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A B S T R A C T

The study presents a new method to model the degradation and reliability of multi-function complex systems
using the hazard rate matrix and Markovian approximation. The system is hierarchically decomposed into a
set of states according to the states of its functions, and the hazard rate matrix is proposed to describe the
failure rates of the functions. By using Markovian approximation, the elements of the hazard rate matrix can be
expressed as a set of dynamical equations involving the failure information about the functions. Consequently,
the dynamical behavior of the degradation for the whole system and its functions can be determined using the
observed failure data of those functions instead of the lifetime data of the whole system, eliminating the need
for lifetime testing data of the whole system in statistical-based reliability assessment. The overall method
is illustrated using an example problem, and is further applied to a power system degradation problem to
demonstrate its usage in realistic engineering applications.
1. Introduction

Degradation is a common process in the fields of physics, engineer-
ing, biology, and so on. The degradation under uncertainty is closely
related to the concept of reliability, which is defined as a probabilistic
measure to characterize the ability to perform the intended functions
for a specified period of time in a defined environment [1]. Early
studies on reliability assessment can be traced back to the 1950s [2,3].
The statistical analysis of failure time data is used to describe the
lifespan of electronic components, and a full understanding of the
aging mechanism is limited. Relying on the law of large numbers, it
requires a sufficient amount of lifetime data to estimate the hazard rate
accurately [4–7]. By fitting the lifetime data to a prescribed distribution
using methods such as maximum likelihood estimate and method of
moments, the hazard rate associated with the distribution is derived.
Probabilistic inference can alternatively be used to construct the life-
time distribution given the lifetime data and obtain the corresponding
hazard rate function [8,9]. Rational approaches to probabilistic infer-
ence on the optimal distribution and hazard rate functions include
Bayesian methods [10–13] and entropy-based methods [14–16].

Direct modeling of the hazard rate of the whole system can be diffi-
cult for many high-reliability demanding complex systems with longer
lifespans. For one thing, it can be unrealistic to obtain statistically suffi-
cient lifetime data in a short time. Although accelerated life testing can
be used [17–19] to reduce the lifetime data, the facilities are usually
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designed for testing components and sub-systems, and its application
to a whole complex system with a larger physical dimension is rarely
possible. For another, treating the system as a whole for reliability
assessment provides limited understanding of the dependence between
participating components and sub-systems, and reveals less information
on the weak spots for reliability growth. System decomposition and
network modeling are widely-used approaches to model the reliability
of a complex system [20–22]. The complex system under consideration
is decomposed into a set of relatively independent sub-systems or units
whose reliabilities can be assigned or derived. The network represents
the possible routes to the required function, allowing for using the
basic probability rules and theorems to obtain the reliability of the
system [23–25]. To derive or assign the reliability of independent sub-
systems or units, statistical, empirical, and physical models can be used,
for examples, in the fields of materials [26–30], electronics [31,32],
and many others [33–37]. In Refs. [38,39], a MaxEnt approach is
developed to obtain the optimal hazard rate function, and a double-
function system is demonstrated using the linear assumption. For more
complex systems, the linear assumption may be invalid, thus limiting
its applications in realistic problems.

This study develops a new method to model the degradation be-
havior and reliability of complex systems. The system is abstracted as
a set of states which are determined by the functions of the system.
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The hazard rate matrix is proposed to describe the degradation of the
functions. In this context, the focus is to restore the degradation of
the system using observable information on the functions, which is an
inverse problem in nature. The dynamical behavior of the degradation
of a system refers to the time-dependent variation of the system state,
and is essentially characterized by the hazard rate matrix of the system.
By incorporating the Markovian approximation, the equations for each
of the elements in the hazard rate matrix can be formulated, and subse-
quently be solved using failure information on the functions. The rate of
degradation in general depends on the state of the system. In the scope
of the method, the dependence is dealt with in two aspects. The influ-
ence of other correlated functions on a specific function is explicitly
incorporated as the non-diagonal elements in the hazard rate matrix.
In addition, the dependence is implicitly encoded in the observable
lifetime data of the functions which are used when solving the hazard
rate equations. The method is not focused on the mechanism-based
modeling and simulations regarding the degradation of the functions
and their correlations, which have been discussed elsewhere in detail,
for example, in Refs. [40–42].

The proposed method is different from the physical component-
based modeling methods. In these methods, the system reliability model
is built upon the participating components and their cascading and log-
ical relationship. The evaluation of the system reliability in such cases
is a forward problem in nature, and requires component-wise informa-
tion such as the lifetime distributions of the components. In addition,
the influence of other components on a particular component can be
quantitatively intractable in a system. By leveraging the hazard rate
matrix and state-based modeling approach, such detailed information,
which may rarely be available for complex high-reliability-demanding
systems, is not required in the proposed method. The method provides
a means to estimate the degradation behavior of the system based on
the observable failure information on its functions with the following
potential advantages. For one thing, it eliminates the need for lifetime
testing data on the whole system in conventional statistical lifetime
data analysis approach. For another, it can alleviate the difficulty
in quantifying the degradation of a component contributed by other
influencing components in component-based modeling methods.

The remainder of the study is organized as follows. First, the hazard
rate matrix for multi-function systems is introduced, and reducible and
irreducible hazard rate matrices are derived, respectively. The relation-
ship between the matrix components and the conditional probabilities
of the state transition is signified. Next, the dynamical equations of
the elements of the hazard rate matrix is formulated using Markovian
approximation. The degradation process of a multi-function system
and its functions can be resolved by solving the dynamical equations.
Following that, a three-function system is used to illustrate the method,
and the accuracy of the results obtained by the proposed method
is verified. The developed method is further applied to a realistic
engineering problem. Finally conclusions are drawn.

2. Hazard rate matrix of multi-function systems

In the context of modeling multi-function systems, the term ‘func-
tion’ is defined by component states as detailed in Ref. [43]. Given the
lifetime 𝑇 with uncertainty, the reliability function 𝑅(𝑡) is defined as
𝑅(𝑡) = Pr(𝑇 ≥ 𝑡), 𝑡 ∈ (0,+∞). The corresponding PDF for lifetime 𝑇 = 𝑡
is expressed as 𝑝(𝑡) = −d𝑅(𝑡)∕d𝑡. The hazard rate function of a single-
function system 𝜆 (𝑡) can be expressed by the reliability function and its
PDF as

𝜆 (𝑡) ≡ − 1
𝑅 (𝑡)

d𝑅 (𝑡)
d𝑡

=
𝑝 (𝑡)
𝑅 (𝑡)

. (1)

For a multi-component system, the definition of structure function is
not unique. A system characterized by more than one structure func-
tions is defined as a multi-function system. According to the specific
engineering requirements, each function has a corresponding failure
criterion. The relationship between failure criteria of functions depends
2

s

Table 1
The 2𝑛 states of a fully reducible 𝑛-function system.

State Function 𝑎 Function 𝑏 ⋯ Function 𝑛

1 Work Work ⋯ Work
2 Work Work ⋯ Breakdown
⋮ ⋮ ⋮ ⋱ ⋮
𝑛 + 1 Breakdown Work ⋯ Work
⋮ ⋮ ⋮ ⋱ ⋮
2𝑛 Breakdown Breakdown ⋯ Breakdown

on requirements, which can be correlated or independent. Denote the
reliability of function 𝑖 (𝑖 = 𝑎, 𝑏,… , 𝑛) in an 𝑛-function system as
𝑅𝑖(𝑡). For such a system, the hazard rate function of the system is
eneralized to an 𝑛-dimensional square matrix. According to Eq. (1),

the system-level reliability function 𝐑(𝑡) can be expressed as
d𝐑
d𝑡

= −𝝀𝐑, (2)

here 𝐑 = (𝑅𝑎, 𝑅𝑏,… , 𝑅𝑛)T and 𝝀 is an 𝑛-by-𝑛 hazard rate matrix.
t should be noted that 𝝀 is an upper triangular matrix due to the
on-increasing property of reliability function 𝑅𝑖(𝑡).

For a general multi-function system, the relation between functions
eeds to be determined first. When the failure of function 𝑎 can lead

to the failure of function 𝑏 and the failure of function 𝑏 has no effect
on function 𝑎, such a relation between functions 𝑎 and 𝑏 is denoted
s 𝑎 ≻ 𝑏. As an example, consider a flashlight consisting of two light
ulbs denoted as 𝐿1 and 𝐿2. The function 𝑎 denotes the event that the
lashlight can emit light; therefore, it can be one of the three states:
1) both 𝐿1 and 𝐿2 work properly, (2) 𝐿1 works and 𝐿2 fails, and (3)
1 fails and 𝐿2 works. When the function 𝑏 denotes the event that 𝐿1

works, the relation between 𝑎 and 𝑏 in this case is represented as 𝑎 ≻ 𝑏.

.1. A fully reducible 𝑛-function system

A fully reducible system means each of the functions has no effect
n the other functions. It can be seen that a fully reducible 𝑛-function
ystem has a total number of 2𝑛 different states, as listed in Table 1. The
nitial conditions for the reliability of the 𝑖th function 𝑅𝑖(0), 𝑖 ∈ (𝑎,… , 𝑛)
hen the system is in states 2,… , (𝑛 + 1) in Table 1 can be expressed
s

𝑅𝑎(0)
𝑅𝑏(0)
⋮

𝑅𝑛(0)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1
1
⋮
0
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⎥

⎥

⎥

⎥

⎦

,… ,

⎡

⎢

⎢

⎢

⎢

⎣

𝑅𝑎(0)
𝑅𝑏(0)
⋮

𝑅𝑛(0)

⎤

⎥

⎥

⎥

⎥

⎦
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⎡

⎢

⎢
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1
⋮
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⎥

⎥

⎥

⎦

. (3)

For initial states from 2 to (𝑛 + 1), d𝑅𝑖∕d𝑡, 𝑖 ∈ (𝑎,… , 𝑛) are
d𝑅𝑛
d𝑡

= 𝜆𝑛𝑎𝑅𝑎(𝑡) + 𝜆𝑛𝑏𝑅𝑏(𝑡) +⋯ + 𝜆𝑛𝑛𝑅𝑛(𝑡) = 0,

⋮

d𝑅𝑎
d𝑡

= 𝜆𝑎𝑎𝑅𝑎(𝑡) + 𝜆𝑎𝑏𝑅𝑏(𝑡) +⋯ + 𝜆𝑎𝑛𝑅𝑛(𝑡) = 0.

(4)

It is noted that for each of the functions, both d𝑅𝑖(𝑡)∕d𝑡 and 𝑅𝑖(𝑡)
approach zero simultaneously due to the non-increasing and non-
negativity property of 𝑅𝑖(𝑡). The hazard rate matrix of a fully reducible
ystem must be diagonal; otherwise, one or more equations in Eq. (3)
ill violate the above conditions in Eq. (4). The hazard rate matrix 𝝀

n this case is

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑎𝑎 0 ⋯ 0
0 𝜆𝑏𝑏 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (5)

fully reducible 𝑛-function system reduces to a total number of 𝑛
ingle-function systems.
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Table 2
The 𝑛 + 1 states of an irreducible 𝑛-function system.

State Function 𝑎 Function 𝑏 ⋯ Function 𝑛

1 Work Work ⋯ Work
2 Work Work ⋯ Breakdown
⋮ ⋮ ⋮ ⋱ ⋮
𝑛 + 1 Breakdown Breakdown ⋯ Breakdown

Table 3
Three states of an irreducible double-function system.

State Function 𝑎 Function 𝑏

1 Work Work
2 Work Breakdown
3 Breakdown Breakdown

2.2. An irreducible 𝑛-function system

In an irreducible 𝑛-function system, the relationship among the
unctions is 𝑎 ≻ 𝑏 ≻ ⋯ ≻ 𝑛. The (𝑛+ 1) different states of an irreducible
𝑛-function system are listed in Table 2. The initial conditions for the
reliability of the 𝑖th function of the system, 𝑅𝑖(𝑡 = 0), can be expressed
as

⎡

⎢

⎢
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𝑅𝑎(0)
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, (6)

hen the system is in states 2, . . . , (𝑛 + 1) in Table 2. The terms
𝑅𝑖∕d𝑡, 𝑖 ∈ (𝑎,… , 𝑛) in this case are

d𝑅𝑛
d𝑡

= 𝜆𝑛𝑎𝑅𝑎(𝑡) + 𝜆𝑛𝑏𝑅𝑏(𝑡) +⋯ + 𝜆𝑛𝑛𝑅𝑛(𝑡) = 0,

⋮

d𝑅𝑎
d𝑡

= 𝜆𝑎𝑎𝑅𝑎(𝑡) + 𝜆𝑎𝑏𝑅𝑏(𝑡) +⋯ + 𝜆𝑎𝑛𝑅𝑛(𝑡) = 0.

(7)

ince the reliability function 𝑅𝑖(𝑡) is non-increasing, d𝑅𝑖∕d𝑡 and 𝑅𝑖 ap-
roach zero simultaneously. The hazard rate matrix 𝝀 of an irreducible
-function system is an upper triangular matrix, which is expressed as

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑎𝑎 𝜆𝑎𝑏 ⋯ 𝜆𝑎𝑛
0 𝜆𝑏𝑏 ⋯ 𝜆𝑏𝑛
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑛𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (8)

.3. Hazard rate matrix and conditional probabilities

An irreducible double-function (𝑎 and 𝑏) system is taken as an exam-
le to relate the elements of the hazard rate matrix to the conditional
robabilities of the system. For 𝑎 ≻ 𝑏, the three possible states are given
n Table 3. The hazard rate matrix in this case is

=
[

𝜆𝑎𝑎 𝜆𝑎𝑏
0 𝜆𝑏𝑏

]

. (9)

or simplicity, alphabet suffices and numerical suffices are used to
epresent functions and states, respectively. From Table 3, it is known
𝑎 = 𝑅1 +𝑅2 and 𝑅𝑏 = 𝑅1. For all functions, 𝑅𝑗 (𝑡+𝛥𝑡) =

∑

𝑖 𝑃 (𝑗, 𝑡+𝛥𝑡 ∣
, 𝑡)𝑅𝑖(𝑡), where 𝑃 (𝑗, 𝑡+𝛥𝑡 ∣ 𝑖, 𝑡) represents the probability that the system
s in state 𝑗 at time (𝑡+𝛥𝑡) conditional on the system being in state 𝑖 at
3

ime 𝑡. The PDFs of the failure times for functions 𝑎 and 𝑏 are expressed,
espectively, as

𝑝𝑎 = − lim
𝛥𝑡→0

𝑅𝑎(𝑡 + 𝛥𝑡) − 𝑅𝑎(𝑡)
𝛥𝑡

= − lim
𝛥𝑡→0

[𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡) + 𝑃 (2, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡)]𝑅1(𝑡)
𝛥𝑡

− lim
𝛥𝑡→0

[𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 2, 𝑡) + 𝑃 (2, 𝑡 + 𝛥𝑡 ∣ 2, 𝑡)]𝑅2(𝑡) − [𝑅1(𝑡) + 𝑅2(𝑡)]
𝛥𝑡

, and

𝑝𝑏 = − lim
𝛥𝑡→0

𝑅𝑏(𝑡 + 𝛥𝑡) − 𝑅𝑏(𝑡)
𝛥𝑡

= − lim
𝛥𝑡→0

𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡)𝑅1(𝑡) − 𝑅1(𝑡)
𝛥𝑡

.

(10)

Without considering the system-level recovery (renewal), it is noted
that the conditional probability 𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 2, 𝑡) = 0 in Eq. (10) as the
transition from state 1 to state 2 is irreversible.

On the other hand, combining Eqs. (1) and (2), the PDFs of the
functions can be written as
[

𝑝𝑎
𝑝𝑏

]

=
[

𝜆𝑎𝑎 𝜆𝑎𝑏
0 𝜆𝑏𝑏

] [

𝑅𝑎
𝑅𝑏

]

. (11)

Substitute 𝑝𝑎 and 𝑝𝑏 expressed in Eq. (10) into Eq. (11) to obtain the
elements of the hazard rate matrix

𝜆𝑎𝑎(𝑡) = lim
𝛥𝑡→0

1 − 𝑃 (2, 𝑡 + 𝛥𝑡 ∣ 2, 𝑡)
𝛥𝑡

,

𝜆𝑎𝑏(𝑡) = lim
𝛥𝑡→0

𝑃 (2, 𝑡 + 𝛥𝑡 ∣ 2, 𝑡) − 𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡) − 𝑃 (2, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡)
𝛥𝑡

,

𝜆𝑏𝑏(𝑡) = lim
𝛥𝑡→0

1 − 𝑃 (1, 𝑡 + 𝛥𝑡 ∣ 1, 𝑡)
𝛥𝑡

.

(12)

More generally, extending this formula to an 𝑛-function irreducible
system, the element of the hazard rate matrix can be expressed as

𝜆𝑖𝑗 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

lim
𝛥𝑡→0

1 − 𝑃 (𝑛 − 𝑖 + 1, 𝑡 + 𝛥𝑡 ∣ 𝑛 − 𝑖 + 1, 𝑡)
𝛥𝑡

,

𝑖 = 𝑗

lim
𝛥𝑡→0

∑𝑛−𝑖+1
𝑘=𝑛−𝑗+2 𝑃 (𝑘, 𝑡 + 𝛥𝑡 ∣ 𝑛 − 𝑗 + 2, 𝑡) −

∑𝑛−𝑖+1
𝑘=𝑛−𝑗+1 𝑃 (𝑘, 𝑡 + 𝛥𝑡 ∣ 𝑛 − 𝑗 + 1, 𝑡)

𝛥𝑡
,

𝑖 < 𝑗

0, 𝑖 > 𝑗,

(13)

where 𝜆𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛) represents the element in the 𝑖th row and the
𝑗th column of the hazard rate matrix 𝝀.

It is noted that the derivation of Eq. (13) is not dependent on the
linear degradation assumption; therefore, the result is general. The
significance of Eq. (13) is that it establishes the connection between
the elements of the hazard rate matrix and the conditional probabili-
ties. Since the conditional probability describes the instantaneous state
variation at time 𝑡; therefore, the hazard rate matrix can fully describe
the degradation dynamics and vice versa.

3. Reliability model of multi-function systems using hazard rate
matrix and Markovian approximation

Consider an 𝑛-function system, the reliability functions 𝐑(𝑡) can be
xpressed as the following by substituting Eq. (8) into Eq. (2)

d
d𝑡

⎡

⎢

⎢

⎢

⎢

𝑅𝑎
𝑅𝑏
⋮

⎤

⎥

⎥

⎥

⎥

= −

⎡

⎢

⎢

⎢

⎢

𝜆𝑎𝑎 𝜆𝑎𝑏 ⋯ 𝜆𝑎𝑛
0 𝜆𝑏𝑏 ⋯ 𝜆𝑏𝑛
⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

⎡

⎢

⎢

⎢

⎢

𝑅𝑎
𝑅𝑏
⋮

⎤

⎥

⎥

⎥

⎥

. (14)
⎣

𝑅𝑛 ⎦ ⎣

0 0 ⋯ 𝜆𝑛𝑛 ⎦ ⎣

𝑅𝑛 ⎦
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Given the initial state 𝑅𝑖(0) = 1, 𝑖 ∈ (𝑎, 𝑏,… , 𝑛), Eq. (14) can be solved
to obtain

𝑅𝑎 = exp
(

∫

𝑡

0
−𝜆𝑎𝑎d𝑡′

){

1 − ∫

𝑡

0

[

𝜆𝑎𝑏𝑅𝑏 + 𝜆𝑎𝑐𝑅𝑐 +⋯ + 𝜆𝑎𝑛𝑅𝑛
]

× exp

(

∫

𝑡′

0
−𝜆𝑎𝑎 d𝑡′′

)

d𝑡′
}

,

⋮

𝑅𝑖 = exp
(

∫

𝑡

0
−𝜆𝑖𝑖d𝑡′

){

1 − ∫

𝑡

0

[

𝜆𝑖(𝑖+1)𝑅𝑖+1 + 𝜆𝑖(𝑖+2)𝑅𝑖+2 +⋯ + 𝜆𝑖𝑛𝑅𝑛
]

× exp

(

∫

𝑡′

0
−𝜆𝑖𝑖 d𝑡′′

)

d𝑡′
}

,

⋮

𝑅𝑛−1 = exp
(

∫

𝑡

0
−𝜆(𝑛−1)(𝑛−1)d𝑡′

)

×

[

1 − ∫

𝑡

0
𝜆(𝑛−1)𝑛 exp

(

∫

𝑡′

0
𝜆(𝑛−1)(𝑛−1) − 𝜆𝑛𝑛 d𝑡′′

)

d𝑡′
]

,

𝑅𝑛 = exp
(

∫

𝑡

0
−𝜆𝑛𝑛d𝑡′

)

.

(15)

The joint PDF 𝑝(𝑡𝑎, 𝑡𝑏,… , 𝑡𝑛) of the system is difficult to be determined
directly due to its complexity. By decomposing the system into the
state-function table (e.g., Table 3), the joint PDF of the lifetimes of
all functions in an irreducible 𝑛-function system can be expressed, by
incorporating all the possible failure path from the state-function table,
as

𝑝
(

𝑡𝑎,… , 𝑡𝑛
)

=
∑

𝛼
𝜇𝛼𝑝𝛼(𝑡𝑎,… , 𝑡𝑛)ℎ(𝑡𝑎,… , 𝑡𝑛), (16)

where 𝛼 represents one possible failure path of all failure paths, 𝜇𝛼 is
the probability associated with the failure path 𝛼 such that ∑

𝛼 𝜇
𝛼 =

1, 𝑝𝛼(𝑡𝑎,… , 𝑡𝑛) represents the PDFs of joint lifetimes of all functions
(𝑎,… , 𝑛) when the system fails along the failure path 𝛼, and 𝐻(𝑡𝑎,… , 𝑡𝑛)
is the joint step function constraining the order of failure times of the
functions. The actual expression of 𝐻(𝑡𝑎,… , 𝑡𝑛) depends on the failure
paths of a specific system.

The state transition of a multi-function system describes the dy-
namical trajectory of the degradation process. The probability for the
degradation trajectory 𝑆 = (𝑖0, 𝑡0; 𝑖1, 𝑡1;⋯ ; 𝑖𝑚, 𝑡𝑚) can be written as the
product of conditional probabilities at each time steps as

𝑃 (𝑆) = 𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1;⋯ ; 𝑖0, 𝑡0) ⋅ 𝑃 (𝑖𝑚−1, 𝑡𝑚−1;⋯ ; 𝑖0, 𝑡0)
= 𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1;⋯ ; 𝑖0, 𝑡0)

⋅𝑃 (𝑖𝑚−1, 𝑡𝑚−1|𝑖𝑚−2, 𝑡𝑚−2;⋯ ; 𝑖0, 𝑡0) ⋅ 𝑃 (𝑖𝑚−2, 𝑡𝑚−2;⋯ ; 𝑖0, 𝑡0)
= ⋯
= 𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1;⋯ ; 𝑖0, 𝑡0)

⋅𝑃 (𝑖𝑚−1, 𝑡𝑚−1|𝑖𝑚−2, 𝑡𝑚−2;⋯ ; 𝑖0, 𝑡0)⋯𝑃 (𝑖1, 𝑡1|𝑖0, 𝑡0) ⋅ 𝑃 (𝑖0, 𝑡0),

(17)

where the suffix represents the time index. The term 𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1;
⋯ ; 𝑖0, 𝑡0) is the probability of being in state 𝑖𝑚 at time 𝑡𝑚 conditional on
the system experiencing the previous trajectory (𝑖𝑚−1, 𝑡𝑚−1;⋯ ; 𝑖0, 𝑡0) in
reverse order.

Under Markovian condition, the probability distribution of the fu-
ture state depends only on the current state. The conditional probability
can be simplified as

𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1;… ; 𝑖0, 𝑡0) = 𝑃 (𝑖𝑚, 𝑡𝑚|𝑖𝑚−1, 𝑡𝑚−1), (18)

for 𝑚 ∈ (1, 2,…). Furthermore, under this condition, the dynamical
equation for the probability 𝑃 (𝑗, 𝑡) of a multi-state system being in state
𝑗 at time 𝑡 can be written as
d𝑃 (𝑗, 𝑡)

=
∑

𝑘𝑗𝑖𝑃 (𝑖, 𝑡), (19)
4

d𝑡 𝑖
Table 4
Four states of an irreducible three-function system.

State Function 𝑎 Function 𝑏 Function 𝑐

1 Work Work Work
2 Work Work Breakdown
3 Work Breakdown Breakdown
4 Breakdown Breakdown Breakdown

where 𝑘𝑗𝑖 is the transition rate from state 𝑖 to state 𝑗.
One of the key steps in the method is to express the joint PDF of

the failure times of all functions in the system using the state transition
rates of the whole system. The Markovian approximation is needed to
obtain an analytical form of the joint PDF in terms of the state transition
rates. In addition, under Markovian condition, the relation between
the hazard rate matrix and the state transition rate matrix can also be
established. By combining the two results and the dynamical equation
of Eq. (19), the equations for the elements in the hazard rate matrix
can be established using the observable information on the functions;
therefore, the detail of system degradation process can be resolved
using the method. Under more general (non-Markovian) conditions, the
basic idea of the method remains unchanged; however, the joint PDF of
failure times of all functions may not have close-form expressions as the
non-Markovian conditions can be varying case-by-case. Consequently,
the hazard rate equations do not have close-form expressions, and one
has to resort approaches such as Monte Carlo simulations or asymptotic
approximations for the required computations, which may be highly
nontrivial for multi-function systems. In this case, other methods such
as Refs. [44,45] may be used. The overall procedure of the method is
demonstrated using the following examples.

4. Engineering applications

An irreducible three-function system is used to illustrate the overall
method. The degradation dynamics of the functions is resolved using
the proposed method, and the accuracy of the results is verified. The
applicability of the method to non-Markovian degradation processes is
discussed. Following that, the proposed method is applied to a power
system to demonstrate the usage in realistic engineering problems.

4.1. A three-function system demonstration

A three-function system having four different states is used for
method demonstration. Without loss of generality, the relation between
functions is prescribed as 𝑎 ≻ 𝑏 ≻ 𝑐, and the resulting four states are
shown in Table 4. The hazard rate matrix of this system is

𝝀 =
⎡

⎢

⎢

⎣

𝜆𝑎𝑎 𝜆𝑎𝑏 𝜆𝑎𝑐
0 𝜆𝑏𝑏 𝜆𝑏𝑐
0 0 𝜆𝑐𝑐

⎤

⎥

⎥

⎦

. (20)

Given the initial condition 𝑅𝑖(0) = 1, the solution to the reliability
function 𝑅𝑖(𝑡) is obtained using Eq. (15).

The possible failure paths of the system are 𝛼 = {(1234), (134),
(124), (14)}, according to the states shown in Table 4; consequently,
the joint distribution of the failure times of the three functions can be
expressed as

𝑝
(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

= 𝜇(1234)𝑝(1234)
(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

ℎ
(

𝑡𝑎 − 𝑡𝑏
)

ℎ
(

𝑡𝑏 − 𝑡𝑐
)

+ 𝜇(134)𝑝(134)
(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

ℎ
(

𝑡𝑎 − 𝑡𝑏
)

𝛿
(

𝑡𝑏 − 𝑡𝑐
)

+ 𝜇(124)𝑝(124)
(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

𝛿
(

𝑡𝑎 − 𝑡𝑏
)

ℎ
(

𝑡𝑏 − 𝑡𝑐
)

+ 𝜇(14)𝑝(14)
(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

𝛿
(

𝑡𝑎 − 𝑡𝑏
)

𝛿
(

𝑡𝑏 − 𝑡𝑐
)

,

(21)

where 𝜇(𝛼) is the probability of the failure path 𝛼. For example, 𝜇(1234)

represents the probability that the system fails by sequentially ex-
periencing states 1, 2, 3, and 4. The term 𝑝𝛼

(

𝑡𝑎, 𝑡𝑏, 𝑡𝑐
)

is the joint
distribution of failure times of the three functions when the system fails
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via the path 𝛼. For example, 𝑝(1234)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) is the joint distribution of
he failure times of the three functions when the system fails via the
ailure path (1234). The order of traversing a specific trajectory of states
s ensured by the Heaviside function ℎ(⋅)

ℎ(𝑥) =
{

1 𝑥 > 0
0 otherwise,

(22)

nd the simultaneous failure of two or three functions is ensured by the
irac delta function 𝛿(⋅)

(𝑥) =
{

1 𝑥 = 0
0 otherwise.

(23)

or a specific function 𝑖 ∈ (𝑎, 𝑏, 𝑐), the marginal PDF of its failure time
can be obtained by integrating out the other variable 𝑗 ∈ (𝑎, 𝑏, 𝑐), 𝑗 ≠ 𝑖
f Eq. (21) as

𝑖(𝑡) = 𝜇(1234)𝑝(1234)𝑖 (𝑡) + 𝜇(134)𝑝(134)𝑖 (𝑡) + 𝜇(124)𝑝(124)𝑖 (𝑡) + 𝜇(14)𝑝(14)𝑖 (𝑡), (24)

where 𝑝𝛼𝑖 (𝑡) denotes the marginal PDF of the function 𝑖’s failure time 𝑡
under the failure path 𝛼.

Using Markovian approximation Eq. (18), the joint PDF of failure
times of the three functions conditional on a failure path can be
derived, For example, the joint probability of the failure times (𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )
conditional on the failure path (1234) in a time interval 𝛥𝑡 is

𝜇(1234)𝑝(1234)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )𝛥𝑡3

=𝑃 (4, 𝑡𝑎; 3, 𝑡𝑎 − 𝛥𝑡;⋯ ; 3, 𝑡𝑏; 2, 𝑡𝑏 − 𝛥𝑡;⋯ ; 2, 𝑡𝑐 ; 1, 𝑡𝑐 − 𝛥𝑡;⋯ ; 1, 0)

=𝑃 (4, 𝑡𝑎|3, 𝑡𝑎 − 𝛥𝑡)

⋅ 𝑃 (3, 𝑡𝑎 − 𝛥𝑡;⋯ ; 3, 𝑡𝑏; 2, 𝑡𝑏 − 𝛥𝑡;⋯ ; 2, 𝑡𝑐 ; 1, 𝑡𝑐 − 𝛥𝑡;⋯ ; 1, 0)

=𝑃 (4, 𝑡𝑎|3, 𝑡𝑎 − 𝛥𝑡) ⋅ 𝑃 (3, 𝑡𝑎 − 𝛥𝑡|3, 𝑡𝑎 − 2𝛥𝑡)

⋅ 𝑃 (3, 𝑡𝑎 − 2𝛥𝑡;⋯ ; 3, 𝑡𝑏;⋯ ; 2, 𝑡𝑐 ;⋯ ; 1, 0)

=𝑘43(𝑡𝑎)𝛥𝑡
𝑛3
∏

𝑗=1

[

1 + 𝑘33(𝑡𝑎 − 𝑗𝛥𝑡) ⋅ 𝛥𝑡
]

⋅ 𝑘32(𝑡𝑏)𝛥𝑡
𝑛2
∏

𝑗=1

[

1 + 𝑘22(𝑡𝑏 − 𝑗𝛥𝑡) ⋅ 𝛥𝑡
]

⋅ 𝑘21(𝑡𝑐 )𝛥𝑡
𝑛1
∏

𝑗=1

[

1 + 𝑘11(𝑡𝑐 − 𝑗𝛥𝑡) ⋅ 𝛥𝑡
]

,

(25)

where 𝑛1 = 𝑡𝑐∕𝛥𝑡, 𝑛2 = (𝑡𝑏 − 𝑡𝑐 )∕𝛥𝑡, and 𝑛3 = (𝑡𝑎 − 𝑡𝑏)∕𝛥𝑡 are the numbers
of time steps in states 1,2, and 3, respectively. Note that the last step
in Eq. (25) utilizes the infinitesimal definition of the continuous-time
Markov chain such that as 𝛥𝑡 → 0+, ∀𝑡 > 𝛥𝑡,

𝑃 (𝑗, 𝑡|𝑖, 𝑡 − 𝛥𝑡) = 𝛿𝑗𝑖 + 𝑘𝑗𝑖(𝑡)𝛥𝑡 + 𝑜(𝛥𝑡), (26)

where 𝛿𝑗𝑖 is the Kronecker delta, 𝑖 and 𝑗 are state indicators, 𝑘𝑗𝑖 is the
transition rate from state 𝑖 to state 𝑗, and 𝑜(𝛥𝑡) is little-o notation.

Divide both sides of Eq. (25) by 𝛥𝑡3 to obtain the joint PDF (𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )
conditional on the failure path (1234) as 𝛥𝑡 approaches zero,

𝜇(1234)𝑝(1234)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) = 𝑘43
(

𝑡𝑎
)

exp

(

∫

𝑡𝑎

𝑡𝑏
𝑘33d𝑡

)

⋅ 𝑘32
(

𝑡𝑏
)

× exp

(

∫

𝑡𝑏

𝑡𝑐
𝑘22d𝑡

)

⋅ 𝑘21
(

𝑡𝑐
)

exp
(

∫

𝑡𝑐

0
𝑘11d𝑡

)

.

(27)
5

w

Similarly, the joint PDFs of (𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) conditional on all other failure
paths can be obtained as,

𝜇(1234)𝑝(1234)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) = 𝑘43(𝑡𝑎) exp

(

∫

𝑡𝑎

𝑡𝑏
𝑘33d𝑡

)

⋅ 𝑘32(𝑡𝑏)

× exp

(

∫

𝑡𝑏

𝑡𝑐
𝑘22d𝑡

)

⋅ 𝑘21(𝑡𝑐 ) exp
(

∫

𝑡𝑐

0
𝑘11d𝑡

)

𝜇(134)𝑝(134)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) = 𝑘43(𝑡𝑎) exp

(

∫

𝑡𝑎

𝑡𝑏𝑐
𝑘33d𝑡

)

⋅ 𝑘31(𝑡𝑏𝑐 )

exp
(

∫

𝑡𝑏𝑐

0
𝑘11d𝑡

)

𝜇(124)𝑝(124)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) = 𝑘42(𝑡𝑎𝑏) exp

(

∫

𝑡𝑎𝑏

𝑡𝑐
𝑘22d𝑡

)

⋅ 𝑘21(𝑡𝑐 )

exp
(

∫

𝑡𝑐

0
𝑘11d𝑡

)

𝜇(14)𝑝(14)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) = 𝑘41(𝑡𝑎𝑏𝑐) exp
(

∫

𝑡𝑎𝑏𝑐

0
𝑘11d𝑡

)

.

(28)

In Eq. (28), the term 𝑡𝑏𝑐 on the right hand side of 𝜇(134)𝑝(134)(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )
denotes the time when functions 𝑏 and 𝑐 simultaneously fail. In the
same manner, the term 𝑡𝑎𝑏 is the simultaneous failure time of functions
𝑎 and 𝑏, and the term 𝑡𝑎𝑏𝑐 is the simultaneous failure time of the three
functions 𝑎, 𝑏, and 𝑐.

On the other hand, the relation between the hazard rate matrix 𝝀
and the transition rate matrix 𝒌 can be established, with the detailed
derivation presented in Appendix A, as

𝝀 =
⎡

⎢

⎢

⎣

𝜆𝑎𝑎 𝜆𝑎𝑏 𝜆𝑎𝑐
0 𝜆𝑏𝑏 𝜆𝑏𝑐
0 0 𝜆𝑐𝑐

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

−𝑘43 −𝑘42 + 𝑘43 −𝑘41 + 𝑘42
0 −𝑘32 − 𝑘42 𝑘32 + 𝑘42 − 𝑘31 − 𝑘41
0 0 −𝑘21 − 𝑘31 − 𝑘41

⎤

⎥

⎥

⎦

. (29)

For the three-function system, the failure rate equations are obtained
by combining Eqs. (15), (28), and (29) as

�̇�𝑎𝑎 − 𝜆2𝑎𝑎
𝜇(1234)𝑝(1234)𝑎 + 𝜇(134)𝑝(134)𝑎 − 𝜇(1234)𝑝(1234)𝑏 − 𝜇(134)𝑝(134)𝑏

𝜇(1234)𝑝(1234)𝑎 + 𝜇(134)𝑝(134)𝑎

− 𝜆𝑎𝑎
d ln

(

𝜇(1234)𝑝(1234)𝑎 + 𝜇(134)𝑝(134)𝑎

)

d𝑡
= 0,

𝜆𝑎𝑏 =
𝜇(124)𝑝(124)𝑎
𝑅𝑏 − 𝑅𝑐

− 𝜆𝑎𝑎,

𝜆𝑎𝑐 =
𝜇(14)𝑝(14)𝑎

𝑅𝑐
−

𝜇(124)𝑝(124)𝑎
𝑅𝑏 − 𝑅𝑐

,

�̇�𝑏𝑏 − 𝜆2𝑏𝑏

[

𝜇(1234)𝑝(1234)𝑏 + 𝜇(124)𝑝(124)𝑏 − 𝜇(1234)𝑝(1234)𝑐 − 𝜇(124)𝑝(124)𝑐

𝜇(1234)𝑝(1234)𝑏 + 𝜇(124)𝑝(124)𝑏

]

− 𝜆𝑏𝑏
d ln

(

𝜇(1234)𝑝(1234)𝑏 + 𝜇(124)𝑝(124)𝑏

)

d𝑡
= 0,

𝜆𝑏𝑐 =
𝜇(14)𝑝(14)𝑏 + 𝜇(134)𝑝(134)𝑏

𝑅𝑐
− 𝜆𝑏𝑏,

�̇�𝑐𝑐 − 𝜆2𝑐𝑐 − 𝜆𝑐𝑐
d ln 𝑝𝑐

d𝑡
= 0,

(30)

here 𝑝 is given by Eq. (24).
𝑐
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The solution to the above system of equations is

𝜆𝑎𝑎 = −
𝜇(1234)𝑝(1234)𝑎 + 𝜇(134)𝑝(134)𝑎

∫ 𝑡
0

[

𝜇(1234)𝑝(1234)𝑎 + 𝜇(134)𝑝(134)𝑎 − 𝜇(1234)𝑝(1234)𝑏 − 𝜇(134)𝑝(134)𝑏

]

d𝑡′
,

𝜆𝑎𝑏 =
𝜇(124)𝑝(124)𝑎
𝑅𝑏 − 𝑅𝑐

− 𝜆𝑎𝑎,

𝜆𝑎𝑐 =
𝜇(14)𝑝(14)𝑎

𝑅𝑐
−

𝜇(124)𝑝(124)𝑎
𝑅𝑏 − 𝑅𝑐

,

𝜆𝑏𝑏 = −
𝜇(1234)𝑝(1234)𝑏 + 𝜇(124)𝑝(124)𝑏

∫ 𝑡
0

[

𝜇(1234)𝑝(1234)𝑏 + 𝜇(124)𝑝(124)𝑏 − 𝜇(1234)𝑝(1234)𝑐 − 𝜇(124)𝑝(124)𝑐

]

d𝑡′
,

𝜆𝑏𝑐 =
𝜇(14)𝑝(14)𝑏 + 𝜇(134)𝑝(134)𝑏

𝑅𝑐
− 𝜆𝑏𝑏,

𝜆𝑐𝑐 =
𝑝𝑐

1 − ∫ 𝑡
0 𝑝𝑐 d𝑡′

.

(31)

Eq. (31) provides an explicit relation between the marginal PDFs
(such as 𝑝(1234)𝑎 , 𝑝(134)𝑎 , etc.) and the elements of the hazard rate matrix
under Markovian condition. With this result, the details of system
degradation process can be inferred with the information (such as
lifetime data) on the functions. It should be noted that the method itself
does not depend on the failure information nor the means obtaining
such information to formulate the equations and obtain their symbolic
solutions; however, the equations can only be numerically resolved
with the actual failure time information on these functions. In realistic
cases such information can be assumed, calculated from physics-based
models, and/or obtained from testing data.

To demonstrate the computation, the transition rate matrix 𝒌 in
Eq. (32) is assumed. Substitute the terms in Eq. (32) into Eq. (28) to
obtain the required marginal PDFs on the right hand side of Eq. (31),
representing the observed marginal PDFs. The elements of the hazard
rate matrix are evaluated and the results are shown as solid lines
in Fig. 1. Note that the results represent the solution to the hazard
rate matrix of the three-function system obtained using observable
information on the functions.

𝒌 =

⎡

⎢

⎢

⎢

⎢

⎣

e−5𝑡 − 1 0 0 0
e−4𝑡 − e−5𝑡 e−3𝑡 − 1 0 0
e−3𝑡 − e−4𝑡 e−2𝑡 − e−3𝑡 e−𝑡 − 1 0
1 − e−3𝑡 1 − e−2𝑡 1 − e−𝑡 0

⎤

⎥

⎥

⎥

⎥

⎦

. (32)

To verify the accuracy of Eq. (31), the hazard rate matrix can
irectly be calculated using the assumed transition rate matrix Eq. (32)
ccording to Eq. (29). The direct results represent ground truth values,
nd are presented as discrete markers in Fig. 1. By comparing the
wo sets of results, a close agreement between the two is observed,
ndicating that the result of Eq. (31) is accurate.

It is worth mentioning that in realistic cases, the transition rate
atrix is rarely known a priori, and only failure time data are available

n certain functions; however, the actual solution to the hazard rate
atrix of the system, such as Eq. (31), can be resolved using the
roposed method. As shown in Eq. (31), only marginal PDFs such
s 𝑝(1234)𝑎 , 𝑝(134)𝑏 , and so on are needed. Those marginal PDFs can
e obtained using proper probabilistic and/or statistical methods and
ifetime data on the functions. Furthermore, it should be stressed that
he equations of the elements of the hazard rate matrix, e.g., Eq. (30)
nd the solutions to the equations, e.g., Eq. (31) are only analytically
ractable under Markovian condition. For non-Markovian conditions,
he performance of the method depends on the memory time of the
pecific non-Markovian process which can be different case-by-case.

detailed error analysis using the three-function system example is
resented in Appendix B. It is shown that, by using Markovian approx-
mation to a non-Markovian process, the error grows as the memory
6

ime increases, and the error does not exceed 20% in this example.
Fig. 1. The comparison between the actual (in discrete markers) and solved (in solid
lines) elements of the hazard rate matrix.

Table 5
States and functions of the power system.

State Function 𝑐1 Function 𝑐2 Function 𝑏2 Function 𝑎

1 Work Work Work Work
2 Breakdown Work Work Breakdown
3 Work Breakdown Work Breakdown
4 Work Work Breakdown Breakdown
5 All other states

4.2. A power system reliability assessment problem

A power system reliability assessment problem is adopted to demon-
strate the method in realistic engineering applications. The power
system model is taken from Ref. [46] where the actual system is
modeled using the fault tree analysis, and the simplified fault tree
model is shown in Fig. 2 for demonstration purposes. The function
𝑎 represents the substation works, and functions 𝑏1 and 𝑏2 represent
the electricity transfer works properly for generator/load and lines,
respectively. Function 𝑏1 can be divided into two functions 𝑐1 and 𝑐2,
which represent the electricity transfer paths from generators to lines,
and from lines to loads are in working state, respectively. It is noted
that the state of function 𝑏1 can be determined by the states of 𝑐1
and 𝑐2, and the functions 𝑎, 𝑏2, 𝑐1 and 𝑐2 determine the state of the
whole system. A total of five states are possible for the system and
are shown in Table 5. Since the probability of the event that multiple
functions fail simultaneously is almost zero in actual engineering, the
possible failure paths of the system reduce to one of the three in the set
𝛼 = {(125), (135), (145)}, where the numbers in (⋅) denotes the system
fails via the sequence of states indexed by the numbers, as defined
before.

Following the procedure outlined in Section 2, the hazard rate
matrix of the power system is expressed as

𝝀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑐1𝑐1 0 0 𝜆𝑐1𝑎
0 𝜆𝑐2𝑐2 0 𝜆𝑐2𝑎
0 0 𝜆𝑏2𝑏2 𝜆𝑏2𝑎
0 0 0 𝜆𝑎𝑎

⎤

⎥

⎥

⎥

⎥

⎦

. (33)

Referring to the procedure in Appendix A, the relationship between
the hazard rate matrix and transition rate matrix of the system is
established as Eq. (34) given in Box I.

The equations for the elements in the hazard rate matrix of the
system are formulated following the procedure described in Section 3.
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Fig. 2. Fault tree diagram of the power system.
𝒌𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑘11 𝑘21 𝑘31 𝑘41 𝑘51
𝑘12 𝑘22 𝑘32 𝑘42 𝑘52
𝑘13 𝑘23 𝑘33 𝑘43 𝑘53
𝑘14 𝑘24 𝑘34 𝑘44 𝑘54
𝑘15 𝑘25 𝑘35 𝑘45 𝑘55

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜆𝑎𝑎 𝜆𝑐1𝑎 + 𝜆𝑐1𝑐1 𝜆𝑐2𝑎 + 𝜆𝑐2𝑐2 𝜆𝑏2𝑎 + 𝜆𝑏2𝑏2 0
0 𝜆𝑐1𝑐1 − 𝜆𝑐2𝑐2 − 𝜆𝑏2𝑏2 0 0 𝜆𝑐2𝑐2 + 𝜆𝑏2𝑏2 − 𝜆𝑐1𝑐1
0 0 𝜆𝑐2𝑐2 − 𝜆𝑐1𝑐1 − 𝜆𝑏2𝑏2 0 𝜆𝑐1𝑐1 + 𝜆𝑏2𝑏2 − 𝜆𝑐2𝑐2
0 0 0 𝜆𝑏2𝑏2 − 𝜆𝑐1𝑐1 − 𝜆𝑐2𝑐2 𝜆𝑐1𝑐1 + 𝜆𝑐2𝑐2 − 𝜆𝑏2𝑏2
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(34)
Box I.
The solutions to the equations are

𝜆𝑐1𝑐1 = −
𝑝𝑐1 − 𝜇(125)𝑝(125)𝑐1

∫ 𝑡
0 (𝑝𝑐1 − 𝑝𝑎) d𝑡′

,

𝜆𝑐1𝑎 =
𝜇(125)𝑝(125)𝑐1

1 − ∫ 𝑡
0 𝑝𝑎 d𝑡′

+
𝑝𝑐1 − 𝜇(125)𝑝(125)𝑐1

∫ 𝑡
0 (𝑝𝑐1 − 𝑝𝑎) d𝑡′

,

𝜆𝑐2𝑐2 = −
𝑝𝑐2 − 𝜇(135)𝑝(135)𝑐2

∫ 𝑡
0 (𝑝𝑐2 − 𝑝𝑎) d𝑡′

,

𝜆𝑐2𝑎 =
𝜇(135)𝑝(135)𝑐2

1 − ∫ 𝑡
0 𝑝𝑎 d𝑡′

+
𝑝𝑐2 − 𝜇(135)𝑝(135)𝑐2

∫ 𝑡
0 (𝑝𝑐2 − 𝑝𝑎) d𝑡′

,

𝜆𝑏2𝑏2 = −
𝑝𝑏2 − 𝜇(145)𝑝(145)𝑏2

∫ 𝑡
0 (𝑝𝑏2 − 𝑝𝑎) d𝑡′

,

𝜆𝑏2𝑎 =
𝜇(145)𝑝(145)𝑏2

1 − ∫ 𝑡
0 𝑝𝑎 d𝑡′

+
𝑝𝑏2 − 𝜇(145)𝑝(145)𝑏2

∫ 𝑡
0 (𝑝𝑏2 − 𝑝𝑎) d𝑡′

,

𝜆𝑎𝑎 =
𝑝𝑎

1 − ∫ 𝑡
0 𝑝𝑎 d𝑡′

=
𝜇(125)𝑝(125)𝑎 + 𝜇(135)𝑝(135)𝑎 + 𝜇(145)𝑝(145)𝑎

1 − ∫ 𝑡
0

[

𝜇(125)𝑝(125)𝑎 + 𝜇(135)𝑝(135)𝑎 + 𝜇(145)𝑝(145)𝑎

]

d𝑡′
,

(35)

where 𝑝𝛼𝑖 , 𝑖 ∈ (𝑎, 𝑏2, 𝑐1, 𝑐2) is defined as before, representing the
marginal distribution of function 𝑖’s failure time when the system
degrades along the path 𝛼. The total marginal distribution for function
𝑖 is 𝑝𝑖 =

∑

𝛼 𝜇
𝛼𝑝𝛼𝑖 , and 𝜇𝛼 is the probability that the system degrades
7

along the path 𝛼.
To demonstrate the results, the probabilities of failure paths are
arbitrarily set as 𝜇(125) = 0.5, 𝜇(135) = 0.2 and 𝜇(145) = 0.3. Furthermore,
assume the observed failure times of the functions follow Weibull dis-
tributions. Specifically, it is assumed that the first function has a failure
time PDF of 𝑝𝛼𝑖 (𝑡) = 2𝑡e−𝑡2 and all other functions have a failure time
PDF of 𝑝𝛼𝑖⧵(𝑡) = 𝑡e−0.5𝑡2 . For example, for 𝛼 = (125), 𝑝(125)𝑐1 = 2𝑡e−𝑡2 and
𝑝(125)𝑐2 = 𝑝(125)𝑏2

= 𝑝(125)𝑎 = 𝑡e−0.5𝑡2 . With the failure time PDFs, the elements
of the hazard rate matrix can be resolved using Eq. (35). Furthermore,
the probabilities of states 𝑃𝑗 , 𝑗 = (1,… , 5) can be obtained by solving
the system of differential equations Eq. (19) using the transition rate
matrix of Eq. (34). The results are shown in Fig. 3. In particular, the
curve labeled as ‘State 1’ is the time-dependent reliability of the system
(i.e., the probability of the system being in State 1). For example, given
a rated lifetime of 𝑡 = 0.5 (×unit), the reliability of the power system is
0.7788, and the failure probabilities of function 𝑎 caused by functions
𝑐1, 𝑐2, and 𝑏2 are 0.0518, 0.0207 and 0.0311, respectively.

Note that the observable information in this case is simulated using
the assumed failure time PDFs of the individual functions; therefore,
the verification of the accuracy of the results shown in Fig. 3 can be
made following the procedure described in Section 4.1, and is omitted
here due to redundancy. In actual cases, the failure time PDFs can
be obtained using proper probabilistic and/or statistical methods and
failure information on the functions, such as lifetime data.

5. Conclusion

A new method to model the degradation and reliability of complex

systems was developed in this study. The basic idea of the proposed
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Fig. 3. The probabilities of the state of the system at different times.

method is to abstract a system as a set of states which are determined
by the functions of the system. The hazard rate matrix is proposed
to describe the degradation of the functions. A diagonal term in the
hazard rate matrix describes the degradation of a particular function
and a non-diagonal term describes the degradation contributed by other
influencing functions. By incorporating the Markovian approximation,
the equations for each of the elements in the hazard rate matrix can
be formulated, and subsequently be solved using failure information on
the functions. In this sense the method is applicable to general complex
systems. An example was used to illustrate the overall procedure of
the method, and the accuracy of the results was verified. A power
system reliability assessment problem is provided to demonstrate its
applicability in realistic engineering problems. Based on the current
results, the following conclusions are drawn.

(1) The proposed hazard rate matrix provides a general mathematical
tool to characterize the degradation of the system based on its
functions, and the correlations among these functions are natu-
rally dealt with by the non-diagonal terms of the matrix without
special treatments.

(2) The relationship between the hazard rate matrix and the transi-
tion rate matrix can be established for a general multi-function
system under the Markovian condition. Close-form expressions for
the equations of the elements in the hazard rate matrix and their
solutions can be obtained under this condition.

As the method is centered on the state-based modeling, it predicts
the faults and remaining useful life of the system in terms of states,
e.g., healthy or faulty. However, it in general cannot predict the faults
of an individual component except that the component individually
corresponds to a function of the system. It should be noted that the
developed method can yield close-form expressions of the hazard rate
equations and their solutions only under the Markovian condition.
For more general non-Markovian conditions, the method can still be
applied but no close-form equations and their solutions are available.
In these cases, other evaluation techniques, such as Monte Carlo simu-
lations or asymptotic approximations, can be used for the computation.
The use of Markovian approximation to a non-Markovian process can
yield modeling error, as demonstrated in this study. In addition, the
method relies on the failure information on the functions to obtain
numeric results. When no such information is available, the method can
still be applied to obtain symbolic results, but no quantitative (numeric)
results can be realized.
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Appendix A. The relationship between the hazard rate matrix and
Markovian transition rate matrix

According to Table 4, the change between the four states can be
described using Eq. (19) as

d
d𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑃2
𝑃3
𝑃4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑃1
𝑃2
𝑃3
𝑃4

⎤

⎥

⎥

⎥

⎥

⎦

, (A.1)

here 𝑃𝑗 , 𝑗 ∈ (1,… , 4) is the probability when the system is in the state
at time 𝑡, and 𝑘𝑗𝑖 is the transition rate from state 𝑖 to state 𝑗. Due to

he absence of system recovery, 𝑘𝑗𝑖 = 0 (∀𝑖 > 𝑗). From Table 4,

𝑅𝑎 = 𝑃1 + 𝑃2 + 𝑃3

𝑅𝑏 = 𝑃1 + 𝑃2

𝑅𝑐 = 𝑃1.

(A.2)

ifferentiate both sides of Eq. (A.2) with respect to 𝑡, and substitute
q. (A.1) into the resulting derivatives to have

d
d𝑡

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑘33 𝑘22 + 𝑘32 − 𝑘33 𝑘11 + 𝑘21 + 𝑘31 − 𝑘22 − 𝑘32
0 𝑘22 𝑘11 + 𝑘21 − 𝑘22
0 0 𝑘11

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

.

(A.3)

The total probability of all the possible states is unity, i.e.,
∑

𝑗
𝑃𝑗 = 1. (A.4)

Therefore,

d
[

∑

𝑗 𝑃𝑗

]

d𝑡
=
∑

𝑗

[d𝑃𝑗

d𝑡

]

= 0. (A.5)

he term d𝑃𝑗∕d𝑡 =
∑

𝑖 𝑘𝑗𝑖𝑃𝑖 according to Eq. (19). Substitute the term
nto Eq. (A.5) to obtain
∑

𝑗

∑

𝑖
𝑘𝑗𝑖𝑃𝑖 = (𝑘11 + 𝑘21 + 𝑘31 + 𝑘41)𝑃1 + (𝑘12 + 𝑘22 + 𝑘32 + 𝑘42)𝑃2

+ (𝑘13 + 𝑘23 + 𝑘33 + 𝑘43)𝑃3 + (𝑘14 + 𝑘24 + 𝑘34 + 𝑘44)𝑃4

= 0

.

(A.6)

The probabilities 𝑃𝑖, 𝑖 ∈ (1,… , 4) are non-negative by definition. For
nontrivial solutions to Eq. (A.6), i.e., 𝑃𝑖 ≠ 0, 𝑖 ∈ (1,… , 4), it requires
∑

𝑘𝑗𝑖 = 0 (𝑖, 𝑗 = 1, 2, 3, 4) (A.7)

𝑗
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Using Eq. (A.7) and 𝑘𝑗𝑖 = 0 (∀𝑖 > 𝑗), Eq. (A.3) can be rewritten as

d
d𝑡

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑘43 −𝑘42 + 𝑘43 −𝑘41 + 𝑘42
0 −𝑘32 − 𝑘42 𝑘32 + 𝑘42 − 𝑘31 − 𝑘41
0 0 −𝑘21 − 𝑘31 − 𝑘41

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

.

(A.8)

The reliabilities of the functions 𝑎, 𝑏, and 𝑐 in the three-function
system can be expressed, according to Eq. (14), as

d
d𝑡

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝜆𝑎𝑎 𝜆𝑎𝑏 𝜆𝑎𝑐
0 𝜆𝑏𝑏 𝜆𝑏𝑐
0 0 𝜆𝑐𝑐

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑅𝑎
𝑅𝑏
𝑅𝑐

⎤

⎥

⎥

⎦

. (A.9)

Compare Eq. (A.8) with Eq. (A.9), the following element-wise rela-
ionship between the hazard rate matrix and the transition rate matrix
s established,

=
⎡

⎢

⎢

⎣

𝜆𝑎𝑎 𝜆𝑎𝑏 𝜆𝑎𝑐
0 𝜆𝑏𝑏 𝜆𝑏𝑐
0 0 𝜆𝑐𝑐

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

−𝑘43 −𝑘42 + 𝑘43 −𝑘41 + 𝑘42
0 −𝑘32 − 𝑘42 𝑘32 + 𝑘42 − 𝑘31 − 𝑘41
0 0 −𝑘21 − 𝑘31 − 𝑘41

⎤

⎥

⎥

⎦

. (A.10)

Appendix B. Error analysis for a non-Markovian process

The Markovian approximation is used to model the actual dynam-
ical process of a multi-function system which can be Markovian or
non-Markovian. From the perspective of modeling, it is a simplification
of the actual process whose property (Markovian or non-Markovian)
in general is not known a priori. In other words, if the property of a
process is known, the Markovian assumption would not be needed at
the first place. In this sense, the Markovian assumption is a choice on
the modeling treatment; consequently, it can be verified by comparing
the results obtained using the Markovian approximation and that al-
ternatively obtained without using the assumption. If these two sets of
results show no significant deviation, using Markovian assumption can
loosely be justified.

For a non-Markovian process, the state at time 𝑡 is affected by
he historical states. Consider a non-Markovian process trajectory 𝑆 =
𝑖0, 𝑡0; 𝑖1, 𝑡1;⋯ ; 𝑖𝑚, 𝑡𝑚) in which the current state is affected by a time
ength 𝜏, i.e., memory time. For the purpose of simulating a non-
arkovian process, the current transition rate is determined using the

ime window average, and is calculated as

𝑗[𝑆] =
1
𝜏
[

𝑘𝑗[𝑆(𝑡)] + 𝑘𝑗[𝑆(𝑡−1)] + 𝑘𝑗[𝑆(𝑡−2)] +⋯ + 𝑘𝑗[𝑆(𝑡−𝜏)]
]

, (B.1)

where 𝑘𝑗[𝑆] is the transition rate from the current trajectory 𝑆 to next
state 𝑗, 𝑆(⋅) is the actual state indexed by ⋅, and  is the state space of
the trajectory 𝑆. Denote the probability of the trajectory 𝑆 as 𝑃𝑆 , the
dynamical equation of the probability 𝑃𝑗 is

d𝑃𝑗

d𝑡
=

∑

𝑆∈
𝑘𝑗[𝑆]𝑃𝑆 . (B.2)

Note that Eq. (B.1) is arbitrarily chosen to represent a non-Markovian
process. Other conditions that can substantiate a non-Markovian pro-
cess can also be used.

The three-function system presented in Section 4.1 is used as the sys-
tem under modeling. To demonstrate the performance of the proposed
method in solving a non-Markovian process, the following transition
rate matrix is used for simplicity

𝒌𝑇 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.9 0.6 0.2 0.1
0 −0.5 0.3 0.1
0 0 −0.2 0.2
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, (B.3)

and the effect of the memory time 𝜏 is studied.
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Fig. B.4. Four arbitrarily chosen samples of the state trajectory.

Table B.6
The memory time 𝜏 and the resulting error 𝜀.
𝜏 0.05 0.1 0.25 0.5 1 3 5 8 10

𝜀 0.1374 0.1380 0.1432 0.1484 0.1542 0.1584 0.1588 0.1591 0.1594

Fig. B.5. The error 𝜀 vs. the memory time 𝜏.

Given the memory time 𝜏, the non-Markovian process can be simu-
lated. In this example, a total number of 108 trajectories are generated.
Fig. B.4 shows four simulated trajectories for illustration. Due to the
high computational demand, for each of the trajectories, a total length
of 50 time steps are simulated with a time interval of 𝛥𝑡 = 0.05. The
joint PDF can be statistically determined using the resulting trajectory
samples, which is expressed as 𝑝(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) and is considered as the
ground truth.

The marginal PDFs are obtained from the resulting trajectory sam-
ples to represent the observable information. The derived joint PDF,
labeled as 𝑝∗(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ), is obtained by Eq. (31). The Kolmogorov dis-
tance [47] is employed to quantify the error 𝜀 between the 𝑝(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )
and 𝑝∗(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ),

𝜀 = ∫
1
2
|

|

𝑝(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 ) − 𝑝∗(𝑡𝑎, 𝑡𝑏, 𝑡𝑐 )|| d𝑡𝑎d𝑡𝑏d𝑡𝑐 . (B.4)

The errors 𝜀 under different memory time lengths 𝜏 are evaluated
using the above procedure, and results are shown in Table B.6 and
Fig. B.5. It is shown that the error 𝜀 grows as the memory time 𝜏
increases. The resulting error is less than 20% in the current range of
𝜏.
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