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Abstract. A novel dynamic model for wavefunction collapse in cavity quantum electrodynam-
ics (QED) is proposed associated with the gedanken Stern–Gerlach experiment of the quantized
magnetic field. It is used to describe and test the fundamental problems of quantum mea-
surements, such as wavefunction collapse, Schrödinger entanglement states (cats) and quantum
decoherence. This model also manifests rich phenomena in atomic optics, such as the splitting
of atomic beams, and the generation of even- and odd-coherent states. It is also shown that this
model possesses a factorizable structure which has been found in the other dynamic models for
wavefunction collapse.

1. Introduction

The interpretation of quantum mechanics is a fundamental problem which no physicist can
completely avoid. A bridge linking the mathematical framework of quantum mechanics
to physical reality is the description of the process of quantum measurement [1–3]. In
order to answer the question of what is the result of a measurement and what is the
wavefunction after a measurement if a wavefunction is given before the measurement,
the wavefunction collapse (WFC) was introduced to close the system of basic laws in
quantum mechanics as an extra assumption so that the mathematical formalism of quantum
measurement could be interpreted correctly in physics. Mathematically, the WFC represents
a reduction process where the wavefunction|ψ〉 =∑n cn|n〉 becomes its single branch|n〉,
once a well determined resultan has actually been achieved by the measurement of the
observableÂ, with eigenvectors|n〉 (n = 1, 2, . . . , n) and corresponding eigenvaluesan.
This is because a second measurement repeated immediately after the first one must give
the same resultan. According to von Neumann [1], the rigorous description of WFC in
mathematics is an evolution from quantum probability amplitudes to the classical one, i.e.

ρ = |ψ〉〈ψ | =
∑
n,m

cnc
∗
m|n〉〈m| → ρr =

∑
n

|cn|2|n〉〈n| . (1.1)

That is, the measurement results in vanishing of the off-diagonal elements of the density
matrix of a pure state or quantum decoherence [3].

However, the original WFC postulate introduces some non-quantum elements to
quantum mechanics. Here, a classical measuring instrument (detector) must be used to
decohere the coherent superposition beyond quantum mechanics [1–3]. Since one hopes
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that quantum mechanics is a complete theory for our world, it should be valid for both
the detector and the system. For this reason exactly soluble dynamic models are needed
to treat the WFC as an evolution governed by the Schrödinger equation [4–8]. In such
a dynamic theory, the measured system is considered as an open subsystem embedded in
the closed total system formed by the measured system plus the detector. The Schrödinger
evolution of the total system ‘projected’ onto this subsystem (by taking the partial trace
over the variables of the detector) results in the reduced density matrixρr . Under certain
limits, such as the classical limit and the macroscopic limit, this reduced density matrix
could approach the decohered density matrix without the off-diagonal elements. This is just
the dynamic realization of the WFC in quantum measurement.

A novel realization (now called the Hepp–Colemen (HC) model [4]) of such a dynamic
model was presented by Hepp, motivated by a communication with Colemen. He showed
that the decoherence (or WFC) of the two-state system could appear dynamically as the
particle number in the detector approaches infinity. Many generalizations of the HC model
were proposed by several authors concerning the introduction of the energy exchange
effect between the system and detector [9, 10] and the construction of a real classical
limit of a detector with a larger quantum number [11–13]. Although the HC model and
its generalizations depend on the specific forms of Hamiltonians of the system and the
detector, it was found by one (CPS) of the present authors that the essence of these concrete
models lies in the factorizability of the effective evolution matrix for the total system [13].
All previous generalizations of the HC model are special realizations of this factorizable
structure and many extensive generalizations of the HC model can easily be given based on
the observation of the factorizability. Notice that the previous investigations of the dynamic
realization only concern some toy models such as the ultra-relativistic systems which cannot
be verified experimentally even by a gedanken experiment. To find a possibility for realizing
the dynamic model experimentally, it is necessary to seek a nearly realistic example of the
dynamic model of WFC in physics.

The studies presented in this paper are devoted to taking a step towards this goal. We
propose a dynamic model for WFC in cavity quantum electrodynamics (QED) associated
with a gedanken Stern–Gerlach experiment on the quantized magnetic field. This model
is used to describe and test the fundamental problems of quantum measurements, such as
wavefunction collapse, Schrödinger entanglement states (cats) and quantum decoherence.
This model also manifests rich phenomena in atomic optics, such as the splitting of an
atomic beam, and generation of even and odd coherent states. It is also shown that this
model possesses the factorizable structure which was found in the previous dynamic models
for wavefunction collapse

This paper is organized as follows. In section 2, the origin of our dynamic model is
traced to cavity QED [14–18] and the dynamic generation of the Schrödinger entangled states
[19] is discussed associated with the pure Schrödinger evolution in the strong-coupling limit
in section 3. In section 4 the WFC in quantum measurement is analysed for various cases and
thereby the relevant atomic optical problems are studied associated with the motion of the
atomic centre of mass in section 5. Here, it is shown that the high-temperature excitation
will cause an ideal decoherence of the state of the system and thereby the Schrödinger
entangled states [19]. Finally, in section 6 we note that the factorizable structure is also
implied in our model.
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2. A model of WFC in cavity QED

Cavity QED provides a modern quantum theory with a plausible laboratory to test many
novel ‘pure’ quantum effects such as the cavity vacuum effect producing the adiabatic force,
the Casimir effect [16], Lamb shifts, quantum non-demolition (QND) measurement [20, 21]
and so on. It is also accepted that cavity QED can give a practical realization of the WFC
in quantum measurement.

Our model is described as follows. In a ring cavity with a quantized magnetic field of
a single mode

EB = iB0(a eikx − a† e−ikx)êz (2.1)

along the axiŝez, the interaction between a two-level Zeeman atom (or a spin1
2) [22] and

the field is given in the representation of diagonalσz by

HI(x) = µ EB · σ̂ = ih̄g (|e〉〈e| − |g〉〈g|) (a eikx − a† e−ikx) (2.2)

whereg = µB0/h̄ is the coupling constant proportional to the strength of the magnetic field,
|g〉 and|e〉 the ground and excited states of the atom, respectively, andEσ are the quasi-spin
operators, i.e.σ+ = |e〉〈g|, σ− = |g〉〈e| andσ3 = |e〉〈e| − |g〉〈g|. The whole Hamiltonian

H = p2

2m
+ h̄ωa†a +HI(x) (2.3)

is just the kinetic energy of the atom plus the internal atom-field energy. The frequency of
the field is related to the wavevector byk = ω/c. Notice that the above model is only a
space-dependent generalization of the generic one for the precession of spin1

2, e.g. for the
ground silver atoms with spin12 or for a two-level Zeeman atom, the interacting part in our
model is only an alternative expression in different representation for the Jaynes–Cummings
(JC) model for the effect of quantization on spin resonance described in [22].

Because the kinetic partp2/2m does not commute withHI , it is somewhat difficult to
diagonalize the total Hamiltonian. But, we can hope that a trick can be used to diagonalize
H approximately. To this end, a unitary transformation [23]

W(x) = eikxa†a (2.4)

is presented to define an effective Hamiltonian

Heff = W+(x)HW(x) = p2

2m
+ igh̄σ3(a − a†)+ h̄ωa†a (2.5)

where we have neglected the photon recoil term(h̄2k2/2m)(a†a)2 and

ω = ω(p) = ω + pk
m

(2.6)

is a modified frequency with a Doppler shiftpk/m. It should be emphasized thatHeff and
H have equivalent dynamics within the approximation by neglecting the photon recoil term,
because a unitary transformation of operatorÔ has the same spectrum as that ofÔ. Since
the kinetic part in (2.5) commutes with the remaining part

He = h̄ωa†a + ih̄gσ3(a − a†) =
(
H+ 0
0 H−

)
(2.7)

where

H± = h̄ωa†a ± ih̄g(a − a†) (2.8)

we should focus on the dynamics ofHe. It is a direct sum of the Hamiltonians of two
forced harmonic oscillators with opposite forces, respectively.
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Also note that since the unitary transformation does not change the rank of the density
matrix, the properties of the WFC will be the same for a Hamiltonian and its unitary
transformation. Therefore, except for the approximation ignoring the recoil terms, the
HamiltoniansHe as well asHeff, define a dynamic model as reasonable as the original one
of H in the real context of cavity QED.

3. The dynamic generalization of state entanglement

Physically, the process of a measurement is a scheme using the macroscopic counting
number of the detector to manifest the state of the measured system. The state entanglements
produced by measurement will just exhibit this manifestation. The state entanglement
was also highlighted by Schrödinger as the ‘living cat–dead cat’ paradox [19–22] when
a component of the entangled state is ‘macroscopically distinguishable’ while another is
‘microscopic’. Usually, the entangled state has a more general meaning than that of the
cat state as a special case. In the present discussion, the cavity field is imagined to be
a macroscopic detector with many photons to ‘measure’ the state of the atom which is
considered as a measured system. The correlation between the macroscopic and microscopic
states will be shown to be that between the coherent cavity field with very large amplitude
and the internal atomic state.

The evolution governed by the Hamiltonian (2.7) is realized by an evolution matrix in
the interaction picture

U(t) = D(A(t))|e〉〈e| +D(−A(t))|g〉〈g| (3.1)

with two components, where

D(A(t)) = eA(t)a
†−A(t)∗a (3.2)

with

A(t) = ig
eiωt − 1

ω
(3.3)

is the evolution operator of the forced harmonic oscillator with the HamiltonianH+. The
above time evolution determines an entangled state

|ψI (t)〉 = ce|e〉 ⊗D(A(t))|φ〉 + cg|g〉 ⊗D(−A(t))|φ〉 (3.4)

when the atom and the cavity are prepared in the initial pure states

|ψa(0)〉 = cg|g〉 + ce|e〉 |ψf (0)〉 = |φ〉 (3.5)

respectively.
The ideal entanglement state of the system with the detector is an orthogonal

decomposition of the states|si〉 (i = 1, 2, 3, . . .) of the measured system with respect
to the states|Di〉 of the detector with certain macroscopic differences. The process of
entanglement is expressed as

|ψ(0)〉 =
∑

ci |si〉 ⊗ |D〉 evolution−→ |ψ(t)〉 =
∑
i=1

ci |si〉 ⊗ |Di〉 (3.6)

then we can read out the states|sk〉 once we have determined the state|Dk〉 of the detector.
Such a scheme of a ‘reading state’ is ideal if the states|Di〉 (i = 1, 2, . . . , N) are orthogonal
to each other, i.e.〈Di |Dj 〉 = δij .

For our situation with a specific initial state|ψ〉 = |α〉 (coherent state) of the detector,

|ψ(t)〉 = ce|e〉 ⊗ |ψe〉 + cg|g〉 ⊗ |ψg〉 (3.7)
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where

|ψe〉 = D(A)|α〉 |ψg〉 = D(−A)|α〉 . (3.8)

The overlap of detector components in the entangled state has a non-zero overlap determined
by

|〈ψe|ψg〉|2 = e−4|A(t)|2 = e(−4g2/ω2)4 sin2 ωt/2 = e−4 sin2(λgt)/λ2
(3.9)

in the general case. However, in the limit 2λ = ω/g → 0 of strong coupling, an ideal
entanglement appears for two particular cases. The first one, similar to the Cini model [5],
essentially is thatω approaches zero for fixedg. In this limiting case,A(t)→ gt and hence
the overlap becomes an exponential decaying factor

|〈ψe|ψg〉|2 = e−4g2t2. (3.10)

This phenomenon of exponential decay is illustrated in figure 1, which results
mathematically from the very large period of oscillation at the strong-coupling limit. Another
case is that as an effective coupling constantg approaches infinity for fixedω, which can
be realized physically at high temperature (see the following). In this gradually changing
process from weak coupling to strong coupling, the rapid revival and collapse of coherence
happens in the weak coupling with periodic pointsωt/2 = nπ, n = 1, 2, . . . , but the ideal
decoherence happens for the strong coupling except for very narrow and sharp quantum
jumps. This phenomenon will be illustrated in figure 2 in the next section for the finite
temperature case whereg is replaced by an effective coupling depending on temperature.

For a vacuum cavity the initial state is|ψf (0)〉 = |0〉. With strong coupling the entangled
state

|ψc(t)〉 = ce|e〉 ⊗ |gt〉 + cg|g〉 ⊗ |−gt〉 (3.11)

Figure 1. The appearance of the exponential decaying behaviour of the overlap in the limit of
strong coupling for fixedg.
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Figure 2. The accompanying overlap factors for different temperatures. This case is equivalent
to the process approaching the strong coupling, i.e.g goes to infinity.

is just associated with the Schrödinger cat state, which is a quantum superposition of two
coherent states 180◦ out of phase with each other [19–22] and with very large amplitudes
|α| = gt (α = gt). Generally, such a superposition of coherent states|α〉 and |−α〉 is
macroscopically distinguishable, namely, there is little overlap between the states. Roughly
speaking, the coherent state with very large amplitude|α| is usually referred to a macroscopic
object. The coherence between the macroscopic ‘living cat’ correlated to microscopic state
|e〉 and the macroscopic ‘dead cat’ to microscopic states|g〉 is described, in the case of
effective strong coupling, by the overlap

|〈gt |−gt〉|2 = e−4g2t2 gt→∞−→ 0 . (3.12)

Therefore, we may say that the ‘living cat’ does not interfere with the ‘dead cat’ for a
long enough time. In this sense, though we cannot confirm whether the cat in a black box
is living or dead, we may infer the final result according to a classical probability without
coherence rather than to the quantum probability with coherence. Notice that the state (3.11)
is not an exact cat state of the light field, but a pure Schrödinger cat state can be further
prepared from it if classical light acting only on the internal states is applied to produce a
Rabi rotation of the atomic internal states|e〉 and |g〉:

|e〉 → e−iHcT/h̄|e〉 = 1√
2
(|e〉 − |g〉)

|g〉 → e−iHcT/h̄|g〉 = 1√
2
(|e〉 + |g〉)

(3.13)

where

Hc = ih̄µ (|e〉〈g| − |g〉〈e|) T = 1

µ

(
2n+ 1

4

)
π . (3.14)
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Therefore, whence = cg = 1/
√

2, the entangling state (3.11) is transformed into

e−iHcT/h̄|ψc(t)〉 = 1
2|e〉 ⊗ (|gt〉 + |−gt〉)− 1

2|g〉 ⊗ (|gt〉 − |−gt〉) . (3.15)

It can be imagined that once we find the atom in the state,|e〉, the light field is prepared in
the pure cat state1√

2
(|gt〉 + |−gt〉).

4. Wavefunction collapse

For the case with the pure detector state, the orthogonal decomposition (i.e., the ideal
entanglement) implies the WFC of the reduced density matrix. For the general case in
(3.6), the reduced density matrix can be obtained by taking a partial trace over the variables
of the detector

ρr = TrD(|ψ(t)〉〈ψ(t)|) =
∑
i

〈Di |ψ(t)〉〈ψ(t)|Di〉

=
∑
i

|ci |2|si〉〈si | +
∑
i 6=j

c∗i cj 〈Di |Dj 〉|si〉〈sj | =
∑
i

|ci |2|si〉〈si | (4.1)

since 〈Di |Dj 〉 = δi,j . For the case with strong coupling and an initial state|α〉 for the
photon field in our model,

ρr(t) = |ce|2|e〉〈e| + |cg|2|g〉〈g| + 〈α|D (2A(t)) |α〉(cec∗g|e〉〈g| + c∗e cg|g〉〈e|) (4.2)

and

|〈α|D (2A(t)) |α〉|2 = e−4|A(t)|2 ω/g→0−→ e−4g2t2. (4.3)

The off-diagonal terms decay exponentially to zero as time tends to infinity such that the
WFC can be realized dynamically.

Another interesting situation is when the cavity is prepared exactly in a Fock number
state

|n〉 = 1√
n!
(a†)n|0〉 . (4.4)

Note that it is very difficult to realize such a situation in a practical experiment since the
Fock state has a very large fluctuation of the electric or magnetic field. In this situation,
the reduced density matrix is

ρr(t) = |cg|2|g〉〈g| + |ce|2|e〉〈e| + 〈n|D (2A(t)) |n〉(cgc∗e |g〉〈e| + cec∗g|g〉〈e|) . (4.5)

The accompanying factor〈n|D (2A(t)) |n〉 of the off-diagonal elements ofρr(t) can be
expressed as

〈n|D (2A(t)) |n〉 = e−2|A(t)|2Ln(|2A(t)|2) ω/g→0−→ e−g
2t2Ln(|2gt |2) (4.6)

in terms of the Laguerre polynomialLn(z). According to the theory of special functions,
Ln(z) approaches the zero-order Bessel functionJ0(4

√
ngt) whenn→∞, hence,

〈n|D (2A(t)) |n〉 ω/g→0−→ 〈n|D(2gt)|n〉 n→∞−→ e−2g2t2J0(4
√
ngt) . (4.7)

Since the Bessel function with real variables is a decaying oscillating function, it approaches
zero asn tends to infinity. Therefore, when the cavity is occupied by large amount of
photons, the macroscopic feature of the detector (photon field) decoheres the initial pure
state of the atom and hence the WFC is realized dynamically.
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The third situation is that the cavity is initially in a thermal equilibrium state since a
measurement is always carried out at finite temperature, which is described by the density
matrix

ρD = exp[−βh̄ωa†a]

Tr[exp(−βh̄ωa†a)] (4.8)

then the density matrix for the initial state of the total system is a simple product

ρ(0) =
∑

λ,λ′=e,g
cλc
∗
λ
′ |λ〉〈λ′| ⊗ ρD . (4.9)

In fact, at high temperature the excitation of the cavity field will make the decoherence
or the WFC more enhanced than at zero temperature. In this case, the evolution of the
reduced density matrix of the atom takes the form

ρr(t) = TrD(U(t)ρ(0)U
+(t)) = |ce|2|e〉〈e| + |cg|2|g〉〈g| + (c∗gce|e〉〈g| + HC)F (t). (4.10)

Using the coherent-state representation

ρD =
∫
ρ(α)|α〉〈α| d2α (4.11)

with the diagonal elements

ρ(α) = 1

π〈n〉e
−|α|2/〈n〉 (4.12)

where〈n〉 = (eβh̄ω − 1)−1 is the average photon number in the cavity, the accompanying
overlap factor

F(t) = TrD(ρDD(2A(t))) (4.13)

is calculated

F(t) = 1

π〈n〉
∫ ∞
−∞

e−|α|
2/〈n〉〈α|D (2A(t)) |α〉 d2α

= 1

π〈n〉
∫ ∞
−∞

e−|α|
2/〈n〉 exp(−2|A(t)|2+ 2A(t)α∗ − 2A(t)∗α) d2α

= exp
(−2|A(t)|2(1+ 2〈n〉)) . (4.14)

As the temperature increases, the vanishing of the off-diagonal elements described by the
accompanying factorF(t) is illustrated in figure 2. If we define the effective coupling
constant

g[〈n〉] = g
√

1+ 2〈n〉 (4.15)

it is observed that the effective strong couplingg[〈n〉]/ω → ∞ can be achieved at very
high temperature since〈n〉 is a monotonically increasing function of temperatureT . It can
be demonstrated more clearly by considering the strong-coupling limit, and in this case the
accompanying overlap factor is obtained

F(t) ≈ exp[−2(g2(1+ 2〈n〉))t2] = exp[−2(g[〈n〉]t)2] . (4.16)

Since〈n〉 increases form zero to infinity as the temperature changes from zero to infinity, we
claim that the thermal effect must enhance the decay of the off-diagonal terms in the reduced
density matrix. Figure 2 shows the gradually changing process of the accompanying overlap
factor from weak coupling to strong coupling as the temperature increases. During this
process the collapse and revival oscillate rapidly in the weak coupling. In the strong coupling
the ideal decoherence happens with very narrow and sharp quantum jumps. Coherence only
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appears at the top points of these jumps. Now, it can be concluded that the low-temperature
condition is not needed for the dynamic realization of the WFC in the context of cavity
QED. In fact, the excitation of photons by the thermal effect can result in the WFC at
very high temperature. For this reason, it can be claimed that it is possible to realize the
present model in further experiments since it is not too difficult to get strong coupling in
the high-temperature limit.

5. Atom-optical effects

All of the above discussions do not concern the influence of exchange of momentum between
the photon and the centre of mass of the atom directly. The generalized Jaynes–Cummings
model including the motion of the atomic centre of mass has already been discussed
everywhere, for example, in the spontaneous emission of the atoms as well as laser cooling
[24–26]. This influence can also cause atom-optical effects, such as diffraction and splitting
of an atom beam, the optical Stern–Gerlach experiment and so on. Transforming back to
the original laboratory ‘frame of reference’ through the unitary operator

W(x) = eikxa†a (5.1)

one can find the transfer of momentum due to the entangling action

W(x)| Ep〉 ⊗ |n〉 = | Ep + nh̄Ek〉 ⊗ |n〉 (5.2)

for the direct product state of the composite system of the atomic centre of mass and photon
field. It is emphasized that it does not change the motion of the atomic centre of mass if
the cavity is in the vacuum state|0〉.

We now consider the case of strong coupling. At timet = 0, the Zeeman atom with a
certain momentumEp is injected into a vacuum cavity. The joint state of the total system is
then initially

|ψ(0)〉 = | Ep〉 ⊗ (ce|e〉 + cg|g〉)⊗ |0〉 . (5.3)

Its time evolution gives the wavefunction at timet

|ψ(t)〉 = W [| Ep〉 ⊗ (ce|e〉 ⊗ |gt〉 + cg|g〉 ⊗ |−gt〉)]
=
∞∑
n=0

(gt)n√
n!
| Ep + nh̄Ek〉 ⊗ (ce|e〉 + (−1)ncg|g〉

)⊗ |n〉 . (5.4)

The above expression manifests a phenomenon of splitting of the atomic beam. If the
direction of motion of atom is vertical with respect to the wavevectorEk of the cavity, the
atom will absorb the momentumnh̄k (n = 1, 2, . . .) along Ek and the atomic beam will split
with different momentaEp +mEk.

To understand the influence of the motion of the atomic centre of mass on the WFC,
we first write downψ(t) in the x-representation

|ψ(x, t)〉 = 〈x|ψ(t)〉 = eipx/h̄
(
ce|e〉 ⊗ |gteikx〉 + cg|g〉 ⊗ |−gteikx〉) (5.5)

which leads to the reduced density matrix

ρ(x) = TrD(|ψ(x, t)〉〈ψ(x, t)|) = |ce|2|e〉〈e| + |cg|2|g〉〈g|
+ (cec∗g〈gteikx |−gteikx〉|e〉〈g| + HC

)
. (5.6)

The accompanying factor in the off-diagonal element

〈gteikx |−gteikx〉 = e−2g2t2 (5.7)



128 C P Sun et al

is independent ofx and also decays exponentially. Thus, the motion of atomic centre of
mass does not affect the realization of WFC.

Finally, the influence of the motion of the atomic centre of mass will generate the even
and odd coherent states dynamically [27]. In fact, thex-representation of wavefunction
(5.5) can be rewritten as

|ψ(x, t)〉 = eipx−|gt exp(ikx)|2/2
{ ∞∑
m=0

(gteikx)2m

(2m)!
(ce|e〉 + cg|g〉)⊗ |2m〉

+
∞∑
m=0

(gteikx)2m+1

(2m+ 1)!
(ce|e〉 − cg|g〉)⊗ |2m+ 1〉

}
= eipx

[
(ce|e〉 + cg|g〉)⊗ |gteikx〉e+ (ce|e〉 − cg|g〉)⊗ |gteikx〉o

]
(5.8)

where the definitions of even and odd coherent states are

|α〉e = e−|α|
2/2

∞∑
m=0

(α)2m√
2m!
|2m〉 (5.9)

|α〉o = e−|α|
2/2

∞∑
m=0

(α)2m+1

√
(2m+ 1)!

|2m+ 1〉 (5.10)

respectively. Actually, whence = cg =
√

1
2 initially, the above discussion implies a

procedure of generating even- and odd-coherent states in a dynamic process with a mea-

surement for the coherent superpositions states
√

1
2(|e〉± |g〉). If one measures the operator

σ1 = |e〉〈g| + |g〉〈e| and obtains a certain result 1 or−1, the wavefunction will collapse

to the reduced state
√

1
2(|e〉 + |g〉)⊗ |gteikx〉e or

√
1
2(|e〉 − |g〉)⊗ |gteikx〉o. Such a kind of

entangling collapse will produce even- and odd-coherent states!

6. Comments

The dynamic model discussed in this paper not only realizes the WFC in quantum
measurement as a process of Schrödinger evolution, but also manifests rich phenomena
in atomic optics. These contexts are directly related to the fundamental aspects of
quantum mechanics. Before concluding this paper, we should emphasize its relations to the
factorizable structure which is the essence of the dynamic realization of WFC in previous
models. In this paper, all of the dynamic features come from a basic Hamiltonian

H = ih̄gσ3(a − a†) (6.1)

for the strong-coupling limit and

H = h̄ωa†a + ih̄gσ3(a − a†) (6.2)

in the high-temperature limit. The high-spin correspondence,J+/
√

2j → a†, J−/
√

2j →
a, J3 → N̂/j as j = N/2→ ∞, shows its equivalence to a simple spin-coupling model
Hspin= 2g′σ3J2 whereJ± = J1±iJ2 andJα (α = 1, 2, 3) are theSO(3) angular momentum
operators. In terms of the spinor representation ofSO(3): Jα = 1

2

∑N
i=1 σα(i) whereσα(i)

are Pauli matrices assigned to different sites in a lattice and commute with each other of
different sites, it is proved that our model is equivalent to the HC model

HHC = g′σ3

N∑
i=1

σ2(i) . (6.3)
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This means that, as well as all of the previous dynamic models, our model also possesses
an intrinsic factorizable structure. The above correspondences among the different
representations ofSO(3) were even used to prove the equivalence between the HC model
and Cini model by Nakazato and Pascazio [28] recently and our comments here are
motivated by their work.
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