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Abstract Based on the Bogoliubovy approximation in the thermodynamical limit, a limear quantum many-bods
theory is presented to deal with the output of the bosonic atoms to a free propagaling mode from a magnetic trap 1t i
shown that, when atoms are prepared initially in the Bose-Einstein condensation msnle a trap. the output will be de
seribed by a macroscopic quantum state, a many-body coherent state. This 1s due to the factorzation structure of the to-
tal wave function, showing that the output atom beam is coherent. The general expressions for the spectral density of th

output and its spatial distribution are given in terms of our linear qnantum many-body theory

Keywords: Bose-Einstein condensation, coherent atomic beam, atom laser.

Since light wave can be amplified coherently to form a laser output, it is quite natural to imagine
if one can get the coherent output of matter wave of particles similar to laser. This was quite an into-
itive thought, until the early days of 1997 that the MIT ( Massachusetts Institute of Technology) greup

(1,2 . . :
21 This experiment is mamly hased on the

realized the coherent output of atoms for the first time
realization of the Bose-Einstein Condensation { BEC) of atoms in the last two _vears“iﬂ . In the MIT
experiment , the untrapped state couples with the trapped state by a radiation frequency (r.f) field co-
herently. This process leads the BEC atoms in the trap to a propagating mode in the vnirapped siate
and gets a coherent output of atoms in a single quantum statel!” . They examined the coherent churac-
ter of this coupled output in an Interference experiment as well’?) . Due to the large rate of turning the
atoms from the trapped state to the untrapped one, the influence of the spontaneous emission of the
single atom can be ignored reasonably. In fact, as the MIT group pointed out. physically, the ke
point of the experiment lies in the factorization in the evolution of the system: one part of the atomns
initially prepared at BEC state will keep their original situation, while the other part will be at a co-

herent state, the coupled output.

“ - . 1 . . .
Starting from the second quantization of the MIT two level model!'", we will first consider the
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factorization structure and its dynamical generating process systemically. Then, we generalize it for
the many-mode case relevant to the spatial coordinate. Theoretically, the initial state of the total sys-

tern can bedescribed as

(90 = 22, @ VN, @ 0,

where the vacuum state |0) = H ® |0) , means that there is no atom at any propagating mode | k),
k

while the coherent states |/ N, ), and ’a>p represent the atomic BEC state and the quasi-classical
(6]

state of the r.{ field respectively. As shown below, in the thermodynamical limit™", i.e. N,—> %,

the evolution of the total system will keep the factorizatior structure'”)

L)) = la(), @IVN)y® 1] @ Ta()),

where | @; (1)) is the many-body coherent state for the mode | k). So the coupled output remains in

. . L. . 2
coherence . At the same time the spectral density in momentum space can be defined by | () l )
whose Fourler transformation determines the spatial distribution of the output atoms.

{  Concept of factorization and coherent output

The model of MIT group is a two level system. lts ground state | g) is a trapped state and the
excited state | ) is an untrapped state. When the system couples with the r.f field of frequency w ,

the Hamiltoman of a single atom is
H = hwo,|e)(e|+ hwa'a + hog( |e){gla + | g){ela®), (1.1)

where ha, is the energy level difference, a' and a are the creation and annihilation operators of the

——
{iel} respectively s hwy = \/ ;;_wV = %
0

stant awdl 1V the effective mode volume. As shown inTef. [ 1], the motion of mass center has been ig-

is the dipole matrix element, ¢, the vacuum dielectric con-

nored . No 1t is of no use to give the concrete form of the trap potential .

As to a system consisting of many atoms without interatomic interaction, we consider the second

quandization of the Hamiltonian (1.1)
H = hwb'b, + hwa'a + (finbIbga +h.c), (1.2)

where 57,07 and b, b, represent the creation and annihilation operators of | e and ) respectiv-
e Uy e Uy TEP P g p

oy .

When the BEC occurs, a lot of atoms are condensed in the ground state | g). With Bogoliubov

. . Tel g o . . .
approximation *, we can replace annihilation 4, and creation operator bz, with a c¢-number 4/ N, .

Then the effective Hamiltonian is obtained as

H, = hwblb, + hwa'a + kwy /N, (ab? + ba'). (1.3)
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It can be proved that there is a close relationship between the Bogoliubov approximation and the dy-

namic process of the system in the thermodynamical limit.

As described in eq. (1.3), two harmonic oscillators are coupled in the rotation wave approxi-
mation (RWA) so that its Heisenberg motion equation is linear. This results in a linear solution thal

both 5,(t) and a(¢) are the linear combinations of their initial values b,(0) and a(0), i.e.
a(t) = a,()a(0) + B,(2)86,00), b,(¢) = a,(1)a(0) + B,()6,(0), (1.4
where
a, (1) = flw,), B(1) = flw),

a, () = B,(¢) = %wle(e'—iw*t

_ e—iw_t)
’

f(/\)=é{(r\—w_)e’i‘“—(/l—w+)e‘i‘"+’}, (1.5)

0= \/(wa— w)? + 4N, 0%, w, = %(wu+ wx Q).

The above linear structure of the Heisenberg operators will directly lead to the factorization of the

Schridinger wave function.

Assume that the initial state of the total system is | $(0)) = [0)® | a),, where [ a), is a co-
herent state of the r.f field and |0) is the state with no atom in the excited state at the beginmmng.
Due to the property of the evolution operator U(t) of the system, c¢(¢) = U'(¢)e(0)U(t), (¢ =

a, b), the initial state will evolve into

lp(e)) = UCe) | ¢(0))

[U(8)e= @2 gt () 1U(1) [0)) 107,

- eauf(_g)_h‘c |O>® |0>p

according to the method presented in refs. [8, 9]. From eq. (2.4), we obtain the wave function at

time ¢
|¢(t)>:ea[aa<_x>a'(o)+ﬂa<-l)b'<0>1-h.c|O>® 0),
= ‘aﬁu(—t»@ ‘aaa(—t)>. (1.6)

The meaning of the above factorized solution is physically clear: the atoms initially at the BEC

state will mostly output to the free state | ) by the stimulation of a coherent r.f field. They form a

macroscopic many-body quantum state the coherent state ‘ af,( = t)). The number of atoms at

this state
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4w%Ni
- w)?+4Nw

(L0800 = Ja |- 0] = ¢ i 2r) (L)
w R

a
behaves as macroscopic Rabi oscillation with certain frequency (2 and amplitude. And there exists the
maximum amplitude value N, at resonance. In this sense, the coupled output possesses the character

of laser, so is called “atom laser” .

2 The many-body model of coupled output

The above simplified model has clarified the physical implication of the factorization for the co-
heient output ot atoms. To consider further the dynamics of the coordinate and momentum distributions
of output BEC atoms, we will generalize the above model to the practical case relevant to spatial coor-

dinate in this section.

In the trap, the spatial motion of atoms can be depicted by the eigen-state | n) with a potential
}{x ). Theé eigenvalue E, is the energy level of the quantization of alomic mass center accordingly.
While the atoms are unirapped, their spatial motions are described by the momentum eigen-state | k)

ol free particles. With the complete basis { ’ ek> = } e>® { k), i gn> = | g>® l n)}, and their corre-

+

sponding creation and annihilation operators bT,, b, and b gns

b, the second quantized many-body

Hamiltonian is written as

H = EEnb;nbgn + ‘Z(e,‘ + fw, ) bhb,y + hwa” a

3

+ hag 2, ({nlk = g)blbua*+ h.c). (2.1)

n.k

Here, the interaction part results from the single particle (hwgle ¥ g e + h.c) in the RWA; q
272

1% (he wave vector of the single mode r.f field and ¢, = M Meanwhile, the state 10) is the ground

slale of the single atom in the trap.

L the thermodynamical limit, we can replace operator b, and b;o with the c-number v/ N, ac-

couding to the Bogoliubov approximation. As the part including b,9 and bz,o in the Hamiltonian is pro-

e ) 1 .
portional to hwg /N, = hg /n, , it is finite. The other terms proportional o hwg ~ «/__ is so small
' v

that they can be ignored[]l " Then, we get the effective Hamiltonian in the Bogoliui)ov approximation
H = Dhbib, + hwa* a + h /N, >, (g(k)ba’ + h.c), (2.2)
k k

where 2, = w, + e,/ h, and b, = b,,. The coupling coefficient g (k) = wg(0lk - ¢) is defined by
the <patial shape of the ground state in the trap. When BEC happens, atoms are mostly condensed in
the bottom of the trap. Thus, we can describe the ground state of the atoms by the ground state of the

oscillator,

It isn’t difficult to observe that the fundamental Hamiltonian (2.1) is bilinear in the atomic op-
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erators b

N
s booand b

b, and thus the total number of stoms is conserved. This fact originales
from that the Hamiltonian is invariant under the global U(1) gauge transformation*'

1]

&n’

gnogn

u(g) = exp[_ia(E fben + Zb:kbek)]. (2.3)
n k

It is obvious that the Bogoliubov approximation will lead to a symmetry breaking, thus violates the
conservation of the number of atoms. It is trivial because we tgnored the infinite background formed by
the BEC atoms in the ground state. The above effective Hamiltonian (2.2) with Bogoliubov approsi-
mation only characterizes the atomic excitation in the infinite background. This broken svmmeln 15
the key to produce a macroscopic quantum effect. It is interesting to notice that there is also anothe

symmetry in association with the unitary transformation

1o
+

U,,lb(@) = exp[ - 15(a+ a + Eb:kbek)]

A

which is maintained in the Bogoliubov approximation. This symmetry implies a conservation of the
number of output atoms and photons. In fact, we have assumed infinite BEC atomic states and (hen
the atoms in other modes filled into them can create infinite photons. This mechanism physically guar-

antees the factorization structure of the total wave function.

3 Dynamic equation and its formal solution

The Hamiltonian (2.2) looks like an ordinary dissipative quantum svstem, which coniprises a
harmonic oscillator (the single mode r.f. photon) plus the bath of many oscillators (the modes of
atoms in the untrapped states) . However, there are some substantial differences between the physies
of the present problem and those in the quantum: dissipative systems. The Wigner-Wisskopf ( WW !

approach as well as the Markov approximation can not work well for the present model. This 15 be-

cause: (i) our model involves a strong coupling proportional to \/W(. in the BEC case, but the WW
approximation essentially is a second order approximation theorv for small coupling constant g; ()
the exact solvable approaches such as those in refs. [8, 9] for the quantum dissipative system require
the spectral distribution of the bath, which is determined by the basic dynamics in our model; ()
the Markov approximation for the quantum Langevin equation concemns the localization of a memory

function' '

, which makes the equation at a given time ¢ independent of the history of the dynanic
variables before this time. Thus, this can be achieved only when the coupling constants and the bath
spectral distribution take specific forms. In the present problem, however, the coupling constants as
well as the speciral density has been determined by the shape of a given trap. So the Markov approxi-

mation does not work well.

In this section, we use the Laplace transformation to describe the factorization of the dvnamic

process in the formal solution. Consider the Heisenberg equations

Bk(t) = - iﬂkbk(t) - i«/—N(g*(k)a(t%
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) a(t) = —iwa(e) =iy N, D> g (k)b (1) (3.1)

of bosonic operator b,(¢) and a(t). By the Laplace transformation and its involution calculation,
the linear solution is formally obtained as

a(t) = u(t)a(O) + «/Wczuk(t)bk(o)’
' (3.2)
5,(t) = e, (0) - imwk(t)a(O) - iNcZg(k)*kak(t)bkr(O).

Here, a(t) is determined by the Langevin equation

(1) =~ iwa(t) = iYW, Sg(h)e %, (0) - NCJ;M(z _alo)dr,  (3.3)

where

M(1) = er | g (k)| 2% dk (3.4)

i« the so-called memory function. Let F[p] be the Laplace transformation L{F(¢)) of F(¢). Then

we get

ult) = L_](p +iw +1 NCM[p]) ’

L —ig(k)
u ()= L ((p +iw + NM[pD)(p + iﬂk))’

(3.5)
w(t) = jtg* (B)u(z)e” W -7gr
0

N

t .
Uk'k(t): J‘ uk'(f)eiln"(t_r)df.
0

In the traditional theory for quantum dissipation, the memory function is localized based on the
Winger-Wisskopf (WW ) approximation in the case of weak coupling or with the special form of

(k) ie. M(t-17)~ —Ny—(?(t— ){(¥ >0). This leads to a dissipative term — Ya(t) appear-

c

ing in the quantum Langevin equation. This localization makes the evolution of a () depend only on
the state at given time ¢, but not on the history of dynamic variables before this time. Due to the
stronger interaction, the memory function can not be localized. However, as the Heisenberg equation
(2.1) is essentially linear, its solution must be a linear combination of its initial states, whatever is
approximate or rigorous. This linear structure will autonlatic.ally lead to a factorization structure of

Schrdinger wave function, which characterizes the coherence of output atom correctly .
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4 Coherent coupled output of atoms

Based on the method developed in refs. [8, 9], the dynamic process of the coherent output of
atoms can be pictured by calculating the Schrodinger wave function from the Heisenberg operaiors. If
all atoms are initially at the BEC states, the initial state for the effective equation will be described
theoretically to be a direct product of the coherent state | a) of r.f field and the many-body vacuum

state |0k> of propagating mode of £ i.e.

| $(0)) = [ay® []10.). (4.1)

The evolution matrix U(t) of the total systém transforms into the operator from time t =0 to 7, 1.¢.
b,(t)=U"(4)b,(0)U(t). Since a(z) = U'(t)a(0)U(t) and la) = explaa™0) -

a" a(0)]|0), the Schrodinger wave function at time ¢

‘gb(t)): U(t)|¢(0)>= U(t)explaa™0) = h.c1U (O U()10) (4.2)

N
can be constructed from eq. (3.2). Here, |0) = |O>® H [0, From U(2)]0) = [0).we get
k=1

| ¢(2)) =explaa’(- t) - h.c]|0O)

:exp[a{u*<_ Da(0) + v, Sus (- t)bk(O)} “ b))

=law (= N@ [ |« vNug (- ). (4.3

It can be observed from the above equation that the atomic component ‘ a~/Nau; (-1t)) defines a
coherent output pulse of atoms in each propagating modes | k) of untrapped states. Its nonn square of

amplitude represents the number of atoms in this mode lE)

2

p(2) ={a /Naf (= 0] 55(0)5,(0) & VNaf (= )= la PN () ]* (4.4)

which represents the spectral distribution of the output atoms at a given time ¢ . When the ground state

of the harmonic oscillator

PN

go(x) = (x]0) = (%) e ¥ 7% (3.5)

na

is chosen to be the ground state of the trap, the k-dependent coupling g (k)

2
a’ ke

i s '
g(k) = wR(m) e 4 (4.6)

determines the memory function as
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M(t) =r g (k) |2e ¥ dE

_ wZR % e 't -igyt . (%)1(%-1%)/[2(%“‘3{_!2)] (47>
a’ ke
k2 iM

analytically . The function obviously represents the evolution of a Gauss wave packet from time ¢ = 0 to

1
time t. The ron-localization part [ M(t - 7)a(z)dr in the Langevin equation means that the result
Jo

at time ¢t comes from the involution superpositions of wave packets just before this time. So the spec-

tral distribution: of output atoms ’ u, (1) ‘2 has a direct relation to the memory function.

Because the solution of eq. (4.2) is described as a direct product of some coherent states, and
the output component has been proved especially to have the factorized structure, the output atoms are

shown to have good coherence. If we decompose the field operator of bosonic atoms in propagating

mades into two parts

d(x) = §* (2) + ¢~ (x),

$ () = > fVe“‘xbk(m, b (x) = (3* ()", (4.8)
k k

the Glauber coherence function of order n

G(n)(xlxz'”xn’xn+l'nx2n)
= ()¢ (x) 97 (a) ¢ (x,) 9" (ayy) 9" (x5,) | (1))
= Q) Q(x) Q) Q" (x,,1) Q" (x3,) (4.9)

N

s copletely factorized, where

N VN
Q(x) 2 m

This result shows the complete coherence of the output atoms.

e u) (1), (4.10)

5 Discussion

tn this paper, we study only the ideal case ignoring the interatomic interaction. Just as the MIT
group has pointed out, the interaction, in fact, can be ignored in the coherent output problem in pre-
sent experiments . This is because the output atoms scatter continuously and the interatomic interaction

hecomes weaker and weaker. As for the higher order approximation case, the non-linear part
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4rnkla
M

scattering problem, will result in the non-linear Heisenberg equation. Starting from the exact solution

bEbEbkbk[lzl , which is decided by the scattering length a of S-partial wave in the two-bhady

shown in this paper, we can solve the non-linear effect in the weak coupling case with a perturbation

theory .

With the expressions of b,(¢), we can calculate the output eq. (4.3) directly in the Heisen-

berg picture

p(t) = (g0 B1(e) b, ()] $(0))

= N.{(a|a®(0)a(0)

a) | W(e)|* = N,

| u (o). (5.1

Here, we have used the involution formula to prove that | W, (t) | = ! u, (1) ‘ . This discusston can

be extended to the cases with arbitrary initial states of the r.f. field. Assume the initial state of the
field to be ‘ ¢p> , the initial state of the effective system is | ¢(0)) = } ¢p>® Il |0,7. Then
k

73

(v

p(l) = NFN;’U_I,(I)}Z, (

where Vp = <¢p la*(0)a(0) | ¢p> represents the average number of photons of the initial state.
Physically, this result shows that the collective Rabi oscillation of output atoms have no direct 1r}u-
tionship to the details of the r.f field. As a function of time ¢, this behavior of collective oscillation

depends only on the physics properties of the atomic system.
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