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A B S T R A C T

The degradation of a functioning system can be characterized using the hazard rate functions (HRFs) in
the context of reliability theory. The bathtub hazard rate (BHR) is a widely-seen form of HRF for many
practical systems when considering the system as a whole. Many previous studies attempt to propose different
predictable models at system level for BHRs. However, since these models are usually not interpretable, they
can only deal with the system-level lifetime data. If the data could not bring explicit HRF shape due to the
limitation of its amount, then it is hard to select a proper model. To offset the shortcoming of system-level
models, we study the underlying mechanism in a multiple-component scenario and provide a model based
on hierarchy–structure systems to infer the appearance of BHR via their structure induced failure modes. The
novel model is interpretable and renders a steady BHR at system level which could be a theoretical support
for the BHR in reliability engineering. The proposed model provides several applications in different practical
conditions, such as the prediction of the HRF’s shape with only information of structure, inference of structure
with lifetime data and fusing information from different levels.
1. Introduction

The hazard rate function (HRF) is one of the most fundamental
means to characterize the degradation of functioning systems in the
reliability theory [1], allowing for predicting the risk of failure of a
functioning system. The BHR has been used to describe the degradation
behaviors of many systems [2–4]. A standard BHR possess three peri-
ods: early failure, random failure and wear-out period. The earliest BHR
is reported in 1693 [5]. Later, BHRs appear in many classic reliability
analysis texts. As follows the literature on BHR is briefly reviewed, and
one could find a more exhaustive survey about BHR in Refs. [6–8].

A number of previous studies construct new families of distribution
function. For example, Refs. [9,10] proposed the mixture and exten-
sions of Weibull distributions to construct BHRs, which is recently gen-
eralized by Ref. [11]; Ref. [12] proposed log-normal modified Weibull
distribution to model different shaped HRFs including BHRs. Apart
from these studies, the idea for constructing parametric distribution
functions that render BHRs can be also found in Refs. [13–19]. Ref. [20]
presents the application of the fuzzy approach for BHR and estimate
the maintenance costs. Ref. [21] shows that the BHRs could also be
obtained with applying maximum entropy principle to whole of the sys-
tem if two or more accessed moments fall in a proper region. Ref. [22]
analyze the data in the wear-out phase with 𝑞-Exponential likelihood.
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Additionally, the HRF can also be modeled based on some other mech-
anisms, e.g., Refs. [23,24] present two different phenomenological
degrading model at system level to render BHRs.

However, due to the lack of support by a rational and rigorous
modeling of the underlying mechanism in microscopic levels, the
BHRs are largely regarded as an empirical law, causing several crit-
icism and argument over its justification [6,25,26]. On one hand, the
parameterized-distribution models are efficient and reliable if the priori
information contains the shape of HRF. If the system-level information
is limited to construct a precise and convinced shape for HRF, then it is
hard to select the proper failure modes to be mixed. On the other hand,
the mechanics based models usually require the knowledge on physical
parameters that depends on the types of system, such as temperature,
pressure, voltage and so on. Since complex systems usually involve
hybrid components, to construct a mechanics based model is generally
difficult. This brings a question that how can we predict the shape of
the system-level HRF of complex system (such as BHR which is widely
concerned), when the lifetime data is limited and mechanics based
physical model is hard to construct.

In this work, we narrow this question into a smaller one, i.e., make
prediction for the appearance of BHR via the systems’ structure func-
tion for the system of systems. That is analyzing the degradations
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Notations

𝐿 Number of the levels.
𝜎(𝑘)(𝑖𝐿 ,𝑖𝐿−1 ,𝑖𝐿−2 ,…,𝑖𝑘+1 ,𝑖𝑘)

State of the element at the 𝑘th level with the
location (𝑖𝐿, 𝑖𝐿−1, 𝑖𝐿−2,… , 𝑖𝑘+1, 𝑖𝑘).

𝛴 State of the system.
𝑋(𝑡) Hazard rate function.
�̃� Hazard rate function with finite time step.
𝜙(𝑘) Structure function of each element at the

𝑘th level.
𝑛(𝑘) Number of the elements at the 𝑘th level
𝑓 [𝜙(𝑘); ⋅] ≡ 𝑓𝜙(𝑘) (⋅) Survival probability of each element at the

𝑘th level as a function of that of the 𝑘− 1th
level.

𝑅(𝑘) Survival probability of the elements at the
𝑘th level.

𝑟 Component-level survival probability.
𝒔 Characterized sequence of a deterministic

structure.
𝑅𝒔 System-level survival probability

corresponding to the characterized
sequence 𝒔.

𝜓(𝒔) Probability of the sequence 𝒔.

of the complex systems with levels ‘‘hierarchy’’, namely the systems
involve multiple components in different hierarchical levels following
the corresponding structure functions. The core idea here is to con-
sider the system-level degradation (the degradation of the system as
a whole) as the effect of emergence, which is one of the two fundamen-
tal paradigms in the modern physics while the other is reductionism.
The two paradigms from physics have not been emphasized in some
recent studies of the system reliability. In the terminology of reliability
theory, reductionism is closely associated with the concept of modular
decomposition. And it means that a system can be decomposed into a
number of subsystems, and a subsystem can be further decomposed into
a number of sub-subsystems and so on until down to the fundamental
elements, which are called components and are considered as the
basic elements. In such a treatment, these systems exhibit hierarchical
structures when viewed at different levels. The reliability engineering
for such a system has attracted increasing attention in recent years,
e.g., optimal problem for hierarchical system [27] the redundancy-
allocation problem for multi-level system [28,29], risk assessment of
system of systems [30], the related repair optimization problems [31,
32], the multi-layer urban rail transit network [33] and so on. For such
a complex system, we show in the proceeding proof that the system-
level (macroscopic) behavior is less sensitive to the component-level
(microscopic) behavior. In other word, the system-level degradation
depends hardly on the details of the component-level degradation;
consequently, it is an emergent behavior of the complex structure. One
typical example is the percolation with a classic model widely studied
in statistical physics [34]. It was recently developed to analyze the
network reliability [35,36] since the connectivity of complex networks
appears if the probability of edges is greater than some critical values,
which is called percolations. Another example regarding the reliability
of complex systems is presented in Ref. [30], where the central limit
theorem plays an important role. The central limit theorem claims
that the collection of the sufficient large numbers of identical inde-
pendent random variables converges to a normal distribution, which
is independent of the identical distribution for each variable.

The effect of hierarchy invokes a novel model that possesses the
advantages of both parametric-distribution based models and mechan-
ics based models. In our proposed model, the BHR is rendered mainly
2

by structure functions. The system-level hazard rate is formulated
according to the structure functions at different levels in the system
hierarchy. In the current study, the hierarchy is loosely referred to
the fact that the system can be decomposed into subsystems iteratively
down to the basic elements which cannot be further decomposed. This
type of system is called the system of systems and such structure could
be rendered by, for example, the modular decomposition. Each element
has two possible states, namely, the failed state and the survival state.
If the state of an element at a level depends on those of the lower-level
elements, then each of the lower-level elements is said to belong to
the higher-level element. Mathematically this dependence is described
by the structure function, i.e., the Boolean function. Since the number
of structure functions involved at all levels is usually prohibitively
large for the direct calculation of the hazard rate in the system-level,
typical types of structure functions with the following specific features
are chosen for the convention: (1) There is no intersection for the
elements at the same level. The systems satisfy this condition are
called ‘‘the system of systems’’, which is same with those considered
in Ref. [30]; (2) The structure functions of the elements at same level
are identical; and (3) The states of components are assumed to be
identically independent.

It shows that, the hierarchical model brings many differences com-
pared to the system-level models. It can be used to fuse the information
from different levels and make inference from components to system.
The structure and the lifetime data are closely linked by the model.
These bring the direct application on all-level reliability analysis. All
the parameters in the model has physical meanings, thus the model is
interpretable. There are more extensions of the model, e.g., model other
type HRFs, predict the HRFs of hierarchical structure functions and so
on. In addition, the emergent hazard rate of a complex system renders
a limited number of shapes depending on the structure and its uncer-
tainty. Furthermore, the BHR is universal in the sense of a appropriate
type of structures. These results show that the proposed model goes
beyond the conventional mixture based methods [13]. Additionally, the
real data application shows that the Akaike Information Criterion (AIC)
value for this model is close to that of the recent high-performance
system-level models [12,15,17,37].

This paper is organized as follows. In Section 2, the literatures of
BHRs are briefly reviewed. In Section 3, the mathematical model of
the systems is built. It is shown that the structure function is sorted into
three types, which dominate the key feature of the system-level degra-
dation. Sections 4–6 show different examples for the system structure
which render BHRs. A sufficient condition of mixed structure functions
for BHR is obtained. Section 7 present the real data application. Finally
discussions and conclusions are presented.

2. Model

2.1. Relevant definitions and basic notations

To build the model, some relevant definitions and basic notations
are reviewed. We consider a system involving multiple components.
The system-level state 𝛴 can be expressed using the states of the
constituent components via the structure function of the system as,

𝛴 = 𝜙(𝜎1, 𝜎2, 𝜎3,… , 𝜎𝑛), (1)

where 𝜎𝑖 denotes the state of the 𝑖th component and the function 𝜙 is
called the structure function. Specifically, the state of the system and
the components has two possible states {0, 1}; therefore, the structure
function 𝜙 ∶ {0, 1}𝑛 → {0, 1} is a Boolean function, where 𝜎𝑖 = 1
denotes that the 𝑖th component is in the survival state and 𝜎𝑖 = 0
represents the failed state. For binary systems, the structure functions
is the Boolean functions. For general multi-state system (MSS) [38], the
structure function is extended from Boolean algebra to the multi-valued
cases [39]. This study is focused on the monotonically increasing
structure function which satisfies 𝜙(0, 0, 0,… , 0) = 0, 𝜙(1, 1, 1,… , 1) = 1.

′
The monotonically increasing condition is given such that ∀𝑖 if 𝜎𝑖 ≤ 𝜎𝑖 ,
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then 𝜙(𝜎1, 𝜎2,…) ≤ 𝜙(𝜎′1, 𝜎
′
2,…). The monotonic feature implies that a

lower reliability of the components always results in a lower reliability
of the system.

Suppose that the states of the individual components 𝜎𝑖, 𝑖 = 1, 2,…
are independent and identically distributed random variables with
Pr(𝜎𝑖 = 1) = 𝑟(𝑡). The system-level survival probability 𝑅 is the average
value of 𝛴, namely

𝑅 ≡ ⟨𝜙(𝜎1, 𝜎2,… , 𝜎𝑛)⟩ = 𝑓 [𝜙; 𝑟], (2)

where the notation ⟨⋯⟩ means the average of each the possible states of
all the components. The HRF, 𝑋(𝑡), of the system is closely associated
with 𝑓 [𝜙; 𝑟] by,

𝑋(𝑡) = −
d ln𝑓 [𝜙; 𝑟]

d𝑟
× d𝑟

d𝑡
. (3)

Eq. (3) shows that the system-level HRF is the product of two parts.
The first part d𝑓 [𝜙; 𝑟]∕d𝑟 depends on the structure function, and the
second one depends on the time evolution of the survival probability of
the components. The second part, d𝑟∕d𝑡, is considered as the detailed
information of the component-level degradation in the current study.
It will be shown in the later sections that for a hierarchical system
the first part dominate the shape of the HRF due to the complexity of
the structure, leading to the emergence of the system-level degradation
behavior.

2.2. Classification of increasing structure functions

The properties for the function 𝑓 [𝜙; 𝑟] with an increasing 𝜙 are
studied as follows. Since 𝜙(0, 0, 0,… , 0) = 0, 𝜙(1, 1, 1,… , 1) = 1, the
structure function 𝜙 is increasing, one has 𝑓 [𝜙; 1] = 1, 𝑓 [𝜙; 0] = 0 and
d𝑓 [𝜙; 𝑟]∕d𝑟 ≥ 0.

In the current study, coherent structure functions [29,40] are con-
sidered. The coherent structure function is defined as an increas-
ing structure function whose states rely on all the components, i.e.,
∀𝑖,∃(𝜎1, 𝜎2,… , 𝜎𝑖−1, 𝜎𝑖+1, 𝜎𝑖+2,…) such that 𝜙(𝜎1, 𝜎2,…) = 𝜎𝑖. For a
coherent structure function 𝜙, there exist a number of non-negative
integers 𝑎𝜙,𝑖, 𝑖 = 1, 2,… , 𝑛 such that

𝑓 [𝜙; 𝑟] =
𝑛
∑

𝑖=0
𝑎𝜙,𝑖(1 − 𝑟)𝑛−𝑖𝑟𝑖, (4)

with 𝑎𝜙,𝑛 = 1, 𝑎𝜙,0 = 0. Here, the coefficients 𝑎𝜙,𝑖 is associated with the
survival signature [41–43]. Namely, the survival signature is defined
as 𝑎𝜙,𝑖∕𝐶 𝑖𝑛, where 𝐶 𝑖𝑛 is the binomial coefficient [42].

The coherent structure function could be divided into the three
types as illustrated in Fig. 1. The three types are given as follows:

Type I, 𝑓 [𝜙; 𝑟] < 𝑟 with ∀𝑟, 0 < 𝑟 < 1;
Type II, 𝑓 [𝜙; 𝑟] > 𝑟 with ∀𝑟, 0 < 𝑟 < 1; and
Type III, the equation 𝑓 [𝜙; 𝑟] = 𝑟 has one solution 𝑟 = 𝑟∗ with

0 < 𝑟∗ < 1 and 𝑓 [𝜙; 𝑟] > 𝑟 for 𝑟 > 𝑟∗, 𝑓 [𝜙; 𝑟] < 𝑟 for 𝑟 < 𝑟∗.
It is found that (1) for any coherent structure function 𝜙 in Type I

and 𝜙′ in Type II, 𝑓 [𝜙; 𝑓 [𝜙′, 𝑟]] = 𝑟 has one solution 𝑟 = 𝑟∗ with 0 <
𝑟∗ < 1, and thus the structure function �̃� with 𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙; 𝑓 [𝜙′, 𝑟]] is
in Type III. A similar result hold true for the function 𝑓 [𝜙′; 𝑓 [𝜙, 𝑟]], and
(2) for any coherent function 𝜙 in Type III and a structure function 𝜙′ in
an arbitrary type, the structure function �̃� with 𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙; 𝑓 [𝜙′, 𝑟]]
and 𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙′; 𝑓 [𝜙, 𝑟]] are also in Type III. These three types
of structure functions in a hierarchical system can lead to drastically
different system-level degradation behaviors.

In the main body of text, we briefly present the idea of proof to ex-
plain why there are only tree types and the complete proof is presented
in Appendix A. Firstly, it is clear that the line 𝑓 [𝜙; 𝑟] = 𝑟 corresponds
to a kind of structure functions that the output only depend on one
of inputs and this kind of structure functions is increasing but not
coherent by the definition. We label such structure function with 𝜙0 and
without loss of generality, we set 𝜙0(𝜎1, 𝜎2,… , 𝜎𝑛) = 𝜎1. Secondly, each
increasing structure function 𝜙 could mapping to a simplicial complex
3

a

Fig. 1. Illustration of three types of the coherent structure function.

(the definition is given in Ref. [44]), which contains a number of 𝑘-
imensional simplexes (𝑘 = 1, 2,… , 𝑛). The number of 𝑘-dimensional

simplexes is just the value of 𝑎𝜙,𝑛−𝑘. Thirdly, according to the basic
property of simplicial complexes, any two involving 𝑘 + 1-dimensional
simplexes could intersect with at most one 𝑘-dimensional simplex. The
single-input-dependent structure function 𝜙0 is a very special case. Any
two of its 𝑖+ 1-dimensional simplexes intersect with one 𝑖-dimensional
simplexes. This implies that compared with 𝜙0, any other increasing
structure functions must satisfy the condition as follows: if the number
of 𝑘+1-dimensional simplexes for its corresponding simplicial complex
s greater than that for 𝜙0, then the number of 𝑘-dimensional simplexes

is also greater than that for 𝜙0. Finally, with this condition, one could
find there are only three situations for coherent structure functions:
situation I: for all 𝑘, the number of 𝑘-dimensional simplexes for its cor-
responding simplicial complex is greater than that for 𝜙0; situation II:
for all 𝑘, the number of 𝑘-dimensional simplexes for its corresponding
simplicial complex is less than that for 𝜙0; situation III: for 𝑛 > 𝑘 >
𝑘𝑐 ≥ 1, the number of 𝑘-dimensional simplexes for its corresponding
simplicial complex is less than that for 𝜙0. A straightforward analysis
shows that these three situations are corresponding to the three types,
respectively.

2.3. The hierarchical model

In the current paper, the system with hierarchical structure is
mainly considered. As the modular composition could be applied to
many realistic systems. The structure functions of these systems are
with hierarchy. It will show that the hierarchy could dominate the
system-level HRF’s shape in many specific cases. This property is sig-
nificant and it is helpful for reduce information requirement for the
estimation on HRF in reliability engineering.

For a system with 𝐿 + 1 levels, let 𝑘 = 0, 1, 2,… , 𝐿 be the labels of
the levels. The basic component (which cannot be further decomposed)
level is 𝑘 = 0, and the system level is 𝑘 = 𝐿. It can be seen that the
quantity 𝐿 determines the number of the levels of the system, and 𝐿 is
called the system size in this paper.

With the three features for the systems listed in the introduction
section, it is convenient to define the location of each element at each
level. For example, the location of the system is 𝑖𝐿 = 1; the location of
the 𝑖𝐿−1th subsystem at level 𝐿 − 1 is (1, 𝑖𝐿−1); and the location for the
𝑖𝐿−2th sub-subsystem belonging to the 𝑖𝐿−1th subsystem is (1, 𝑖𝐿−1, 𝑖𝐿−2),

nd so on until the basic component level, as illustrated in Fig. 2.
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Fig. 2. Schematic representation of a hierarchical model studied in this work. Each node represents an element in the model. The link between a low-level element with a
high-level element represents the low-level element is a constituent part of the high-level element.
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The states of the component at the (𝑘 + 1)th level depend on those
of the components at the 𝑘th level, i.e., ∀𝑖 ∈ {1, 2, 3,… , 𝑛(𝑘+1)}

𝜎(𝑖𝐿 ,𝑖𝐿−1 ,…,𝑖𝑘+1) =𝜙
(𝑘) ( 𝜎(𝑘)(𝑖𝐿 ,𝑖𝐿−1 ,…,𝑖𝑘+1 ,1)

, 𝜎(𝑘)(𝑖𝐿 ,𝑖𝐿−1 ,…,𝑖𝑘+1 ,2)

, 𝜎(𝑘)(𝑖𝐿 ,𝑖𝐿−1 ,…,𝑖𝑘+1 ,3)
,…

)

.
(5)

ince we consider the elements at the same level are identical, combin-
ng Eq. (2) with Eq. (5) to obtain the survival probability of the (𝑘+1)th
evel as
(𝑘+1) = 𝑓 [𝜙(𝑘+1);𝑅(𝑘)]. (6)

et ◦ be the function composition, which is explicitly defined as
◦𝑔(𝑥) ≡ 𝑓 (𝑔(𝑥)). With the symbolic simplification 𝑓 [𝜙; ⋅] ≡ 𝑓𝜙(⋅), the
ystem-level survival probability is
(𝐿) = 𝑓𝜙(𝐿)◦𝑓𝜙(𝐿−1)◦𝑓𝜙(𝐿−2)◦⋯◦𝑓𝜙(1) (𝑟), (7)

and generally, a 𝑘-level element’s survival probability is
(𝑘) = 𝑓𝜙(𝑘)◦𝑓𝜙(𝑘−1)◦𝑓𝜙(𝑘−2)◦⋯◦𝑓𝜙(1) (𝑟). (8)

.4. Probabilistic structure function

The aforementioned discussions have not incorporated the uncer-
ainty of the structure function. The structure function at each level
nterprets the logical dependencies between the elements. In practice
ncertainties of the environment could influence structure functions,
uch as the uncertainty lead by manufacturing process, the uncertainty
f the hardly monitored components, the error caused by the finite
umber of levels, mixture of multiple tasks, etc. All these may lead to
reak down of a deterministic structure function, thus instead of using
he deterministic structure function, the probabilistic structure function
s a reasonable extension to model a more kind of realistic systems. The
imilar consideration was also presented in some of previous studies,
uch as Ref. [41] where the structure function is extended to �̄� ∶
{0, 1}𝑛 → [0, 1]. In this subsection, we consider a general scheme to
define a probabilistic structure function as follows. For a system with
uncertainty of both the components’ states and the structure function,
the system-level reliability 𝑅 could be defined with

=
∑

𝜙
𝑝𝜙⟨𝜙(𝜎1, 𝜎2, 𝜎3,…)⟩, (9)

here ⟨⋯⟩ denote the average over all the components’ possible states,
nd 𝑝𝜙 is the probability that the structure function takes 𝜙. For ex-
mple, for a double-component system, the coherent structure function
ould be either series or parallel, whose probability are 𝑝series and
parallel, then the system-level reliability 𝑅 is

= 𝑝 ⟨𝜎 𝜎 ⟩ + 𝑝 ⟨[1 − (1 − 𝜎 )(1 − 𝜎 )]⟩. (10)
4

series 1 2 parallel 1 2
If the components’ states obey independent identical distribution
(whose reliability is 𝑟), Eq. (9) can be simplified as

𝑅 =
∑

𝜙
𝑝𝜙𝑓 [𝜙; 𝑟]. (11)

The definition in (9) is equivalent to the conditional probability of
system state with given components’ states. This is usually consid-
ered in dynamical Bayesian network as the conditional probability
table [45–47].

In the current paper, several kinds of specific cases will be studied
to obtain a emergent BHR.

3. Self-similarity structure as function composition

In this section, the self-similarity structure function as the simplest
case of Eq. (8) is studied. The self-similarity of the structure function
at each level means that ∀𝑖, 𝜙(𝑖) = 𝜙. It follows that

𝑅(𝐿)(𝑟) = 𝑓𝜙◦𝑓𝜙◦𝑓𝜙◦⋯◦𝑓𝜙(𝑟). (12)

3.1. Pure (deterministic) self-similarity structure

Suppose that 𝜙 is in Type III. Fig. 3(a) presents the resulting 𝑅(𝐿)(𝑟)
with different 𝐿s, and Fig. 3(b) presents the function −d ln𝑅(𝐿)(𝑟)∕d𝑟.
Fig. 3(c) and 3(d) present system-level HRFs with the various system
size 𝐿 under different component-level HRFs 𝛼 = 1∕5 and 𝛼 = 1∕2,
respectively. Here, 𝛼 is the parameter in Weibull distribution 𝑟(𝑡) =
exp[−(𝜅𝑡)𝛼]. Note that −d ln𝑅(𝐿)(𝑟)∕d𝑟 can be also regarded as the HRF
for 𝑟(𝑡) = 1−𝑡. The condition 𝑟(𝑡) = 1−𝑡 implies that the component-level

RF is 1∕(1 − 𝑡), which is monotonically increasing.
Fig. 3(a) shows that for 𝐿 ≫ 1, the system-level survival proba-

ility (i.e. the system-level reliability) decrease sharply at a specific
omponent-level reliability. In fact, it has been already pointed out in
he classic reliability theory textbook [40] that the repeated composi-
ion of the function 𝑓 [𝜙; 𝑟] in Type III should lead to a step function.
his phenomenon is called percolation. By comparing Fig. 3(c) with
(d), it is observed that as the component-level HRFs (curves associated
ith 𝐿 = 1) changes from 𝛼 = 1∕5 to 𝛼 = 1∕2, the HRFs of the 𝐿 = 2

ystem behave drastically different; however, the HRFs of the systems
ith a sufficient large size (𝐿 = 8 in this numerical case) with different
have similar behaviors. It implies that as system size 𝐿 increases the

hapes of the system-level HRFs become less sensitive to the HRFs of
ndividual components.

In the numerical example Type III is chosen. In general, the shape
f HRFs for self-similarity-structure system is dominated by the type
f the structure function at each level, since a fast decreasing of the
ystem-level reliability occurs at the unstable fix point 𝑟 = 𝑟∗ with
[𝜙, 𝑟∗] = 𝑟∗ and the value of the solution is closely related to the type

of the structure function: for Type I 𝑟∗ = 1; for Type II 𝑟∗ = 0; for Type
III 0 < 𝑟 < 1.
∗
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Fig. 3. (a) Presents 𝑅(𝐿)(𝑟) with different 𝐿s, Fig. 3(b) presents the function d ln𝑅(𝐿)(𝑟)∕d𝑟, Fig. 3(c) (d) presents system-level HRFs for different the component-level degradation
aw. The components’ lifetimes are modeled by Weibull distribution 𝑟(𝑡) = exp[−(𝜅𝑡)𝛼 ], where 𝜅 is the parameter to characterize the arbitrary decay rate of 𝑟(𝑡). At each level the
tructure is set to be the 2-out-of-3:G system [48], is a specific structure function in Type III.
t
b

.2. Mixed self-similarity structure

The results above show that the self-similar structure only with
he structure function of Type III usually leads to a monotonically
ncreasing HRF. The similar analysis could also be performed to the
tructure function of Type I and Type II. A monotonically decreasing
RF can be obtained for Type I and a monotonically increasing HRF for
ype II. The resulting shapes of the HRFs are shown to be less sensitive
o those of the components for a large 𝐿. It can be inferred that the
HR could be obtained with a ‘‘mixture’’ of the structure functions of
ype I and Type III.

To demonstrate this, we consider the mixed survival probability
(𝑟) ≡

∑

𝜙 𝑝𝜙𝑓 [𝜙; 𝑟] follows the sufficient condition

ondition 1. 𝑓 (𝑟) < 𝑟 for 𝑟∗ < 𝑟 < 1, 𝑓 (𝑟) > 𝑟 for 𝑟′∗ < 𝑟 < 𝑟∗ and
(𝑟) < 𝑟 for 0 < 𝑟 < 𝑟′∗.

Clearly, this condition cannot be achieved if the structure function
s deterministic since it does not belong to any types.

Proper mixtures of Type I and Type III satisfy Condition 1. For
xample, consider the mixture of 5-out-of-5:G, 3-out-of-5:G and 2-out-
f-5:G, whose probability is 1 − 𝑝1 − 𝑝2, 𝑝1 and 𝑝2, respectively. The
ecessary condition for proper mixtures is 𝑝1 + 𝑝2 < 4∕5. Fig. 4(a)
resent the image of 𝑝1 + 𝑝2 = 3∕4 and 𝑝2 = 2∕5 and explicitly shows
ondition is satisfied.

The hazard rate generated by the system-level reliability 𝑅 =
◦𝑓◦⋯◦𝑓 (𝑟) becomes a BHR if the number of the levels is large.

Since the initial and the final values of −d ln𝑅∕d𝑡 is divergent as 𝐿 →

, the observable HRF need to be carefully dealt with. Here, the initial
alue means −d ln𝑅∕d𝑡|𝑡→0 and the final value means −d ln𝑅∕d𝑡|𝑡=𝑡∗ ,
5

here 𝑟(𝑡∗) is the smallest fix point that is unstable. For 𝐿 → ∞, due
o the sudden decreasing of system reliability 𝑅(𝑡), these two values
oth go infinite. This divergence is caused by infinite large 𝐿 and

infinitesimal time step d𝑡. These two conditions cannot be achieved in
practice, so we consider a finite time step and finite 𝐿s. For finite time
step 𝛥𝑡 the observable HRF �̃� is simply defined as

�̃�(𝑡) = − 1
𝑅(𝑡)

𝑅(𝑡 + 𝛥𝑡) − 𝑅(𝑡)
𝛥𝑡

. (13)

Note that the observable HRF recovers the idealized HRF at the limiting
state of 𝛥𝑡→ 0.

Fig. 4(b) and (c) show the hazard rate of the systems with different
number of levels 𝐿 and with the increasing of 𝐿, the HRF become
bathtub. And compare Fig. 4(b) with (c), one can see that a larger 𝐿
lead to more steady of the HRF’s shape. For example, for 𝐿 = 2, with
the increasing of 𝛼, the HRF changes from approximately decreasing
(exactly a bathtub with very flat wear-out curve) to approximately
increasing, while for 𝐿 = 8, different values of 𝛼 both render the BHRs.
This is the emergence of BHRs.

As it is shown by Eq. (3), the system-level HRF relies on both the
structure-dependent part d ln𝑅∕d𝑟 and the component-dependent part
−d𝑟∕d𝑡. For large 𝐿, the structure-dependent part is dominant. To show
this, recall the relation 𝑅 = 𝑓◦𝑓◦⋯◦𝑓 (𝑟), where 𝑓 (𝑟) is the function
presented in Fig. 4(a) and the number of compositions is 𝐿. There are
totally four fix points, i.e., the horizontal coordinates of the intersection
points between the solid line and the dash line. We label them as
𝑟 = 0, 𝑟 = 𝑟∗, 𝑟 = 𝑟′∗, 𝑟 = 1, where 𝑟∗ < 𝑟′∗. It found that 𝑟 = 𝑟∗, 𝑟 = 1
are unstable. To see this, taking 𝑟 = 𝑟∗ as an example, the small
deviation between 𝑟 and 𝑟∗ are amplified by the mapping composition
𝑓◦𝑓◦⋯◦𝑓 (𝑟), thus |𝑅 − 𝑟∗| > |𝑟 − 𝑟∗|. The points 𝑟 = 0 and , 𝑟 = 𝑟′∗
are stable, because the mapping composition leads to smaller deviation.

In fact, for 𝐿 → ∞, 𝑅 becomes a piecewise function, which could be
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Fig. 4. (a) The blue solid is the 𝑓 (𝑟) for the mixture of 1-out-of-3:G and 2-out-of-3:G with 𝑝1 + 𝑝2 = 3∕4 and 𝑝2 = 2∕5; the red dash line is 𝑓 (𝑟) = 𝑟. (b) (c) The hazard rate function
for such a hierarchical system. The components’ lifetimes are modeled by Weibull distribution 𝑟(𝑡) = exp[−(𝜅𝑡)𝛼 ], where 𝜅 is the parameter to characterize the arbitrary decay rate
f 𝑟(𝑡).
e
t

ritten as

lim
→∞

𝑅(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑟 = 1
𝑟′∗ 𝑟∗ < 𝑟 < 1
𝑟∗ 𝑟 = 𝑟∗
0 0 ≤ 𝑟 < 𝑟∗.

(14)

t follows from the above equation that the structure-dependent part
ln𝑅∕d𝑟 divergence at 𝑡 = 0 and 𝑡 = 𝑟−1(𝑟∗) where 𝑟−1 denotes the

nverse function of 𝑟(𝑡), and for other value of 𝑡, d ln𝑅∕d𝑟 equals to zero.
herefore, if the component-dependent part −d𝑟∕d𝑡 is nonzero for any
, a large 𝐿 always renders BHR.

If the component-dependent part −d𝑟∕d𝑡 become zero for 𝑡 = 0, the
hape of HRF could be analyzed as follows. For convenience, let the
erivation of 𝑓 (𝑟) at 𝑟 = 1 be denoted by 𝑎 ≡ 𝑓 ′(1). For large but finite
and finite 𝛥𝑡, the observable HRF’s initial value �̃�(0) ∼ 𝑎𝐿(𝜅𝛥𝑡)𝛼−1

or 𝑎𝐿(𝜅𝛥𝑡)𝛼 ≪ 1 and �̃�(0) ∼ (𝜅𝛥𝑡)−1 for 𝑎𝐿(𝜅𝛥𝑡)𝛼 ≈ 1. Thus, there
xist a region for the parameters that the HRF changes from bathtub
the latter case) to an approximately increasing function (the former
ase) due to the vanishing of the HRF’s initial value when 𝛼 > 1.
f given time step 𝛥𝑡, one can evaluated that the BHR appears when
< 1 + 𝐿| ln 𝑎∕ ln 𝜅𝛥𝑡|. Note that the same analysis can be extended to

eal with a vanishing component-dependent part for another fix point
= 𝑟−1(𝑟∗). This evaluation directly shows that a larger 𝐿 renders a
ore steady BHR.

The theoretical analysis shows the low sensitivity of the system-level
RF due to the hierarchy of the system of systems. This property could
e applied to the practice that if the component-level datum is limited
o access or the amount of system-level lifetime datum is not enough
o determine the HRF precisely, the information of structure function,
uch as fault tree, block diagram, could be applied to the systems
ith hierarchy to infer the shape of the system-level HRF. This implies

hat the information of structure function could be used to alleviate
he difficulties brings by the lack of lifetime data. These difficulties
re common in reliability engineering. Additionally, the mixture of
tructure function is relevant to that the information about some of
he components are missing or the system involving other inaccessible
ncertain inputs, such as the environment. Thus, a mixed structure
unction could be more efficient to model a realistic system that with
hese properties in reliability engineering.

. An example of two mixed structures render BHR

BHRs can emergent in more other mixed structures that need not
o be self-similar. And a proper mixture for two-type structures is
6

nough. In this section, one kind of hierarchical systems consisted of
he structures of two types is studied. Let the two structure functions 𝜙

and 𝜙′ belong to Type I and Type III, respectively.
The system-level survival probability is given as

𝑅𝐬(𝑟) =

𝑠𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙◦𝑓𝜙′◦

𝑠𝑛−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙◦𝑓𝜙′◦

𝑓𝜙◦⋯𝑓𝜙◦𝑓𝜙′◦

𝑠𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙 ◦𝑓𝜙′◦⋯

𝑓𝜙′◦

𝑠0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙(𝑟),

(15)

where 𝑠0, 𝑠1,… , 𝑠𝑛 denote the number of 𝑓𝜙s in each interval of the
two adjacent 𝑓𝜙′ s. Let the sequence (𝑠0, 𝑠1,… , 𝑠𝑛) denote a specific
deterministic structure.

4.1. The uncertain structures and BHR

In this model, consider the structure functions of the elements at
level 𝑙 have a probability ℎ(𝑙∕𝐿) in Type I and 1 − ℎ(𝑙∕𝐿) in Type III,
where ℎ(𝑥) is assumed to be monotonically increasing with ℎ(1) = 1.
Note that the normalized quantity 𝑙∕𝐿 is introduced for convenience to
perform further calculation without introducing any further assump-
tion. We consider that all the elements at a same level are with a same
structure function. For the element at the 𝑙th level (𝑙 = 0, 1,… , 𝐿), the
structure function could be either 3-out-of −3:G (Type I) or 2-out-of
−3:G (Type III), which is randomly chosen with the probability ℎ(𝑙∕𝐿)
and 1 − ℎ(𝑙∕𝐿), respectively. And the probabilities for different levels
are independent. This constructs a probability space of the random
structure function for the system with totally 𝐿 levels. It follows that
the survival probability is the average of the random instances of the
specific sequences,

𝑅(𝑟) =
∑

𝐬
𝜓(𝐬)𝑅𝐬(𝑟), (16)

where 𝜓(𝐬) is the probability for the sequence 𝐬, reads

𝜓(𝐬) =
𝑛−1
∏

𝑗=0

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − ℎ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑗 +
𝑗
∑

𝑘=0
𝑠𝑘

𝐿

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑗+

𝑗
∑

𝑘=0
𝑠𝑘 − 1

∏

𝑖𝑗=𝑗+

𝑗−1
∑

𝑘=0
𝑠𝑘

ℎ
( 𝑖𝑗
𝐿

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

×
𝐿
∏

ℎ
( 𝑖
𝐿

)

(17)
𝑖=𝐿−𝑠𝑛+1
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Fig. 5. The observable HRF with 𝛥𝑡 = 0.01∕𝜅, 𝑟 = exp[−(𝜅𝑡)𝛼 ], and 𝐿 = 12. BHRs appear when 𝛼 is not large.
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For example, we consider a non-ideal series system described by
he model. Since any series structures can be naturally decomposed
nto a number of levels, if all the structure functions in Eq. (15) are
n type I, there is no redundancy at each level and the system become
n ideal series structure. The structural uncertainty, that is the mixture
ith the type III structure, brings redundancy. Explicitly, we consider

he structural uncertainty of higher levels is smaller than that of lower
evels.

The numerical simulation results of the HRF using the above setup
f the level-dependent probability are presented in Fig. 5, where the
pecific condition ℎ(𝑥) = 1 − (1 − 𝑥)𝑢∕2 is chosen. In the simulation the
tructure functions 𝜙 and 𝜙′ are set to be 3-out-of-3:G and 2-out-of-3:G,
espectively.

It shows that with the increasing of 𝛼, the shapes of the observable
RFs gradually change from the bathtub shape to an monotonically

ncreasing one. Since 𝛼 is the parameter to characterize the component-
evel degradation, the results further emphasize that the shape of the
ystem-level HRF is less sensitive to that of the components.

.2. Early-stage degradation analysis

Same as the self-similar case, we study the region for the parameters
hat BHRs hold or change to other shapes via the analysis of the
egradation at early stage. Explicitly, the relation among the initial
bservable HRF, the size of the system 𝐿, the observation time interval
𝑡, and component degradation parameter 𝛼 is studied.

For any Type I structure function 𝜙, 𝑎𝜙,𝑛−1 ≤ 𝑎𝜙0 ,𝑛−1 ≡ 𝑛 − 1, where
0 denote the single-input structure function. Thus, the derivative
𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=1 > 0 equal to a positive integer denoted by 𝑎. For any
ype III structure function 𝜙′, 𝑎𝜙′ ,𝑛−1 > 𝑎𝜙0 ,𝑛−1 ≡ 𝑛 − 1. Since 𝑎𝜙′ ,𝑛−1
ust be a integer and not greater than 𝑛, one has 𝑎𝜙′ ,𝑛−1 = 𝑛 and thus,
𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=1 = 0. Without loss of generality, the following equation
olds for 𝜖 ≪ 1:
𝑓 [𝜙; 1 − 𝜖] = 1 − 𝑎𝜖,

[𝜙′; 1 − 𝜖] = 1 − 𝑏𝜖𝑐 ,
(18)

here the parameter 𝑎, 𝑏, 𝑐 are positive integers greater than 1. For
xample, with the structure functions 𝜙 and 𝜙′ being the 3-out-of-3:G
nd 2-out-of-3:G, one has 𝑎 = 3, 𝑏 = 3, 𝑐 = 2.

Let the component-level survival probability be 𝑟(𝛥𝑡) ≈ 1 − (𝜅𝛥𝑡)𝛼

ith 𝑎−𝐿∕𝛼 ≪ 𝜅𝛥𝑡 ≪ 1. We estimated that the initial observable HRF
̃ (0) becomes

̃ (0) ≡ − 1
𝑅(0)

𝑅(𝛥𝑡) − 𝑅(0)
𝛥𝑡

= 1
𝛥𝑡 ∫

1

𝑟(𝛥𝑡)

d𝑅
d𝑟

d𝑟

∼ 1
𝛥𝑡 ∫

(𝜅𝛥𝑡)𝛼

0
𝑥− log𝑎 ℎ(0)−1d𝑥

∼ 𝛥𝑡−𝛼 log𝑎 ℎ(0)−1.

(19)

here 0 < ℎ(0) < 1. Eq. (19) shows that the sign of −𝛼 log𝑎 ℎ(0) − 1
changes from negative to positive with the increasing 𝛼; consequently,
7

c

the shape of HRF changes from the bathtub to the monotonically
increasing. The details of the estimation is given in Appendix B.

This analytical result is consistent with the numerical results. The
transition point of 𝛼 is approximately 𝛼 = −1∕ log𝑎 ℎ(0) in this case. This
result shows that for a complex system, the system-level initial HRF
might not become zero even with the components having zero initial
HRFs.

The early-stage analysis in this section and the above section shows
there exists a threshold for component reliability at early stage that
related to the infant mortality of system. This threshold has realistic
significance, that is, to suppress or remove the system-level infant
mortality one could improve the quality of components such that
their early-stage HRFs are greater than the threshold or ameliorate the
structure to decrease the value of threshold to adapt the current quality
of components. Thus, the evaluation of threshold could be a reference
for updating the components or the system in practice.

5. An example based on realistic system

The examples introduced in previous section are purely theoretical
and idealized. In this section, we put them in an example with the
applications in the microelectronic field, which is similar with one
example given in Ref. [30].

Suppose there are 10000 transistors and they are divided into 5
levels. Each level has 10 elements. Thus the system contains totally
10 × 10 × 10 × 10 × 10 = 10000 transistors. At each level, there are
circuits connecting the elements which have several states and fail
much slower than element. The elements have a number of failure
modes according to the states of the circuits, where the failure modes
is given by deterministic structure function. For example, there are
𝑧 failure modes with respect to the 𝑧 states of circuits labeled with
, 2,… , 𝑧. The probabilities that the circuits at the 𝑙th level are in the
th state are 𝑞(𝑙)𝑖 (∑𝑖 𝑞

(𝑙)
𝑖 = 1), where the probability for the state of

ach circuit at same level is identical independent. Explicitly, every
lement at level 𝑙 involve ten 𝑙 − 1-level elements and one 𝑙-level

circuit. For instance, let 𝜎(𝑙) denote the state of a element at 𝑙th level,
then 𝜎(𝑙) =

∑

𝑖 𝛿�̃�,𝑖𝜙𝑖(𝜎
(𝑙−1)
1 , 𝜎(𝑙−1)2 ,… , 𝜎(𝑙−1)10 ), where 𝜙𝑖 is a ten-variables

oherent structure function, 𝜎(𝑙−1)1 , 𝜎(𝑙−1)2 ,… , 𝜎(𝑙−1)10 are the state of the
en elements at level 𝑙 − 1 which is involved in the 𝑙-level element,
𝑖𝑗 is the Kronecker delta function and �̃� = 1, 2,… , 𝑧 is the state of
he circuit. Now, we average over the states of the circuit to yield a
ixed structure function of the involved elements at level 𝑙−1, namely
𝜎(𝑙)⟩ =

∑

𝑖 𝑞
(𝑙)
𝑖 𝜙𝑖(𝜎

(𝑙−1)
1 , 𝜎(𝑙−1)2 ,… , 𝜎(𝑙−1)10 ).

We test the systems with the different values of 𝑞(𝑙)𝑖 given in the
able a and Table b. And in each case, the values of 𝑞(𝑙)𝑖 ensure that the
ixed survival probabilities 𝑓 (𝑙)(𝑟) at each level satisfy the condition:
(𝑙)(𝑟) < 𝑟 for 𝑟∗ < 𝑟 < 1, 𝑓 (𝑙)(𝑟) > 𝑟 for 𝑟′∗ < 𝑟 < 𝑟∗ and 𝑓 (𝑙)(𝑟) < 𝑟 for
< 𝑟 < 𝑟′∗.

Case 1.: Consider three failure modes: 10-out-of-10:G, 8-out-of-10:G
nd 3-out-of-10:G. 𝑞(𝑙)𝑖 which are given in Table a.

Case 2.: Consider ten failure modes: 1-out-of-10:G, 2-out-of-10:G,
, 10-out-of-10:G with respect to the states for circuit 1, 2,… , 10. The

(𝑙)
orresponding 𝑞𝑖 are given in Table b.
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Table a
𝑞(𝑙)𝑖 for case 1.

𝑖 𝑙

1 2 3 4 5

1 0.2 0.32 0.41 0.3 0.39
2 0.2 0.13 0.1 0.23 0.09
3 0.6 0.55 0.49 0.47 0.52

Fig. 6. The observable HRF with 𝛥𝑡 = 0.01∕𝜅, 𝑟 = exp[−(𝜅𝑡)𝛼 ] for the system in case 1.

Table b
𝑞(𝑙)𝑖 for case 2.

𝑖 𝑙

1 2 3 4 5

1 0.074 0.0158 0.0014 0.0053 0.0421
2 0.0436 0.1528 0.2586 0.0914 0.2785
3 0.5090 0.2633 0.3461 0.3111 0.1949
4 0.0054 0.0356 0.0472 0.1190 0.1920
5 0.1011 0.1508 0.0209 0.0072 0.0593
6 0.0047 0.0955 0.0009 0.0008 0.0037
7 0.0201 0.0001 0.1135 0.0557 0.0353
8 0.0484 0.1365 0.0437 0.0016 0.0035
9 0.1754 0.0011 0.0189 0.1426 0.0002
10 0.0849 0.1485 0.1486 0.2653 0.1906

Fig. 7. The observable HRF with 𝛥𝑡 = 0.01∕𝜅, 𝑟 = exp[−(𝜅𝑡)𝛼 ] for the system in case 2.

In all the two cases the BHRs appear, which shows that the condition
for mixture indeed lead to the steady BHRs (See Figs. 6 and 7.). The two
tables are randomly generated by Monte Carlo algorithm for illustrating
that the sufficient condition indeed holds in numerical calculation. And
8

𝑅

Table c
Lifetime data for 50 samples of devices.
Source: For the data source, see Refs. [17,49].

Lifetime datum

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

this system could be an experimental platform to verify or falsify the
theoretical prediction.

5.1. Comparison with traditional methods

The above cases show that, with Condition 1, one could construct
parameterized probability distributions for system lifetimes whose
HRFs are in bathtub shapes. For case 1, the generated model has 12
independent parameters (𝑞(𝑙)𝑖 matrix has 15 parameters however 10 of
them are independent due to the normalization ∑

𝑖 𝑞
(𝑙)
𝑖 = 1 and the other

two parameters are in Weibull distribution 𝑟 = exp[−(𝜅𝑡)𝛼]). Similarly,
for case 2, the generated model has 47 independent parameters. These
are the two cases, generally the method can generate parameterized
probability distributions with different number of parameters. And the
hierarchy–structure (the number of levels and the number of elements
at each level) could be determined according to the decomposition of
the system. This is different with traditional methods for BHR.

Traditional methods for BHR generate models with mixture of
proper probability distributions. The probability distributions for mix-
ture are artificially selected according to experience. Some of most
recent models are listed here for comparison, for example, the gen-
eralization the mixed Weibull distribution [11] has 5 parameters,
the log-normal modified Weibull distribution [12] has 4 parameters.
The traditional methods could not generate different models. Thus,
our model is more flexible and require less experience. Additionally,
apart from the two parameters for Weibull distribution 𝑟(𝑡) which
we have shown are insensitive due to the hierarchy, all other the
parameters represent the probabilities. This implies that our model is
more interpretable.

6. Model fitting: illustration with real data

From the above sections, it could be found that the model is
mathematically equivalent to a multi-level Bayesian network. A deep
network and proper conditional probability table at each level render
the emergence of BHRs. Thus, model-fitting process is nothing but a
training of the network. In the purpose of illustration, we adopt least
square curve fitting as cost function to train the Bayesian network.

The real data is from Refs. [17,49], which is the lifetime data for 50
samples of devices. The lifetime data is listed in the Table c.

The adopted model for illustration is the 4-level model with and
without self-similarity. The possible failure modes at each level are
5-out-of-5:G, 3-out-of-5:G and 2-out-of-5:G. The self-similarity model
nvolve two independent parameters: the probabilities for 5-out-of-5:G
nd for 3-out-of-5:G which are labeled by 𝑞1 and 𝑞2, respectively. The
-level model without self similarity involve eight independent param-
ters: the probabilities for 5-out-of-5:G and for 3-out-of-5:G at each
evel, which are labeled by 𝑞(𝑙)1 and 𝑞(𝑙)2 with 𝑙 = 1, 2, 3, 4, respectively.
xplicitly, the system survival probability for the self-similarity model
s

SF4 = 𝑓SF◦𝑓SF◦𝑓SF◦𝑓SF(𝑟(𝑡)), (20)

here 𝑓SF(𝑥) = 𝑥5+(𝑞1+𝑞2)[𝑥4(1−𝑥)+𝑥3(1−𝑥)2]+𝑞2𝑥2(1−𝑥)3. Similarly,
he system survival probability for the model without self similarity

(4) (3) (2) (1)

NSF4 = 𝑓NSF◦𝑓NSF◦𝑓NSF◦𝑓NSF(𝑟(𝑡)), (21)
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Fig. 8. (a) The survival probability and (b) the hazard rate (with 𝛥𝑡 = 1) for fitting model.
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Table d
The optimal value of 𝑞(𝑙)𝑖 for the 4-level model.

𝑙

1 2 3 4

5-out-of-5:G 0.19 0.25 0.34 0.49
3-out-of-5 0.11 0.14 0.14 0.09
2-out-of-5:G 0.70 0.61 0.52 0.42

where 𝑓 (𝑙)
NSF(𝑥) = 𝑥5+(𝑞(𝑙)1 +𝑞(𝑙)2 )[𝑥4(1−𝑥)+𝑥3(1−𝑥)2]+𝑞(𝑙)2 𝑥

2(1−𝑥)3, with
= 1, 2, 3, 4. For both two models, 𝑟(𝑡) is set to be 𝑟(𝑡) = exp(−𝜆𝑡) with

ixed value of 𝜆 = 1∕60 and 𝜆 is not to be optimized. The functions 𝑅SF4
nd 𝑅NSF4 are used for least square curve fitting with the raw datum.

The performance of two fitting models are presented in Fig. 8.
efs. [12,16,17] summarize the performances of their proposed models
nd other different models in the historical researches to fit the raw
ata, which could be used to compare the previous models with ours.

The mixed structures without self-similarity obtained by model
itting are presented in Table d, where level-2 and level-3 satisfy the
ufficient condition. For self-similarity model, the optimized parameters
re 𝑞1 = 0.36, 𝑞2 = 0.02. This means for the mixed structure function,
he probabilities for 2-out-of-5:G, 3-out-of-5 and 5-out-of-5:G are 0.62,
.02 and 0.36, respectively, which satisfy Condition 1.

We also compute that the AIC for the 4-level self-similarity model is
pproximately 444.07, which is greater than four- and five-parameter
og-normal modified Weibull [12], FIRE [15], Competing risk model
37] and approximately equal to the additive Burr XII [17]. Here
he logarithmic likelihood is ln(d𝑅𝑆𝐹4∕d𝑡) and to compute AIC this
ikelihood is optimized. However, each data is from system level while
he model is constructed based on system structure. If there is data for
ther levels it can fuse the information to bring a higher performance.
his property is not included in system-level models.

This part shows the main application of this model to the reliability
ngineering, since estimation of reliability and HRF with lifetime datum
s an important issue in the practice of reliability engineering. The
roposed model in the current study is able to fuse datum at each
evel and information of structure which, compared with the traditional
odels, is a main improvement.

. Discussion and conclusion

In conclusion, we propose a novel model based on system hier-
rchy that could render a steady BHRs (and increasing HRFs). The
odel provides a parameterized distribution on system-level lifetime

nd a mechanics based on structure function. The new findings and
ontributions are listed as follows:

(1) The model build a direct bridge from structure function to
9

ystem-level HRFs for the system of systems, which was not included i
n previous studies. This implies the application to the HRF-inference
roblem and structure-inference problem with model-fitting approaches
part from these applications, this could also provide not only an
ut also a valuable reference that could be helpful in via updating
r designing the structure to improve the system-level reliability in
eliability-engineering practice.

(2) The proposed model is interpretable. It is closely associated with
he conventional ‘‘weak sister’’ explanation, since it leads to a mixture
f the different hazard rate functions (HRFs). Moreover, this study
hows that all the sensitive parameters describe the mixtures of failure
odes with respect to pure structure functions. This is not included

n the previous methods and models [9,10,12–14,16,17,21]. It casts a
ew light in understanding the underlying mechanism of the formation
f the BHRs in many complex systems, that is, the BHR dominated by
ixed structure functions.

(3) The model is extensible. Although the BHR is specially con-
erned in the current study, the HRFs with other shapes can be also
enerated with a certain mixture of failure modes at every level,
.g., the roller-coaster could be rendered if there are more than three
olutions for the equations 𝑓 (𝑙)(𝑟) = 𝑟 for each level 𝑙 and 𝑓 (𝑙)(𝑟) ≤ 𝑟 for
𝑟 → 1−, 𝑓 (𝑙)(𝑟) ≥ 𝑟 for 𝑟 → 0+.

Meanwhile, the current model could be improved. The model is
uitable for the system with structural hierarchy and large number of
evels, but not generally efficient for the systems without explicit hier-
rchy. To alleviate difficulties brought by the limitations and achieve
elative extensions, some recent approaches [50–52] might be useful,
hich need to be further studies. This study has not considered rele-
ances among the component. For further considering the relevances,
f for a sufficient high level so that the relevance between the com-
onents could be neglected, then the main results do not change. Or
aid, if relevance between the components is local, then it does not
ffect the main results, due to the hierarchy. Otherwise, the global
elevance could significantly affect the system-level HRF. This needs to
e further studied. Additionally, the study does not include components
ith multiple states. Note that the property that hierarchy lead to a

tructure-dominate-system-level degradation also holds for a general
ulti-state system. Thus, this could be a basic idea to extend the model

o multi-state systems. This invokes further studies.
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Appendix A. Proofs of the claims in Section 2.2

An arbitrary increasing Boolean function is denoted by 𝜙(𝜎) ≡
𝜙(𝜎1, 𝜎2,… , 𝜎𝑛). To discuss the mathematical structure for the increas-
ing Boolean functions, one would define the sets as follows

𝑎𝜎 ≡ {𝑖|∀𝑖, 𝜎𝑖 = 1},

�̄�𝜎 ≡ {𝑖|∀𝑖, 𝜎𝑖 = 0},
(22)

with 𝜎 ≡ (𝜎1, 𝜎2,… , 𝜎𝑛), and

𝜙 ≡ {𝑎𝜎 |∀𝜎, 𝜙(𝜎) = 0},
̄𝜙 ≡ {�̄�𝜎 |∀𝜎, 𝜙(𝜎) = 1}.

(23)

ue to the increasing 𝜙, the set 𝐴𝜙 must satisfy the condition: ∀ 𝑏 ⊆
if 𝑎 ∈ 𝐴𝜙, then 𝑏 ∈ 𝐴𝜙, which is called an abstract simplicial

omplex [44]. Similarly, �̄�𝜙 is also an abstract simplicial complex.
f there are two increasing Boolean functions 𝜙, 𝜙′ such that 𝐴𝜙 is
somorphic to �̄�𝜙′ , 𝐴𝜙 ≅ �̄�𝜙′ , then 𝜙(𝜎) = 1 − 𝜙′(𝟏 − 𝜎), where 𝟏 ≡
(1, 1,… , 1). It can also be verified that if 𝜙(𝜎) = 1 − 𝜙′(𝟏 − 𝜎), then
𝐴𝜙 ≅ �̄�𝜙′ . Thus one has

𝐴𝜙 ≅ �̄�𝜙′ ⇔ 𝜙(𝜎) = 1 − 𝜙′(𝟏 − 𝜎) (24)

The relation implies the intrinsic duality of the space for the increasing
Boolean functions, which has been given in many previous literatures,
e.g., Ref. [29].

The two sets in Eq. (23), implies two one-to-one surjections: 𝑀,�̄� ,
from the set consists of the labeled abstract simplicial complexes
{𝐵|∀𝐵,𝐷(𝐵) ≤ 𝑛} to the space of 𝑛-variable increasing Boolean func-
tions, such that

𝐴𝑀(𝐵) = �̄��̄�(𝐵) = 𝐵. (25)

Thus, it is convenient to use the abstract simplicial complex 𝐵 to study
the corresponding Boolean functions.

Let |𝑎| be the number of the elements in set 𝑎. The dimension of an
abstract simplicial complex 𝐵 is defined as 𝐷(𝐵) ≡ max

∀𝑎∈𝐵
|𝑎|. Let 𝐵𝑘 be

the subset of the abstract simplicial complex 𝐵 which involves all the
subsets of 𝐵 with the number of elements 𝑘, i.e., 𝐵𝑘 ≡ {𝑎|∀𝑎 ∈ 𝐵, |𝑎| =
𝑘}. It follows that

𝑎𝑀(𝐵),𝑘 = 𝐶𝑘𝑛 − |𝐵𝑘|,

𝑎�̄�(𝐵),𝑘 = |𝐵𝑛−𝑘|,
(26)

where 𝐶𝑘𝑛 is the binomial coefficients and |𝐵𝑘| is the elements’ number
of 𝐵𝑘.

Consider the case 𝑓 [𝜙0; 𝑟] = 𝑟 =
∑𝑛
𝑘=1 𝐶

𝑘−1
𝑛−1 𝑟

𝑘(1 − 𝑟)𝑛−𝑘. Without loss
of generality, let 𝜙0(𝜎) be 𝜙0 = 𝜎1. Since 𝜙0(𝜎) = 1−𝜙0(𝟏−𝜎), it follows
that

𝐴𝜙0 ≅ �̄�𝜙0 , (27)

which implies that there is only one abstract simplicial complex corre-
sponding to 𝜙0, i.e., 𝐴𝜙0 .

Now, we are in the position to prove that for an arbitrary increasing
10

Boolean function 𝜙 such that 𝐴𝜙 is not isomorphic to 𝐴𝜙0 , there is
at most one solution for the equation 𝑓 [𝜙; 𝑟] = 𝑟 with 0 < 𝑟 < 1.
Clearly, ∀0 < 𝑘 < 𝑛 𝐴𝜙0 ,𝑘 is composed of all the 𝑘-element subsets of
the set {2, 3, 4,… , 𝑛}. For an abstract simplicial complex 𝐵 which is not
isomorphic to 𝐴𝜙0 if ∃𝑘 such that |𝐵𝑘| > |𝐴𝜙0 ,𝑘|, then |𝐵𝑘−1| > |𝐴𝜙0 ,𝑘−1|.

There are four possible cases for an arbitrary abstract simplicial
complex 𝐵:

(1) ∀0 < 𝑘 < 𝑛 |𝐵𝑘| > |𝐴𝜙0 ,𝑘|, then for 0 < 𝑟 < 1, 𝑓 [𝑀(𝐵); 𝑟] < 𝑟 and
𝑓 [�̄�(𝐵); 𝑟] > 𝑟, there is no solution for the equations 𝑓 [𝑀(𝐵); 𝑟] = 𝑟
and 𝑓 [�̄�(𝐵); 𝑟] = 𝑟 with 0 < 𝑟 < 1.

(2) ∀0 < 𝑘 < 𝑛 |𝐵𝑘| < |𝐴𝜙0 ,𝑘|, then for 0 < 𝑟 < 1, 𝑓 [𝑀(𝐵); 𝑟] > 𝑟 and
𝑓 [�̄�(𝐵); 𝑟] < 𝑟, there is no solution for the equations 𝑓 [𝑀(𝐵); 𝑟] = 𝑟
and 𝑓 [�̄�(𝐵); 𝑟] = 𝑟 with 0 < 𝑟 < 1.

(3) ∃𝑘0 such that |𝐵𝑘| > |𝐴𝜙0 ,𝑘| for 𝑘 < 𝑘0 and |𝐵𝑘| ≤ |𝐴𝜙0 ,𝑘| for
𝑘 ≥ 𝑘0, which implies

𝑓 [�̄�(𝐵); 𝑟] − 𝑓 [𝜙0; 𝑟] =
𝑘0
∑

0
(|𝐵𝑘| − |𝐴𝜙0 ,𝑘|)𝑟

𝑛−𝑘(1 − 𝑟)𝑘

+
𝑛
∑

𝑘0+1
(|𝐵𝑘| − |𝐴𝜙0 ,𝑘|)𝑟

𝑛−𝑘(1 − 𝑟)𝑘

≡
𝑛−1
∑

1
𝑧𝑘𝑟

𝑘(1 − 𝑟)𝑛−𝑘,

(28)

where 𝑧𝑘 > 0 for 𝑘 > 𝑘0 and 𝑧𝑘 ≤ 0 for 𝑘 ≤ 𝑘0. It follows that the
equation 𝑓 [�̄�(𝐵); 𝑟] − 𝑓 [𝜙0; 𝑟] = 0 has only one solution with 0 < 𝑟 < 1.

Proof. It is clear that the solutions of the equation exist, since ∃𝜖 > 0
such that 𝑓�̄�(𝐵)(𝜖) < 𝑓𝜙0 (𝜖) and 𝑓 [�̄�(𝐵); 1 − 𝜖] > 𝑓 [𝜙0; 1 − 𝜖]. Suppose
that there are more than one solutions denoted by 𝑟∗, 𝑟1, 𝑟2,… with
0 < 𝑟∗ < 𝑟1 < 𝑟2 <⋯ < 1. then one has
𝑛−1
∑

1
𝑧𝑘𝑟

𝑘
∗(1 − 𝑟∗)

𝑛−𝑘 =
𝑛−1
∑

1
𝑧𝑘𝑔𝑘𝑟

𝑘
∗(1 − 𝑟∗)

𝑛−𝑘 = 0, (29)

where 𝑔𝑘 = (𝑟1∕𝑟∗)𝑘[(1 − 𝑟1)∕(1 − 𝑟∗)]𝑛−𝑘, and thus 𝑔𝑛−1 > 𝑔𝑛−2 >⋯ > 𝑔1.
Eq. (29) implies that ∀𝑢 ∈ R,
𝑛−1
∑

1
𝑧𝑘(𝑔𝑘 − 𝑢)𝑟𝑘∗(1 − 𝑟∗)

𝑛−𝑘 = 0. (30)

However, it is found that for 𝑔𝑘0+1 > 𝑢 > 𝑔𝑘0 ,
∑𝑛−1

1 𝑧𝑘(𝑔𝑘 − 𝑢)𝑟𝑘∗(1 −
𝑟∗)𝑛−𝑘 > 0. Thus, the equation 𝑓 [�̄�(𝐵); 𝑟] − 𝑓 [𝜙0; 𝑟] = 0 has only one
solution with 0 < 𝑟 < 1. This completes the proof.

Similarly, this is also hold for 𝑓𝑀(𝐵)(𝑟).
(4) 𝐵 ≅ 𝐴𝜙0 and 𝑓 [�̄�(𝐵); 𝑟] = 𝑓 [𝑀(𝐵); 𝑟] = 𝑟, where 𝐵 is not

coherent.
If d𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=0 = 0 then the structure function 𝜙 is in Type I.

If d𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=1 = 0 then the structure function 𝜙 is in Type II. If
d𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=1 = 0 and d𝑓 [𝜙; 𝑟]∕d𝑟|𝑟=0 = 0, then the structure function
𝜙 is in Type III. It is straightforward that for any coherent structure
functions 𝜙 in Type I and 𝜙′ in Type II, the structure functions �̃� with
𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙; 𝑓 [𝜙′, 𝑟]] or is 𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙′; 𝑓 [𝜙, 𝑟]] in Type III; and
for any functions 𝜙 in Type III and an arbitrary structure functions
𝜙′, the structure functions �̃� with 𝑓 [�̃�; 𝑟] ≡ 𝑓 [𝜙; 𝑓 [𝜙′, 𝑟]] or 𝑓 [�̃�; 𝑟] ≡
𝑓 [𝜙′; 𝑓 [𝜙, 𝑟]] are also in Type III.

Appendix B. Properties of 𝑹𝐬

Let 𝑅𝐬,𝑘 ≡ 𝑅(𝑠0 ,𝑠1 ,…,𝑠𝑘) be

𝑅𝐬,𝑘(𝑟) =𝑓𝜙′◦

𝑠𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙◦𝑓𝜙′◦

𝑠𝑘−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙◦𝑓𝜙′◦𝑓𝜙◦

⋯ 𝑓𝜙◦𝑓𝜙′◦

𝑠𝑘′
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙 ◦𝑓𝜙′◦⋯𝑓𝜙′◦

𝑠0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓𝜙◦𝑓𝜙◦⋯𝑓𝜙(𝑟).

(31)

It follows that

𝑅 = 𝑓 ◦

𝑠𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓 ◦𝑓 ◦⋯𝑓 (𝑅 ). (32)
𝐬,𝑘+1 𝜙′ 𝜙 𝜙 𝜙 𝐬,𝑘
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a

E

w
≡

𝜓

I

𝜓

w

To denote ln𝑅𝐬,𝑘 by 𝑦𝐬,𝑘, rewrite the above equation as follows

𝑦𝐬,𝑘+1 = ln𝑓 [𝜙′; 𝑎𝑠𝑘𝑦𝐬,𝑘] ≡ 𝛬(𝑎𝑠𝑘𝑦𝐬,𝑘). (33)

Let 𝑦∗ < 0 be the solution of the equation 𝛬(𝑦∗) = 𝑦∗ and 𝑦∗𝑘 for
the equation 𝑦𝐬,𝑘(𝑦∗𝑘) = 𝑦∗. Since the function 𝛬 has the property that
𝛬(𝑦) > 𝑦 for 0 > 𝑦 > 𝑦∗ and 𝛬(𝑦) < 𝑦 for 𝑦 < 𝑦∗, one has

𝑦∗𝑘 ≤ 𝑦∗𝑘+1. (34)

The function 𝑅𝐬 rapidly decrease to zero for 𝑟 < exp(𝑦∗𝑛). With the
approximation 𝑓 [𝜙′; 1 − 𝜖] ≈ 1 − 𝑏𝜖𝑐 ,

𝑦∗𝑛 ∼ −𝑎
−

𝑛
∑

𝑗=0
𝑠𝑗∕𝑐𝑗

, (35)

where 𝑎−
∑𝑛
𝑗=0 𝑠𝑗∕𝑐𝑗 ≪ 1. It follows that 1 − exp(𝑦∗𝑛) ∼ 𝑎−

∑𝑛
𝑗=0 𝑠𝑗∕𝑐𝑗 . Thus,

we have following results.
The survival probability 𝑅𝐬 depends on the characterized quantity

𝜒𝐬 ≡
∑

𝑗 𝑠𝑗∕𝑐𝑗 . There is one peak for the function d𝑅𝐬(𝑟)∕d𝑟 with 𝑟 =
𝑟peak . It follows that

1 − 𝑟peak ∼ 𝑎−𝜒𝐬 ,
d𝑅𝐬(𝑟)
d𝑟

|𝑟peak ∼ 𝑎𝜒𝐬 ,
(36)

nd the width of the peak is therefore proportional to 𝑎𝜒𝐬 .
The above relations are utilized to analyze the initial value of HRF.

qs. (16) and (36) imply that the mixture of the 𝑅𝐬(𝑟) with different 𝐬
could be resorted according the peaks’ locations 𝑟peak . That is, for 𝜖 ≪ 1,

𝑅(1 − 𝜖) ≈
∑

𝐬,𝜒𝐬=−
ln 𝜖
ln 𝑎

𝜓(𝐬)𝑅𝐬(1 − 𝜖). (37)

The derivative of 𝑅(𝑟) is
d𝑅
d𝑟

|𝑟=1−𝜖 ∼
1
𝜖

∑

𝐬,𝜒𝐬=−
ln 𝜖
ln 𝑎

𝜓(𝐬)

≈ 1
𝜖

∑

𝑠1 ,𝑠2 ,…
𝜓(− ln 𝜖

ln 𝑎
, 𝑠1, 𝑠2,…),

(38)

here the approximation preserves the leading order term 𝜒𝐬
∑

𝑗 𝑠𝑗∕𝑐𝑗 ≈ 𝑠0.
The marginal distribution for 𝑠0 is

0(𝑠0) ≡
∑

𝑠1 ,𝑠2 ,…
𝜓(𝑠0, 𝑠1, 𝑠2,…) =

[

1 − ℎ
( 𝑠0
𝐿

)]

𝑠0−1
∏

𝑖=0
ℎ
( 𝑖
𝐿

)

. (39)

f the size of the system is sufficiently large, i.e., 𝐿 ≫ 1, one has

0(𝑠0)
𝐿≫1
≈ [1 − ℎ(𝑥0)] exp

[

𝐿∫

𝑥0

0
lnℎ(𝑥)d𝑥

]

, (40)

here 𝑥0 ≡ 𝑠0∕𝐿. For − log𝑎 𝜖∕𝐿 ≪ 1, it follows that
d𝑅
d𝑟

|𝑟=1−𝜖 ∼ 𝜖− log𝑎 ℎ(0)−1. (41)
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