Transition In Solid Systems Apr 25, Tue 16:30-17:15 & 17:30-18:15

Related Publications and References therein

Leture1 & 2:

P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)
 Y.-x. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Phys. Rev. Lett. 95, 087001 (2005)
 C. P. Sun, L. F. Wei, Y.-x. Liu, and F. Nori, Phys. Rev. A 73, 022318 (2006)
 Y. B. Gao, Y. D. Wang, and C. P. Sun, Phys. Rev. A 71, 032302 (2005)
 Y. D. Wang, Z. D. Wang, and C. P. Sun, Phys. Rev. B 72, 172507 (2005)
 Y. D. Wang, P. Zhang, D. L. Zhou, and C. P. Sun, Phys. Rev. B 70, 224515 (2004)
 Y. D. Wang, Y. B. Gao and C. P. Eur. Phys. Jour. B 40, 321-326 (2004).
 P. Zhang, Z. D. Wang, J. D. Sun, and C. P. Sun, Phys. Rev. A 71, 042301 (2005)

Lecture 3:

H.T. Quan, Z. Song , X.F. Liu, P. Zanardi , C.P.Sun, Phys. Rev. Lett. (2006) in press
 X.-F. Qian, T. Shi, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 72, 012333 (2005)
 H. T. Quan, P. Zhang, and C. P. Sun, Phys. Rev. E 72, 056110 (2005)
 H. T. Quan, P. Zhang, and C. P. Sun, Phys. Rev. E 73, 036122 (2006)
 L. Zheng, C. Li, Y. Li, and C. P. Sun, Phys. Rev. A 71, 062101 (2005)
 F. Xue, S. X. Yu, and C. P. Sun, Phys. Rev. A 73, 013403 (2006)

Related Publications and References therein

Lecture 4:

C. P. Sun, Y. Li, and X. F. Liu, Phys. Rev. Lett. 91, 147903 (2003)
 S. Yang, Z. Song, and C. P. Sun, Phys. Rev. A 73, 022317 (2006)
 X.-F. Qian, Y. Li, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 72, 062329 (2005)
 Z. Song, P. Zhang, T. Shi, and C.-P. Sun, Phys. Rev. B 71, 205314 (2005)
 T. Shi, Y. Li, Z. Song, and C.-P. Sun, Phys. Rev. A 71, 032309 (2005)
 Y. Li, T. Shi, B. Chen, Z. Song, and C.-P. Sun, Phys. Rev. A 71, 022301 (2005)
 R. Xin, Z. Song and C.-P. Sun, Physics Letters A, 342,, 30 (2005)

Review Article:

Song Z, Sun CP, LOW TEMPERATURE PHYSICS 31 (8-9): 686 (2005)

Lecture1 - Overviews: Quantum Information Processing based on Solid State Systems

---Superconducting Quantum Circuits and Nano-Mechanical Systems

Physical Realizations of Quantum Bits (Qubits) Require Specially Designed Two-Level Systems:

Main Obstacles and Challenges For QC

quantum decoherence, which can be significantly enhanced in a system of many qubits,

a. In General One Qubit Dephasing $e^{-\gamma t}$ N Qubit Dephasing $e^{-N^2\gamma t}$ Sun *et al*, PRA (1993,1998)

b. An Atomic Ensemble $H = \sum_{k=1}^{N} g_{k} \sigma_{+}^{[K]} + h.c \xrightarrow{?} g \sqrt{N} b^{+} + ...$ $\sum_{k=1}^{N} \sigma_{+}^{[k]} = S_{+} \Rightarrow \sqrt{N} b^{+}$ Achieve a \sqrt{N} enhanced effective coupling, but induce a \sqrt{N} enlarged decoherence

Sun, Yi, Li, and You, PRA (2002,2003)

Low Frequency Noise 1/f

NEC experiment 2005

It seems to be a nonprinciple difficulty, but it challenges all present technologies

Nobody know its origins physically !!!

Quantum Information Meets Condensed Matter Physics ?

Condensed Matter Physics Beats Quantum Information?

Integrating Various Qubits for QIP

Physics: Creating Distant Entanglement?

The Chinese Academy of Science

Cavity QED: Virtual Photon Exchange Induces Qubit-Qubit coupling

See the details in Lecture 2

Finite Effective Interaction Requires Gapped Systems

Effective Interaction

$$J_{eff} = \sum_{k} \frac{|g_k|^2}{\omega_k - \omega_a}$$

Circuit QED :

Superconducting Transmission Line + Charge Qubit

Circuit QED Based on Superconductors

$$H = \hbar \omega a^{+} a + \frac{1}{2} \hbar \omega \sigma_{z} + g(a \sigma_{+} + a^{+} \sigma_{-})$$

Nature 431, 162 (2004).

Wang, Zhang, Zhou, and Sun, Phys. Rev. B 70, 224515 (2004)

A Earlier Proposal: Circuit QED based on Large junction by us (2002)

Large Junction
$$V = \cos(\phi) \simeq 1 - \frac{1}{2}\phi^2$$

Experiments

Strong Couplings by Circuit QED

Parameter	Symbol	Optical cQED with Cs atoms	Microwave cQED	circuit QED
Dipole moment	d/ea _o	1	1,000	20,000
Vacuum Rabi frequency	g/π	220 MHz	47 kHz	100 MHz
Cavity lifetime	1/κ; Q	1 ns; 3 x 10 ⁷	1 ms; 3 x 10 ⁸	160 ns; 104
Atom lifetime	1/γ	60 ns	30 ms	> 2 µs
Atom transit time	t _{transit}	> 50 µs	100 μs	Infinite
Critical atom #	$N_0 = 2\gamma \kappa/g^2$	6 x 10 ⁻³	3 x 10 ⁻⁶	6 x 10 ⁻⁵
Critical photon #	$m_0 = \gamma^2 / 2g^2$	3 x 10 ⁻⁴	3 x 10 ⁻⁸	1 x 10 ⁻⁶
# of vacuumRabi oscillations	n _{Rabi} =2g/(κ +γ)	10	5	100

Blais, A., et al., Phys. Rev.A 69, 062320 (2004)

Other Condensed Matter System seems to Beat Quantum Information?

Finite Correlated Length vs. Decaying Entanglement Due to the decreasing effective coupling

QI Transfer from A to B = Dynamic Entangling A and B States

BEC : Long distance correlation of Boson System

Off-diagonal long range order (ODLRO)

 $\rho(x, y) \rightarrow \frac{n_0}{V}$

High temperature (T>Tc):

Low temperature (T<Tc):

 $\lambda_D \sim a$ Coherent Overlap : Macro-Atoms

$$\rho(x,y) = \frac{n_0}{V} + \int n_k e^{ik(x-y)} dk \rightarrow \frac{n_0}{V} + \frac{mkT}{2\hbar^2 r} \exp\left[-\frac{r}{R}\right]$$

$$\lambda_{D} = \sqrt{\frac{2 \pi \hbar^{2}}{m k_{B} T}}$$

Thermal Wave Length

 $r = |x - y| \rightarrow \infty$

Quantum state transfer via Spin Ladder

A typical gapped system

$$H_{I} = J_{0}\vec{S}_{A}\cdot\vec{S}_{1} + J_{0}\vec{S}_{B}\cdot\vec{S}_{N} \qquad H_{\rm int} = J_{0}^{2}G^{zz}(\omega = 0, x)\vec{S}_{A}\cdot\vec{S}_{B}$$

Li, Shi, Chen, Song, Sun, Phys. Rev. A 71, 022301 (2005)

De-entanglement vs. Decoherence

Yu, Eberly, Phys. Rev. Lett. 93, 140404 (2004)

- What characterize the quantum coherence of many body system?
- Entanglement or Corrrelation? Are there differences?

Overcome the difficulty by Engineered Spin Chain With Always-On Interactions

Our discovery :

S. Bose, 2003; M. Christandl, PRL, **92**, (2004)

 $H = \theta \sum_{i=N-1}^{i=N-1} J_i (S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+)$

Commensurate Spectrum

 $U(t_0) = P$

Shi, Li, Song, and Sun, Phys. Rev. A 71, 032309 (2005)

Time evolution=Parity Reflection

For the details see Lecture 3:

 $J_i = \sqrt{i(N-i)}$

Peierls Distorted Chain for QST

M.X. Huo, Ying Li, Z. Song , C.P. Sun, 2006 in preparation

More Realistic System with spatially-varying Hamiltonian

Dimmerization : SSH model

Nano-Mechanical Resonator (NAMR)

Quantization of Single Model Phonon

 $k_{\rm B}T = 48mK \cdot k_{\rm B} \approx \hbar \sqrt{E / \rho} (hL) \approx \hbar \cdot 1GHz$

Knobel and Cleland, Nature, 2003 La Haye et al., *Science*, 304, 74 (2004)

$$H = \hbar \omega a^+ a$$

Standard Quantum Limit (SQL):

 $|2\rangle$

 $|1\rangle$

 $|0\rangle$

Standard Quantum Limit (SQL):

Measurement of length Limited by Uncertain Relation

Free Particle
$$\Delta p \Delta x_1 \ge \frac{\hbar}{2}$$

 $\int d = x_1 - x_2$ $\tau \Delta p = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + (\tau \frac{\Delta p}{m})^2}$
 $\geq \sqrt{2(\Delta x_1)(\tau \frac{\Delta p}{m}) + (\Delta x_2)^2}$
 $= \sqrt{\frac{\hbar \tau}{m} + (\Delta x_2)^2} \sim \sqrt{\frac{\hbar \tau}{m}}$
Harmonic Oscillator $x(t) = x(0)\cos(\omega t) + \frac{p(0)}{m\omega}\sin(\omega t)$
 $\Delta x(t) = \sqrt{(\Delta x)^2 \cos^2(\omega t) + \frac{(\Delta p)^2}{m^2\omega^2}\sin^2(\omega t)} \ge \sqrt{\frac{\hbar}{m\omega}}$

Nano-Mechanical QED (NM-QED)Constructs

1.NAMR + Spins 2. NAMR + Josephson Qubit

Armour, et al *Phys. Rev. Lett.* **88**, 148301 (2002). Wang, Gao and Sun. Eur. Phys. Jour. B 40, 321-326 (2004).

Direct Observation of Quantization of NAMR

Gaidarzhy et al, PRL. 94, 030402 (2005)

金电极上的电压 $V = \frac{i\omega\xi L^2 B^2 / m}{\sigma^2 - \omega^2 + i\sigma\omega/Q} I(\omega)$

Detection Of Single Spin

Nature 430, 329 - 332 (15 Jul 2004)

Nano-Mechanical QED: Single Mode Phonon

$$H = \frac{P_z^2}{2M} + \frac{1}{2}M\omega_c^2 z^2 + \gamma\hbar\vec{B}\cdot\vec{S}$$

$$\vec{B} = B_1 \cos(\omega_r t) \hat{e}_x + B_1 \sin(\omega_r t) \hat{e}_y + B_0 \hat{e}_z + \vec{B}_{tip}(z)$$

$$B_{tip} = \frac{\mu_0}{4\pi} \frac{3(\vec{n} \cdot \vec{m})\vec{n} - \vec{m}}{d^3}$$
$$\vec{B}_{tip}(z) \approx (\xi_0 - \xi_1 z)\hat{e}_x + (\eta_0 - \eta_1 z)\hat{e}_z$$

$$\mathbf{H} = (p_x^2 + x^2)/2 + \varepsilon S_x + 2\eta x S_z,$$

Adiabatic Quantum Measurement

Sun, et al, PHYS REV A 6301 : 2111(2001); EUR PHYS J D 17 : 85(2001)

$$(\varepsilon S_{x} + 2\eta x S_{z}) |n(x)\rangle = V_{n}(x) |n(x)\rangle, \quad n = \pm$$
$$V_{\pm}(x) = \pm \sqrt{\varepsilon^{2} + 4\eta^{2} x^{2}} \approx \pm \varepsilon \pm 2\eta^{2} x^{2} / \varepsilon,$$

$$\mathbf{H}_{\text{eff}} = (p_x^2 + x^2)/2 + V_{\pm}$$
$$= (\omega \pm \delta)a^{+}a$$

Probe for Spin Wave : Dressed Boson

F. Xue, L. Zhong, C.P. Sun, 2006, PRB

Artificial Cavity QED Construct

2-Level Artificial Atoms

	Natural Atom, Ions	Superconducting Qbits	Nuclear Spin,Excitation	Quantu m Dots
Q-EM field	CavityQED	Semi-Clas.	Quant.	Quant.
S-TLR	Т	Circuit QED	X	×
NAMR	Т	NM-QED	Semi-Clas	Т
Large JJ	Т	Circuit QED	×	X
Collective Spin	×	×	SW.QED	SW.QE D

T=Theoretical Protocols

Cleland, Geller, Condmat/0311007

Decoherence showed by Nano MQED

$$H_c = \frac{2e^2 \left(\hat{n} - n(\hat{x})\right)^2}{C_{\Sigma}}$$

$$n_{g}(\hat{x}) = \frac{1}{2e} \left(C_{g} V_{g} + C_{x}(\hat{x}) V_{x} \right)$$
$$= n_{g} + \delta n(\hat{x})$$

$$H = 4E_c \delta n\sigma_z - \frac{E_J}{2}\sigma_x - \lambda \left(a + a^{\dagger}\right)\sigma_z + \hbar\omega_0 a^{\dagger}a$$

Y. D. Wang, Y. B. Gao and C. P. Sun, Eur. Phys. Jour. B 40, 321-326 (2004).

$$\begin{array}{c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$H = 4E_c\delta n\sigma_z - \frac{E_J}{2}\sigma_x - \lambda(a + a^{\dagger})\sigma_z + \hbar\omega_0 a^{\dagger}a$$

Cooling Nano-Mechanical Resonator

By "Bang-bang " couplings to Charge Qubit

Zhang, Wang, Sun, PRL, 097204 (2005),

Quantum transducers:

Sun, Wei, Liu, Nori, PRA, 2006

$$\Phi_q = i \sum_k \phi_k (a_k - a_k^{\dagger}),$$

$$H = \frac{\omega}{2}\sigma_{z}^{'} + \omega_{b}b^{\dagger}b + \lambda(b^{\dagger} + b)\sigma_{z}^{'}$$
$$-\frac{E_{J}}{2}\cos(\frac{\pi\Phi_{x}}{\Phi_{0}})\sigma_{x}^{'}$$

Mechnical QED and Circuit QED

—link Qubits with quantum Data Bus

Jaynes-Cummings (JC) Model

What is New Physics ?

Exotic features of Superconducting Artificial Atoms

Liu, You, Wei, Sun, and Nori, PRL, (2005)

No Δ -Type Natural Atoms in Electric Dipole Transitions

Winger – Ekert Theorem with SO(3) or SO(4) Symmetry

Things change dramatically for the Artificial Atoms in Symmetry Breaking

Liu, You, Wei, Sun, and Nori, PRL, (2005,)

Total Phase Sensitiveness for Adiabatic Manipulations

Appendix 1:

Cavity QED for Atom-Photon system

Model and Effects of Cavity QED :

Jaynes-Cummings (JC) Model = Spin-Boson Model

$$H = \hbar \omega a^+ a + \frac{1}{2} \hbar \omega_a \sigma_z + g(a\sigma_+ + a^+ \sigma_-)$$

$[a, a^+] = 1$

- 1. Enhancement and suppression spontaneous emission
- 2. Vacuum Rabi Splits in Spectrum
- 3. Collapse and revivals of Atomic Population
- 4. Coherent Forces for Atoms entering the cavity

Energies of Dressed States

$$|+,n\rangle\rangle = \sin\theta_n |g,n+1\rangle + \cos\theta_n |e,n\rangle$$
$$|-,n\rangle\rangle = \cos\theta_n |g,n+1\rangle - \sin\theta_n |e,n\rangle$$
$$\Delta = \omega_a - \omega \qquad \cos 2\theta_n = \frac{\Delta}{\sqrt{4g^2(n+1) + \Delta^2}}$$

$$\Delta = 0$$

$$|3\rangle - |2\rangle = |2\rangle$$

$$|2\rangle - |1\rangle$$

$$|1\rangle - 1 = |1\rangle$$

$$|0\rangle - |0\rangle$$

$$|1\rangle + |1\rangle$$

$$E_{\pm} = \hbar \omega (n + \frac{1}{2}) \pm \frac{\hbar}{2} \sqrt{\Delta^2 + 4g^2(n+1)}$$

Single Qubit - Single Model Virtual Photon Process

$$H = H_0 + V :$$

$$H_0 = \frac{1}{2}\omega_a \sigma_z + \omega a^+ a,$$

$$V = ga\sigma_+ + h.c$$

2'nd Order Process

$$H_{e} \sim H_{0} + V_{eff} = H_{0} + \frac{1}{2}[V, S],$$

$$0 = V + [H_0, S] \qquad \longrightarrow \qquad S = \frac{g}{\omega - \omega_a} a\sigma_+ - h.c$$

The Lamb Shifts :

$$E_{\pm} \approx \hbar(\omega \pm \frac{g^{2}}{\Delta})(n + \frac{1}{2}) \pm \frac{\hbar}{2}(\Delta \mp \frac{g^{2}}{\Delta})$$

Decoherence due to Lamb Shifts :

Progressive Decoherence Experiment

$$D(t) = \left\langle e^{-it\kappa_{+}} \alpha \,|\, e^{-it\kappa_{-}} \,\alpha \right\rangle$$

Haroch's Group

Phys. Rev. Lett. 77,4887,(1996)

Entanglement due to Virtual Photon Exchange

Vintual Photon Process

$$H = H_{0} + V :$$

$$H_{0} = \frac{1}{2} \omega_{a} (\sigma_{Z}^{(1)} + \sigma_{Z}^{(2)}) + \omega a^{+} a$$

$$V = ga(\sigma_{+}^{(1)} + \sigma_{+}^{(2)}) + ga^{+}(\sigma_{-}^{(1)} + \sigma_{-}^{(2)})$$

$$H_{f} \approx -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} \sigma_{-}^{(1)} + \sigma_{+}^{(1)} \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} \sigma_{-}^{(1)} + \sigma_{+}^{(1)} \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} \sigma_{-}^{(1)} + \sigma_{+}^{(1)} \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} \sigma_{-}^{(1)} + \sigma_{+}^{(1)} \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} - \sigma_{-}^{(1)} + \sigma_{+}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} - \sigma_{-}^{(1)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} - \sigma_{-}^{(1)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{+}^{(2)} - \sigma_{-}^{(1)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} - \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

$$H_{f} = -\frac{g^{2}}{\omega - \omega_{a}} (\sigma_{-}^{(2)} - \sigma_{-}^{(2)} + \sigma_{-}^{(2)})$$

Small $g_{eff} = g^2 / |\omega - \omega_a|$ means a slow process

Multi-model virtual photon Process

$$H = H_0 + V :$$

$$H_0 = \frac{1}{2}\omega_a(\sigma_Z^{(1)} + \sigma_Z^{(2)}) + \sum_k \omega_k a_k^+ a_k$$

$$V = \sum_k g_k a_k^+ (\sigma_-^{(1)} + \sigma_-^{(2)}) + hc$$

Second order perturbation

$$H_{e} \sim H_{0} + V_{eff} = H_{0} + \frac{1}{2}[V, S],$$

$$S = \sum_{k} \frac{g_{k}}{\omega_{k} - \omega_{a}} a_{k}^{+} (\sigma_{-}^{(1)} + \sigma_{-}^{(2)}) - hc$$
$$V_{eff} = \dots + J_{eff} (\sigma_{-}^{(1)} \sigma_{+}^{(2)} + hc) + \frac{1}{2} [\omega_{a} + \delta(a_{k}^{+} a_{k})] (\sigma_{Z}^{(1)} + \sigma_{Z}^{(2)})$$

$$J_{eff} = \sum_{k} \frac{|g_{k}|^{2}}{\omega_{k} - \omega_{a}} \qquad \qquad \delta(a_{k}^{+}a_{k'}) = \sum \frac{a_{k'}^{+}a_{k}g_{k}g_{k'}}{(\omega_{k} - \omega_{a})}$$

Off-diagonal Lamb shift

Condition for Finite Effective Coupling

$$J_{eff} = \sum_{k} \frac{|g_k|^2}{\omega_k - \omega_a}$$

二阶微扰成立条件

In Quantum Computing, fast operation requires that the sum $\sum_{k} \frac{|g_k|^2}{\omega_k - \omega_a}$ is not too small

Towards to Fully Solid State Cavity QED

Circuit QED based Josephson Junction

Nature 431 162 (2004)

Nano-Mechanic (NM)- QED

Integrating Josephson Qubit or Spin wit A nano -beam

mechanical

resonance

Fast Progresses In experiments

Knobel etal, Nature, 2003 LaHaye et al., *Science* (2004), Gaidarzhy et al, PRL. 94, 030402 (2005)

Nature 430, 329 (2004)

Quantum Information is Fragile

Physics of Quantum Information:

