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Abstract
Quantum key distribution can provide information-theoretic security keys. In prac-
tice, the eavesdropper may attack the transmitted quantum state, which makes some
information leakage to the generated key. The security of the final key depends on
how difficult it is for the eavesdropper to guess the key. The guessing probability is
bounded by the trace distance between the practical generated quantum state and the
ideal quantum state and hence can be applied to estimate security of quantum key
distribution. With the trace distance ε and the secret key length n, we prove that the
guessing probability can reach the upper bound ε+2−n in some special cases.We show
that different attacking strategies will give different numbers of guesses, sometimes
even completely subversive differences, to get the final key. Our results demonstrate
that the appropriate security parameter ε should be carefully selected to guarantee the
security of the generated key.

Keywords Quantum key distribution · Security · Guesswork · Trace distance

1 Introduction

Quantum key distribution (QKD) [1] is the art of sharing the information-theoretical
security key between two distant parties Alice and Bob, while the eavesdropper Eve
cannot get the secret key even if she has unlimited computation power [2–4]. From the
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adversary’s point of view, the perfect secret key should have the uniform probability
distribution. However, the practically generated key is usually imperfect, which may
leak some information to Eve. More precisely, part of the secret key bit information
may be leaked to Eve during the quantum state preparation and measurement step
or the classical postprocessing step [5–7]. To prove security of a QKD protocol, the
trace distance between the practical quantum state and the ideal quantum state has
been proposed [4, 8–11]. Based on the trace distance method, a QKD protocol has the
security intensity ε if the generated classical-quantum state ρAE between Alice and
Eve has the following condition

D(ρAE, ρUE) = 1
2 tr|ρAE − ρU ⊗ ρE | ≤ ε, (1)

where ρAE is the practical classical-quantum state generated between Alice and Eve,
ρUE = ρU ⊗ ρE is the ideal classical-quantum state shared between Alice and Eve.
Under the secret key length n, ρU is the maximum mixed state I

2n , which can be
illustrated by the uniform probability distribution. ε is the security intensity of the
QKDprotocol,which can be estimated by combining the privacy amplification security
parameter with the min-entropy security parameter [12–14]. For any two quantum
states ρAE and ρUE, Eve can apply arbitrary positive operator valuedmeasure (POVM)
to get classical measurement outcomes, which have the probability distribution PAE
and QUE, respectively. Correspondingly, the trace distance between PAE and QUE can
be bounded by the trace distance D(ρAE, ρUE) with the following inequality

D(PAE , QUE) ≤ D(ρAE, ρUE) ≤ ε. (2)

From Eve’s viewpoint, the perfect quantum state ρUE can be illustrated as ρUE =
ρU ⊗ ρE , where the measurement outcome about ρU has the uniform probability dis-
tribution PU . Correspondingly, the joint probability distribution about Alice and Eve’s
measurement outcomes can be given by QUE = PU PE , where Eve’s measurement
outcome e has the probability distribution PE (e). Note that the two quantum states
ρU and ρE are independent, thus Alice’s measurement outcomes have the uniform
probability distribution under Eve’s arbitrary measurement outcome e.

Based on the classical-quantum state ρAE and the trace distance ε, Eve can apply
appropriate POVM to get the probability distribution PAE. Since all of the quantum
states ρAE have the restriction D(ρAE, ρUE) ≤ ε can be utilized by Eve, she can choose
different attacking strategies to get the probability distribution PAE. Based on Eve’s
attacking strategies, the guesswork is defined as the number of guesses required in
order to correctly guess the secret key. From Eve’s viewpoint, she can guess the secret
key with the maximal guessing probability by utilizing the probability distribution
PAE. Accordingly, how to analyze the maximal guessing probability is an important
question [15] to prove security of a QKD protocol.

Based on the trace distance ε and the secret key length n, it has been proved that the
maximal guessing probability of the generated key can be bounded by p ≤ ε+2−n [10,
11]. However, there are still two important questions about the guessing probability
and guesswork to be solved, the first question is if the maximal guessing probability
ε + 2−n is tight in the general case, and the second question is how to understand the
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operational meaning of the guesswork [16]. To answer the first question, we propose
a special state preparation between Alice and Eve, and the result accurately proves
that the upper bound value of the guessing probability can be reached to ε + 2−n .
But we should emphasize that the maximal guessing probability ε + 2−n do not
demonstrate that the QKD protocol is not secure, this is because only some special
quantum states can reach this upper bound value, but Eve has no explicit attacking
strategy to reach this bound generally. To answer the second question, we propose
two attacking strategies to analyze the guesswork with different trace distance values
ε. In the first attacking strategy, by utilizing the probability distribution PAE, Eve
will guess the generated key from the high probability to the low probability, and
we prove that this attacking strategy has the guesswork 2n+1

2 − 2nε. In the second
attacking strategy, by utilizing the probability distribution PAE, Eve will only guess
the generated key with the maximal guessing probability value, and we prove that this
strategy has the guesswork log1−ε(1−q)with the success probability at least q. Based
on the two attacking strategies, we prove the lower bound of the guesswork, which
can be applied to estimate the minimum number of guesses required to correctly guess
the secret key. Our results demonstrate that the trace distance is an efficient method
to estimate security of the QKD protocol, but the appropriate trace distance ε should
be carefully selected to guarantee the guesswork value is large enough in both of the
two attacking strategies.

The rest of this paper is arranged as follows: in Sect. 2, we propose the precise
quantum state preparation andmeasurement protocol to reach the guessing probability
p = 2−n + ε. In Sect. 3, we analyze the relationship between the average guesswork
and the trace distance εwith the secret key length n. In Sect. 4, we propose two detailed
attacking strategies to estimate Eve’s attacking probability, and the lower bound of the
guesswork will be discussed correspondingly.

2 The tight bound of the guessing probability

Based on the security definition given by the trace distancemethod [4, 17], a QKDpro-
tocol has the security intensity ε if the practical generated quantum state ρExt(X ,Y )Y E ′
has the following restriction

D(ρExt(X ,Y )Y E ′ , ρUY E ′) = 1
2 tr|ρExt(X ,Y )Y E ′ − ρUY E ′ | ≤ ε, (3)

where ρExt(X ,Y )Y E ′ is the practical quantum state shared between Alice, Eve and the
uniform seed Y , and ρUY E ′ = ρU ⊗ ρY ⊗ ρE ′ is the perfect quantum state. ρY is the
uniform seed, which is used for the privacy amplification. In a practical QKD system,
the uniform seed ρY will be prepared by Alice or Bob, and it will be transmitted to the
other party by utilizing an authenticated classical channel. ρU is the maximum mixed
state, which can be illustrated by the uniform classical probability distribution, and it
demonstrates that Eve has no information about the generated key. Since the random
seed ρY is known by Eve, we can simply assume that ρY is part of Eve’s system.
Correspondingly, the classical-quantum state shared between Alice and Eve can be
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rewritten as ρAE ≡ ρExt(X ,Y )Y E ′ , where ρA = trY ,E ′ρExt(X ,Y )Y E ′ and ρE = ρY ⊗ρE ′ ,
and we can get the trace distance condition D(ρAE , ρU ⊗ ρE ) ≤ ε.

To prove security of the QKD protocol with the trace distance method, the security
parameter ε can be divided into themin-entropy security parameter εmin and the privacy
amplification security parameter εpa. More generally, if Ext: {0, 1}m × {0, 1}d →
{0, 1}n is a quantum-proof (k, εpa) strong extractor, then for any quantum state ρXE ′
and any εmin > 0 with H εmin

min (X |E ′)ρXE ′ ≥ k, the trace distance D(ρAE , ρU ⊗ ρE )

can be restricted by [17]

D(ρAE , ρU ⊗ ρE ) ≤ ε ≡ εpa + 2εmin. (4)

This equation implies that the strong extractor can extract the same number of bits
from sources which only satisfy H εmin

min (X |E ′)ρXE ′ ≥ k, but the generated key has a
slightly larger error εpa + 2εmin. Note that both of the two security parameters εpa and
εmin will affect the secret key rate R. By applying the leftover hash lemma [4, 18], the
secret key rate can be given by

R ≥ H εmin
min (X |E ′) − 2log 1

εpa
, (5)

where H εmin
min (X |E ′) = maxσXE ′ ∈Bεmin (ρXE ′ )Hmin(X |E ′), and Bεmin(ρXE ′) is the set of

sub-normalized states σXE ′ with D(σXE ′ , ρXE ′) ≤ εmin. To estimate the min-entropy
function Hmin(X |E ′), the guessing probability pguess(X |E ′) should be calculated.
More generally, by considering Alice and Eve share the classical-quantum state
ρXE ′ = ∑

x
px |x〉〈x | ⊗ ρx

E ′ , the guessing probability pguess(X |E ′) can be given by

pguess(X |E ′) = maxMx

∑

x
px tr(Mxρ

x
E ′). (6)

Based on this guessing probability calculation result, the conditional min-entropy
function Hmin(X |E ′) can be directly calculated as Hmin(X |E ′) = −logpguess(X |E ′)
. Based on the quantum asymptotic equipartition property, the smooth min-entropy
function H εmin

min (X |E ′) can be restricted by [19–21]

H εmin
min (X |E ′) ≥ H(X |E ′) − 4

√
nlog(2

√
2Hmax(X |E ′) + 1)

√
log 2

ε2min
. (7)

where Hmax(X |E ′) is the conditional max-entropy function [4]. More generally, the
uncertainty principle [22], entropy accumulation theorem [23] and quantum probabil-
ity estimation [24] methods also have been proposed to estimate H εmin

min (X |E ′). Thus,
the final secret key rate can be given by

R ≥ H(X |E ′) − 4
√
nlog(2

√
2Hmax(X |E ′) + 1)

√
log 2

ε2min
− 2log 1

εpa
. (8)

Note that Eve can also gain information from the error correction step, and this
information can be analyzed by applying the chain rule of the min-entropy func-
tion. To calculate this secret key rate, the security parameters εpa and εmin should
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be previously defined, and the corresponding trace distance can be restricted by
D(ρAE , ρU ⊗ ρE ) ≤ ε.

After the privacy amplification step, Alice and Eve can generate the quantum
state ρAE = ∑

k
pk |k〉〈k| ⊗ ρk

E . From Eve’s viewpoint, she can get the trace dis-

tance D(ρAE , ρU ⊗ ρE ) ≤ ε, thus the maximal guessing probability pguess(A|E) =
maxMk

∑

k
pk tr(Mkρ

k
E ) can be applied to estimate security of a QKD protocol. If Alice

and Eve share the ideal quantum state ρU ⊗ ρE , the maximal guessing probability is
pguess(A|E) = 2−n , where n is the length of the secret key. However, a practical
QKD system may leak some information in the classical post-processing step, and the
maximal guessing probability should be larger than 2−n . Thus it will be interesting to
discuss the relationship between the trace distance ε and the maximal guessing prob-
ability pguess(A|E). Recently, it has been proved that the upper bound of the maximal
guessing probability pguess(A|E) can be estimated by the following inequality [10,
11]

pguess(A|E) ≤ ε + 2−n, (9)

where the perfect state preparation means that ε = 0, and the maximal guessing prob-
ability will be reduced to 2−n . But, it is not clear if this maximal guessing probability
is tight in the general case. In the following subsection, we propose a detailed example
to demonstrate that the maximal guessing probability can be reached to ε+2−n under
the trace distance ε and the secret key length n. More precisely, the detailed density
matrix ρXE ′ shared between Alice and Eve can be given by

ρXE ′ = 1−p
N IN ⊗ |N 〉〈N | + p

N (|0〉〈0| ⊗ |0〉〈0|
+ · · · +|N − 1〉〈N − 1| ⊗ |N − 1〉〈N − 1|), (10)

where N = 2n , and the density matrix ρE ′ can be given by

ρE ′ = trXρXE ′ = (1 − p)|N 〉〈N | + p
N (|0〉〈0| + · · · + |N − 1〉〈N − 1|). (11)

Correspondingly, the ideal quantum state preparation ρU ⊗ ρE ′ can be given by

ρU ⊗ ρE ′ = 1

N
IN ⊗ ρE ′ = 1 − p

N
IN ⊗ |N 〉〈N | + p

N 2 IN ⊗ IN , (12)

where the ideal quantum state demonstrates that Eve has no information about the
final secret key, thus she can only randomly guess the generated key with the guessing
probability 1

N . Based on this state of preparation, the trace distance between ρXE ′ and
ρU ⊗ ρE ′ can be calculated with the following equation

D(ρXE ′ , ρU ⊗ ρE ′) = 1

2
tr|ρXE ′ − ρU ⊗ ρE ′ | = (N − 1)p

N
≡ ε. (13)

By considering all of the quantum states in the state space Bεmin(ρXE ′) with εmin = ε,
the smooth min-entropy function H ε

min(X |E ′) can be calculated as H ε
min(X |E ′) =

n. By applying the left over hash lemma, Alice and Bob do not need to apply the
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privacy amplification protocol with this state preparation, thus we can get εpa = 0.
Correspondingly, the quantum states ρAE and ρE can be, respectively, given by ρAE =
ρXE ′ and ρE = ρE ′ . Thus, it can easily proves that the trace distance between ρAE

and ρU ⊗ ρE is
D(ρAE , ρU ⊗ ρE ) = ε. (14)

Based on this quantum state ρAE preparation, Eve can apply the projective measure-
ment {|0〉〈0|, |1〉〈1|, · · ·, |N 〉〈N |} to get the measurement outcomes. If she can get the
measurement outcomes {|0〉〈0|, |1〉〈1|, · · ·, |N − 1〉〈N − 1|}, Eve will gain the gener-
ated key with probability 1. However, if she gets the measurement outcome {|N 〉〈N |},
Eve can only randomly guess the generated key with probability 1

N . Finally, the total
guessing probability can be given by

pguess(A|E) = p + 1−p
N = 1

N + ε. (15)

Since the trace distance between ρAE and ρU ⊗ρE is ε, this result exactly demonstrates
that the maximal guessing probability can be reached to ε + 2−n . Note that this
imperfect quantum state ρAE can be realized if the practical QKD devices have some
imperfections, such as Eve can apply the probabilistic blinding attack [25] with the
attacking probability p.

We should stress that this result does not demonstrate that QKD is not secure.
In a practical QKD system, only some special quantum states in the space Bε(ρAE )

can reach the maximal guessing probability ε + 2−n . However, how to find a unitary
operation to realize the corresponding quantum states should be studied further. Thus,
the trace distance is also an efficient method to estimate security of the QKD proto-
col, but the trace distance ε should be carefully selected to satisfy different practical
applications.

3 Estimating security of QKD from the guesswork

In probability theory, we can assume that two different secret key variables X and
X ′ have the probability distributions PX and PX ′ , respectively, and the trace distance
D(PX , PX ′) between PX and PX ′ can be given by

D(PX , PX ′) = 1
2

∑

x∈X
|PX (x) − PX ′(x)|. (16)

From Eve’s point of view, the generated key U has the perfect security if it has
the uniform probability distribution PU (x) = 1

N . However, practically generated
key X has ε-perfect security if the trace distance D(PX , PU ) can be restricted by
D(PX , PU ) ≤ ε. If X has the perfect security, we can get PX (x) = 1

N , and the
corresponding trace distance can be given by ε = 0. By considering the generated
key bit string X = x0x1 · · · xn−2xn−1 has the probability distribution PX , we can
rearrange the probability distribution PX from the high probability to the low proba-
bility. Without loss of generality, we assume that the detailed probability distribution
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PX (x0x1 · · · xn−2xn−1) can be given by

p(x0x1 · · · xn−2xn−1 = 00 · · · 00)
≥ p(x0x1 · · · xn−2xn−1 = 00 · · · 01)
≥ · · ·
≥ p(x0x1 · · · xn−2xn−1 = 11 · · · 11).

(17)

Based on this probability distribution, Eve can guess the secret key from the high
probability to the low probability sequently, and the required guesswork W (X) to
correctly guess the generated key can be given by [26]

W (X) = p(x0x1 · · · xn−2xn−1 = 00 · · · 00)
+2p(x0x1 · · · xn−2xn−1 = 00 · · · 01)
+ · · ·
+Np(x0x1 · · · xn−2xn−1 = 11 · · · 11),

(18)

where the guesswork W (X) is the average number of guesses needed in order to
correctly guess the secret key. Based on this guesswork method, we firstly analyze the
guesswork with some special examples.

In the first example, the perfect keyU = u0u1 · · · un−2un−1 has the uniform prob-
ability distribution as the following

p(u0u1 · · · un−2un−1 = 00 · · · 00) = 1
N

p(u0u1 · · · un−2un−1 = 00 · · · 01) = 1
N· · ·

p(u0u1 · · · un−2un−1 = 11 · · · 11) = 1
N .

(19)

Based on this probability distribution, the trace distance can be given by ε = 0, and
the corresponding guesswork of U is

W (U ) = 1
N (1 + 2 + · · · + N ) = N+1

2 . (20)

In the second example, all of the key bit strings Y = y0y1 · · · yn−2yn−1 are known
by Eve, which has the following probability distribution

p(y0y1 · · · yn−2yn−1 = 00 · · · 00) = 1
p(y0y1 · · · yn−2yn−1 = 00 · · · 01) = 0
· · ·
p(y0y1 · · · yn−2yn−1 = 11 · · · 11) = 0.

(21)

Based on this probability distribution, the trace distance can be given by ε = 1 − 1
N ,

and the corresponding guesswork of Y is 1.
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In the third example, only the first bit z0 of the key bit string Z = z0z1 · · · zn−2zn−1
is known by Eve, which has the following probability distribution

p(z0z1 · · · zn−2zn−1 = 00 · · · 00) = 2
N· · ·

p(z0z1 · · · zn−2zn−1 = 01 · · · 11) = 2
N

p(z0z1 · · · zn−2zn−1 = 10 · · · 00) = 0
· · ·
p(z0z1 · · · zn−2zn−1 = 11 · · · 11) = 0.

(22)

Based on this probability distribution, the trace distance can be given by ε = 1
2 , and

the corresponding guesswork of Z is N+2
4 .

In the general case, we can only bound the trace distance D(PX , PU ) ≤ ε, but
the precise probability distribution PX (x0x1 · · · xn−2xn−1) can’t be observed, thus the
guesswork of W (X) can’t be directly calculated. Fortunately, in the classical cryp-
tography theory, it has been proved that the guesswork of W (X) can be restricted by
[27]

W (X) ≥ N+1
2 − Nε. (23)

In the special case with ε = 0, the guesswork of X can be given by W (X) = N+1
2 .

However, the guesswork of X is restricted by W (X) ≥ 1
2 when ε = 1

2 . Obviously,
by considering the lower bound value of W (X), the security of X can’t be guaranteed
when ε = 1

2 .
By comparingwith the classical cryptography theory, Eve has the auxiliary quantum

system in the QKD protocol. Thus, she can apply arbitrary POVM to get the classical
measurement outcomes. By applying different POVMs with the quantum state ρAE ,
Alice and Eve can get different classical probability distributions PAE . But the trace
distance between PAE and QUE can be efficiently restricted by D(PAE , QUE ) ≤
D(ρAE , ρU ⊗ ρE ) ≤ ε. More generally, for any two quantum states ρAE and ρUE ,
Alice andEve can apply arbitrary POVM {�xe = |x〉〈x |⊗Me,

∑

xe
�xe = 1}xe to get the

probability distribution PAE and QUE . Since Eve has the same marginal probability
distribution PE (e) in both of the two quantum states ρAE and ρUE , the trace distance
D(PAE , QUE ) can be restricted by

D(PAE , QUE ) = 1
2

∑

e∈E
∑

x∈X
|PAE (xe) − PU PE (e)|

= 1
2

∑

e∈E
∑

x∈X
|PA(x |e)PE (e) − PU PE (e)|

= 1
2

∑

e∈E
PE (e)

∑

x∈X
|PA(x |e) − PU |

= ∑

e∈E
PE (e)εe

≤ ε,

(24)

where εe is the trace distance between PAE (xe) and PU PE (e) when Eve gets the
measurement outcome e. FromEve’s point of view, the trace distance ε can be bounded
by different trace distance values εe with the corresponding probability PE (e). Note
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that the trace distance εe may be larger than ε, but the corresponding probability value
PE (e) should be strictly restricted by PE (e) ≤ ε

εe
. We give two special cases to

analyze the relationship between ε and εe, the first case is considering εe = ε for
the arbitrary measurement outcome e ∈ E , where Eve can get the same guesswork
with differentmeasurement outcomes. The second case is considering there is a special
measurement outcome e′ has the trace distance εe′ = 1−2−n ≈ 1, thus the upper bound
value of PE (e′) is ε

1−2−n ≈ ε. This case demonstrates that Evemay get all of the key bit
stringwhen themeasurement outcome e′ is detected, but the corresponding probability
value PE (e′) should be very small. On the other side, Eve can only randomly guess
the generated key when the other measurement outcomes are detected.

In the general case, by considering the measurement result e obtained by Eve,
she can guess the generated key from the high probability to the low probability
sequently, and the corresponding guesswork W (X |e) can be estimated. However,
Eve should also consider the probability PE (e) to estimate the average guesswork
W (X) = ∑

e∈E
PE (e)W (X |e). To analyze the average guesswork, we consider all of the

measurement outcomes in Eve’s side. Considering the measurement result e obtained
by Eve, the corresponding guesswork can be restricted by

W (X |e) ≥ N+1
2 − Nεe. (25)

Note that the trace distance ε can be restricted by
∑

e∈E
PE (e)εe ≤ ε, the average

guesswork W (X) can be given by

W (X) = ∑

e∈E
PE (e)W (X |e)

≥ ∑

e∈E
PE (e)( N+1

2 − Nεe)

= N+1
2 − N

∑

e∈E
PE (e)εe

≥ N+1
2 − Nε.

(26)

This inequality implies that the lower bound of the average guessworkW (X) is N+1
2 −

Nε. Guesswork W (X) is approximate to N+1
2 when ε is small enough, and it will be

more difficult for Eve to guess the key.

4 Discussion

The previous results have many applications in estimating security of the QKD pro-
tocol, which demonstrates that Eve’s guesswork will be similar to the perfect case
N+1
2 when ε is small enough. However, this guesswork maybe not a good method to

estimate Eve’s attacking strategy when ε is not small enough. For example, the aver-
age guesswork is W (X) ≥ N+1

2 − 10−4N when ε = 10−4, but this security intensity
is not enough for some practical applications. From Eve’s viewpoint, she may only
guess the key bit string with the special measurement outcome e�, which has the
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trace distance εe� = 1 − 1
N . However, the maximum probability of this happening

is PE (e�) ≤ 10−4

1− 1
N

≈ 10−4, and this probability maybe too large for some practical

applications.
Combining the trace distance with the auxiliary quantum system, Eve can get the

probability distribution of the generated key, thus she can guess the key bit string with
some attacking strategies. By considering the trace distance ε, two different attacking
strategies are proposed in this work. In the first attacking strategy, Eve will guess the
security key bit string from the high probability to the low probability sequently, and
the required guesswork can be given by N+1

2 − N
2 ε. In the second attacking strategy,

Eve will measure the auxiliary quantum system to observe if she can get the special
measurement outcome e� with the trace distance εe� = 1 − 1

N . By applying the
inequality

∑
e∈E PE (e)εe ≤ ε, the corresponding maximal probability to get the full

key bit string can be bounded by PE (e�) ≤ ε

1− 1
N

≈ ε. By comparing with the first

attacking strategy, the second attacking strategy has the advantage if ε is small, but the
second attacking strategy requires the keys generated in each round of QKD have the
same probability distribution. More interestingly, if Eve wants to get only one secret
key bit from the generated keys, the trace distance can be given by εe� = 1

2 , and
the corresponding maximal probability can be given by PE (e�) ≤ 2ε. In the second
attacking strategy, if Eve wants to successfully guess the full key bit string with the
probability at least q, the required guesswork g has the following condition

1 − (1 − ε)g ≥ q. (27)

By calculating this inequality, we can bound the required guesswork is g ≥ log1−ε(1−
q), where q ≥ ε.

To explain the two attacking strategies more clearly, we consider an example to
analyze the two different attacking strategies with the trace distance 10−4. By applying
this trace distance value and the secret key length n, the guesswork in the first attacking
strategy can be given by 2n+1

2 − 10−4 × 2n ≈ 2n−1. However, in the second attacking
strategy, the guesswork can be given by g ≥ log1−10−4(1−0.99) ≈ 4.6×104 with the
success probability 99%. If each round of QKD process takes 1 second, the required
time resource in the second strategy is about 0.53 day. Obviously, the trace distance
10−4 is too large compared with the perfect case, and the generated key cannot be
directly applied in some practical applications. Note that this result requires the keys
generated in each round of QKD have the same probability distribution, but Eve has
no explicit strategy to meet this condition in the ideal QKD protocol. In the worst case,
even if Eve can get the same probability distribution, she can only get one round of
the key in this situation, and the other rounds of the key generated by the QKD system
are also secure.

5 Relation with previous works

After the work has been finished, an anonymous reviewer introduce the work [28]
to us, where the guesswork is used as the security criterion to analyze the imperfect
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key. Note that we get the similar result by considering the average guesswork in the
first attacking strategy, but two different attacking strategies have been, respectively,
analyzed in our work, and our analysis method is different.

6 Conclusion

The trace distance between the practical quantum state and the ideal quantum state
can be applied to estimate security of the QKD protocol. From Eve’s viewpoint, she
can get a probability distribution by applying an arbitrary POVM to measure the
auxiliary quantum system, and the guesswork can be utilized to estimate security
of keys generated by the QKD protocol. We analyze the relationship between the
trace distance and the guesswork by considering two attacking strategies. We also
prove that the upper bound value of the guessing probability can be achieved with
the given trace distance value, and the result demonstrates that the guesswork can be
utilized to estimate security of the practical QKD system. More generally, we prove
that if we have a bound on the trace distance method, then we can get bounds on
the guesswork method with different attacking strategies. We should emphasize that
our results demonstrate that the trace distance is an efficient method to prove security
of the practical QKD system, but the appropriate trace distance should be carefully
selected to guarantee the security of the generated keys.
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