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Abstract
Through the vonNeumann interaction followed by post-selection, we can extract not only the
eigenvalue of an observable of themeasured systembut also theweak value. In this post-selected von
Neumannmeasurement, the initial pointer state of themeasuring device is assumed to be a
fundamental Gaussianwave function. By considering the optical implementation of the post-selected
vonNeumannmeasurement, higher-order Gaussianmodes can be used. In this paper, we consider
theHermite–Gaussian (HG) and Laguerre–Gaussian (LG)modes as pointer states and calculate the
average shift of the pointer states of the post-selected vonNeumannmeasurement by assuming the

systemobservable Â with A Iˆ ˆ2 = and A Aˆ ˆ2 = for an arbitrary interaction strength, where Î
represents the identity operator. Our results show that theHGand LGpointer states for a given
coupling direction have advantages and disadvantages over the fundamental Gaussianmode in
improving the signal-to-noise ratio.We expect that our general treatment of theweak values will be
helpful for understanding the connection betweenweak- and strong-measurement regimes andmay
be used to propose new experimental setupswith higher-order Gaussian beams to investigate further
the applications of weakmeasurement in optical systems such as the optical vortex.

1. Introduction

In a quantummeasurement, observable information in themeasured system can be extracted from the statistical
average shift of a pointer. In this process, vonNeumann interaction is initially usedwith the standardmodel of
quantummeasurement bymathematically describing the coupling between themeasured system and
measuring devices [1]. However, such strongmeasurements are not time symmetric.When considering time-
symmetric quantummeasurements, post-selection of themeasured system is required after themeasurement
interaction [2]. On summing the post-selections, the statistical average shift of the pointer can be determined in
the standardmodel of quantummeasurement. Therefore, throughout the present work,measurements with
post-selection are called post-selected vonNeumann quantummeasurements. A particular case of post-selected
vonNeumann quantummeasurements with sufficiently weak coupling between themeasuring device and
measured system is called theweakmeasurement, as proposed byAharonov et al [3]. This statistical average shift
of the pointer is characterized by theweak value of the observable in themeasured system [4].
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A significant feature of theweakmeasurements is that theweak value of themeasured quantity can lie
outside the usual range of eigenvalues of an observable applicable for a standard quantummeasurement [3].
This feature is usually referred to as the amplification effect for weak signals and is different from conventional
quantummeasurement, inwhich a coherent superposition of quantum states is collapsed [1]. A largeweak value
can amplify small unknown parameters for detecting various properties such as beamdeflection [5–10],
frequency shifts [11], phase shifts [12], angular shifts [13, 14], velocity shifts [15], and even temperature shifts
[16].However, the advantages of theweak-value amplification are purely technical [17–25]. This is based on the
single parameter estimation theory. In general, theweak value is a complex number. Thus, weakmeasurements
are ideal for examining the fundamentals of quantumphysics such as quantumparadoxes (Hardy’s paradox
[26–29] and the three-box paradox [30]), quantum correlation and quantumdynamics [31–39], and quantum-
state tomography [40–45], as well as the violation of the generalized Leggett–Garg inequalities [46–51] and the
violation of the initialHeisenbergmeasurement–disturbance relationship [52, 53].

Thus far,most studies onweakmeasurement use the zero-meanGaussian state as an initial pointer state and
expand the unitary operator of evolution up to the first order because, in theweakmeasurement scheme, the
coupling between themeasured system andmeasuring device is veryweak.However, when considering the
connection betweenweak and strongmeasurements, amplification limit, andmeasurement back-action of the
weakmeasurement scheme, the full-order effects of unitary evolution due to the vonNeumann interaction
between themeasured system andmeasuring device are required. Themeasurements of arbitrary coupling
strength beyond thefirst-order interaction have been previously discussed byAharonov andBotero [54]. Di
Lorenzo and Egues [55] investigated vonNeumann-typemeasurement to clarify detector dynamics in theweak-
measurement process.Wu and Li [56] proposed a general formulation of weakmeasurement that includes
second-order effects of the unitary evolution due to the vonNeumann interaction between the system and
detector, and they theoretically demonstrated on the basis of the second-order calculation that the back-action
effect is important in theweak-value amplification. Recently, several studies [57–59] analytically showed that an
upper bound of theweak-value amplification exists in the post-selected vonNeumannmeasurement by

assuming that the probe-state wave function is Gaussian and that the observable Â satisfies A Iˆ ˆ2 = , where Î is
the identity operator. On the other hand, there is no upper bound on theweak-value amplification on the
optimal probe-state wave function [60–62]while it is so difficult to implement this wave function [63].

In optical experiments, we encounter higher-order Gaussian beams such asHermite–Gaussian (HG) and
Laguerre–Gaussian (LG) beams, which are higher-order solutions of the paraxial wave equationwith
rectangular and cylindrical symmetry about their axes of propagation, respectively. BothHG and LGbeams are
widely used in the theory of lasers and resonators [64, 65]. In fact, the zero-meanGaussian beam is a special case
ofHG and LGbeams. Theweakmeasurement with the higher-order Gaussian-beampointer state has been
discussed in [66–70]. In particular, de LimaBernardo et al [70] presented a simplified algebraic description of
theweakmeasurements withHG and LGpointer states. In [70], the unitary evolution operator is considered
only up to thefirst order, raising an intriguing question as towhether the higher-order Gaussian beams aremore
advantageous in quantummeasurement compared to the fundamental Gaussian beam.

In the present study, we determine the post-selected vonNeumann quantummeasurement for an arbitrary
coupling strengthwithHG- and LG-mode pointer states under the assumption that the systemobservable Â

satisfies A Iˆ ˆ2 = and A Aˆ ˆ2 = (projection operator). To clarify the practical advantages of higher-order Gaussian
beams, we investigate the signal-to-noise ratio (SNR)while considering the post-selection probability, which is
defined by

NP W

W W
W X YSNR , ˆ ˆ , ˆ . (1)W
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Here, . f〈 〉 denotes the expectation value of themeasuring systemoperator under the final state of the pointer,

and X x x x xˆ d∫= ∣ 〉〈 ∣ (x is the coupling direction of the vonNeumannmeasurement) and Y y y y yˆ d∫= ∣ 〉〈 ∣
(y is the orthogonal coupling direction). Here,Ps is the probability that the post-selected state is included in the
pre-selection state, andN is the number ofmeasurement time. To verify our general formulas, two special limits
are considered. If the zero-meanGaussian pointer is used as the initial state, our general expectation values are
found to reduce to the results given in [56, 59]. On the other hand, if the evaluation is considered only up to the
first order, our general expectation values reproduce all results given in [70].

The remainder of this paper is organized as follows. In section 2, we present themodel setup for the post-
selected vonNeumannmeasurement. In sections 3 and 4, we first present the expressions ofHG- and LG-mode
pointer states in the Fock-state representation in accordancewith de LimaBernardo et al [70].We then present
general forms of the expectation values and discuss the SNRswithHG- and LG-mode pointer states for the

systemoperator Â with A Iˆ ˆ2 = and A Aˆ ˆ2 = , whichwere used in several optical implementation on theweak
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measurement [5–16, 30, 47, 52, 53, 69]. In section 5, to check the validity of our general results, we consider
some special initial pointer states and approximated treatments used in previous works and show that our
general formulas can reproduce all the related results reported in those previousworks [56, 59, 70].We present
the conclusions and remarks of our study in the final section 6. Throughout this paper, we use 1= units.

2.Model setup

For the post-selected vonNeumannmeasurement, the coupling interaction between the system and detector is
consideredwith the standard vonNeumannHamiltonian:

( )H g t t A Pˆ ˆ , (2)x0δ= − ⊗

where g is a coupling constant and P̂x is the conjugatemomentumoperator for the position operator X̂ of the
measurement device; i.e. X P I[ ˆ , ˆ ] i ˆ

x = .We have taken the interaction to be impulsive at time t t0= for
simplicity. The time-evolution operator for such impulsive interaction is e gA Pi ˆ

x̂− ⊗ .
The post-selected vonNeumannmeasurement is characterized by the pre- and post-selection of the system

state. If we prepare an initial state iψ∣ 〉 of the system and pointer state, after some interaction time t0, we post-

select a system state fψ∣ 〉 and obtain information on a physical quantity Â from the pointer wave function by
using the followingweak value:

A
Â

. (3)w

f i

f i

ψ ψ

ψ ψ
〈 〉 =

In general, theweak value is a complex number. It is evident from equation (3), that when the pre-selected state

iψ∣ 〉 and the post-selected state fψ∣ 〉 are nearly orthogonal to each other, the absolute value of theweak value can
be arbitrarily large, resulting in theweak-value amplification.

From the above definitions, we note that the unitary evolution operator e gA Pi ˆ
x̂− ⊗ for the operator Â satisfies

the property A Iˆ ˆ2 = as follows:

( ) ( )I A D
s

I A D
s

e
1

2
ˆ ˆ
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1

2
ˆ ˆ

2
. (4)gA Pi ˆ

x̂ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
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Similarly, for the property A Aˆ 2 = , the evolution operator satisfies

( )I A I A D
s

e ˆ ˆ ˆ ˆ
2

. (5)gA Pi ˆ
x̂ ⎜ ⎟

⎛
⎝

⎞
⎠= − ⊗ + ⊗− ⊗

Here, we use the position operators X̂ and Ŷ aswell as their correspondingmomentumoperators P̂x and P̂y,
which can bewritten in terms of the annihilation (creation) operators âi (âi

†) with i x y,= as [71]

( )X a aˆ ˆ ˆ , (6)x x
†σ= +

( )Y a aˆ ˆ ˆ , (7)y y
†σ= +

( )P a aˆ i

2
ˆ ˆ , (8)x x x

†

σ
= −

( )P a aˆ i

2
ˆ ˆ . (9)y y y

†

σ
= −

Here, σ is thewidth of the fundamental Gaussian beam. It is worth noting that in these definitions, the
propagation direction of the beam is assumed to befixed [72]. These annihilation (creation) operators satisfy the
commutation relations a a I[ ˆ , ˆ ] ˆ

i j ij
† δ= with i j x y, ,= . The parameter s is defined as s g: σ≡ , and D ( )ξ is a

displacement operator with complex ξ defined as

D ( ) e . (10)a aˆ * ˆx x
†ξ = ξ ξ−

Here, the parameter s characterizes themeasurement strength. Note that the interaction between the system and
pointer is weak (strong) if s 1≪ s( 1)≫ .

In the following sections, we consider the post-selected vonNeumannmeasurement withHG- and LG-

mode pointer states for an arbitrarymeasurement-strength parameter s for the systemoperator Â with A Iˆ ˆ2 =
and A Aˆ ˆ2 = , respectively. On the choice of the systemoperator Â, A Iˆ ˆ2 = and A Aˆ ˆ2 = are taken as the qubit
operator and the projector, respectively.
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3. Post-selected vonNeumannmeasurementswithHG-mode pointer states

The generalHGmodes can be generated from the fundamental Gaussianmode, 0,0 HG∣ 〉 , and can be defined as
[70, 71]

( ) ( )n m
n m

a a,
1

! !
ˆ ˆ 0,0 . (11)x

n
y

m
HG

† †
HG∣ 〉 = ∣ 〉

Thesemodes are complete sets of solutions to the paraxial wave equation in rectangular coordinates. Any
arbitrary paraxial wave can be described as a superposition ofHGmodes with the appropriate weighting and the
phase factors. Practically, the higher-orderHGmodes can be simply generated by inserting cross wires into the
laser cavity with thewires alignedwith the nodal lines of the desiredHGmode [73, 74]. However, amore
convenient way for generating higher-ordermodes is the use of computer-generated holograms or a spatial light
modulator (SLM) [75], which allows reprogrammable waveform generation controlled using a computer.

In the present paper, the initial state of theHG-mode pointer is considered to be n m,i HGϕ∣ 〉 = ∣ 〉 . Note that
theHGmodes can be factored in functions that depend on x and y directions. In our standard vonNeumann
measurementHamiltonian (2), only x-direction interaction exists; thus, the y-direction quantumnumberm is
omitted in theHG-mode calculations.

Inwhat follows, we discuss the post-selected vonNeumannmeasurement for the systemoperator Â that

satisfies the properties A Iˆ ˆ2 = and A Aˆ ˆ2 = .

3.1. A I
^ ^2

= case
After the unitary evolution given in equation (4), the system state is post-selected to fψ∣ 〉. Then, we obtain the
following normalized final pointer states:

D
s

D
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A D
s

D
s
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where the normalization coefficient is given by

( )( )( )A L s1
1

2
1 e 1 . (13)w n

2 2s2
2

1
2⎡
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⎤
⎦⎥λ = + − 〈 〉 −−

−

Here, the Laguerre polynomials are defined as

( )L x n x( )
( 1)

!
. (14)n
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ϵ

ϵ
ϵ

=

The explicit expression of equation (12) can be obtained using the displaced Fock states defined as [76, 77]
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Here, the generalized Laguerre polynomials are defined as

L x
n

n i i
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=

where η is an integer. Using equations (12) and (15), we can calculate the general forms of the expectation values
of the conjugatemomentum P̂x and position operator X̂ under thefinal pointer states f1

ϕ∣ 〉, which are given by

X g A (17)f w
HG 2

1
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respectively. Equations (17), (18) are the general forms of expectation values for the systemoperator Â satisfying
A Iˆ ˆ2 = , and they are valid for an arbitrary value of themeasurement-strength parameter s.

To investigate the practical advantages of the higher-order Gaussianmodes, we check the SNR in two cases.
Here, we consider the two-dimensional quantum (qubit) state and assume that the operator Â to be observed is
the x-component of the spin of a spin-1 2 particle through the vonNeumann interaction (2)
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Â ˆ . (19)x z z z zσ= = ↑ ↓ + ↓ ↑

Here, z∣ ↑ 〉 and z∣ ↓ 〉 are eigenstates of ˆzσ with corresponding eigenvalues of 1 and 1− , respectively.We select
the pre- and post-selected states as

cos
2

e sin
2

(20)i z z
i⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ψ θ θ= ↑ + ↓ϕ

and

, (21)f zψ = ↑

respectively. Thus, we can obtain theweak value by substituting these states into equation (3):

A e tan
2

, (22)w
i θ〈 〉 = ϕ

where [0, ]θ π∈ and [0, 2 ).ϕ π∈ Here, the probability of post-selection is P cos ( 2)s
2 θ= . Throughout the

present paper, these pre- and post-selected states are used in the analysis of SNRs.
Infigure 1, the behavior of the SNR is shown as a function of themeasurement-strength parameter s and pre-

selection angle θ.When 0ϕ = , theweak value becomes tan
2

θ .We can see that the SNRdecreases as n increases

(higher-ordermodes). A ridge exists around 2θ π= , which is a result of strongmeasurement; when 2θ π= ,
the pre-selection state is the eigenstate of the operator ˆxσ with the corresponding eigenvalue 1+ . Infigure 1, we
can also identify a bridge between theweakmeasurement regime (s 1≪ ) and strongmeasurement regime
(s 1≫ ). As the SNR is proportional to the root of themeasurement time, we considerN = 1 throughout this
paper. These results show that the fundamental Gaussian pointer state is better than the otherHGmodes on the
improvement of the SNR.

We also check the SNRwith some specific weak values, and the numerical results are given infigure 2. As
shown infigures 1 and 2, the higher-orderHGmodes have no practical advantages in improving the SNR.We
also note that the imaginary part of theweak value has no role in improving the SNR in the x-direction. These
results are in general supported by [22, 78].

3.2. A A
^ ^2

= case

By following the process used for the A Iˆ ˆ2 = case, we can obtain the normalizedfinal pointer states after the
unitary evolution given in equation (5). The post-selection to fψ∣ 〉 is given as follows:

A A D
s

1
2

, (23)f w w i2
⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ϕ γ ϕ= − 〈 〉 + 〈 〉

π

π
2

0

(a) (b)

SNRx

(c)

0 5 10
s

0 5 10
s

0 5 10
s

θ
π

π
2

0

0 2 4 6

θ

π

π
2

0

θ

Figure 1. SNR in the x-direction forHG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s and pre-selection angle θ for themode (a) n=0, (b) n=1, and (c) n=2.We use 0ϕ = in
equation (22) in allfigures.
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where γ is the normalization coefficient given by

( )A A L
s

1 2 e
4

1 . (24)w w n
2 2

s 2
8

1
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⎞
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⎞
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⎤
⎦
⎥⎥Rγ = + 〈 〉 − 〈 〉 −−

−

Thus, by using equations (15) and (23), we can calculate the general forms of expectation values of the conjugate
momentum P̂x and position operator X̂ under the final pointer sates f2

ϕ∣ 〉; the obtained results are given by

( )X g A A L
s

g Ae
4

(25)f w w n w
HG 2 2 2

2 2S

2

2
8

⎛
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g P s A L
s

L
s

2 e
4 4

, (26)x
f

w n n
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2 2 (1)

2

1
(1)

2
s

2

2
8

⎛
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⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟Iγ= ∣ ∣ 〈 〉 +−

−

respectively. In these calculations, we use the following properties of the displaced Fock states [79]:

( )n d D n
n

n d
L( )

!

( )!
e , (27)d

n
d

HG HG
( ) 2

2

2ξ ξ ξ〈 + ∣ ∣ 〉 =
+

∣ ∣− ξ∣ ∣

( ) ( )n D n d
n

n d
L( )

!

( )!
e * , (28)

d
n

d
HG HG

( ) 2
2

2ξ ξ ξ〈 ∣ ∣ + 〉 =
+

− ∣ ∣− ξ∣ ∣

( )n D n L( ) e . (29)nHG HG
2

2

2ξ ξ〈 ∣ ∣ 〉 = ∣ ∣− ξ∣ ∣

Weknow that the operator Â satisfying the property A Aˆ ˆ2 = can be a projection operator A C Cˆ = ∣ 〉〈 ∣ that can
also be taken as A I Bˆ ( ˆ )ˆ 2= ± with B Iˆ ˆ2 = . This type of operator has numerous applications in theweak
measurement theory, such as in the three-box paradox problem [30] and quantum tomography [40, 41]. In the
present paper, we consider A Iˆ ( ˆ ˆ ) 2xσ= + and choose the pre- and post-selected states as given in
equations (20) and (21), respectively. The numerical results are shown infigure 3. As indicated infigure 3, the
higher-orderHGmodes have no practical advantages in improving the SNR for the operator Â satisfying the
property A Aˆ ˆ2 = , and the imaginary part of theweak values has no role in increasing the SNR, asmentioned
above.

Figure 2. SNR in the x-direction forHG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s for some specificweak values: (a) A 0.5w〈 〉 = , (b) A 0.5 iw〈 〉 = + , (c) A 5w〈 〉 = , and (d)
A 5 5iw〈 〉 = + 9.

9
In equation (22), A 0.5w〈 〉 = is about 0, 0.927ϕ θ= = , A iw〈 〉 = is 2, 2ϕ π θ π= = , A 0.5 iw〈 〉 = + is about 1.11, 1.68ϕ θ= = ,

A 1 iw〈 〉 = + is about 0.785, 1.91ϕ θ= = , A 5w〈 〉 = is about 0, 2.74ϕ θ= = , A 5iw〈 〉 = is about 2, 2.74ϕ π θ= = , and
A 5 5iw〈 〉 = + is about 0.785, 2.86ϕ θ= = .
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4. Post-selected vonNeumannmeasurementswith LG-mode pointer states

The general LGmodes can be defined as [70, 71]

( ) ( )a a a a,
1

2

1

! !
ˆ i ˆ ˆ i ˆ 0,0 , (30)x y x yLG

† † † †
HG

2
⎜ ⎟⎛
⎝

⎞
⎠μ ν

α β
∣ 〉 = + − ∣ 〉α β

α β+

where ν and μ are integers. Here, the indices ( ) 2α μ ν= + and ( ) 2β μ ν= − are related to the usual radial
and azimuthal indices (p and l, respectively) by the relations p min ( , )α β= and l α β= ∣ − ∣.We let 0,0 HG∣ 〉
denote theHG-mode fundamental Gaussian state. If we use the binomial formula for equation (30), we can find
amore explicit formof LG-mode pointer states as a sumofHGmodes:

C k j k j, , . (31)
j k

j kLG

0 0

, ; , HG∑∑μ ν α β∣ 〉 = ∣ + − − + 〉
α β

α β
= =

Here, we note that C j k, ; ,α β is given by

( )

C
i

k j k j j k

1

2

( 1) ( )

! !

( ) ! ( )! . (32)

j k

k k j

, ; ,
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

α β

α β
α β

= −

× + − − +

α β

α β+ +

In the present paper, we take the initial state of the LG-mode pointer as ,i LGφ μ ν∣ 〉 = ∣ 〉 .
The LGmodes are a complete set of solutions to the paraxial wave equation in cylindrical coordinates

characterized by radial and azimuthal indexes p and l [65]. Physically, the LGmodes have been created using
various experimental setups such as SLMs [80] and reflection froma conicalmirror [81]. Furthermore, the LG
modes have a zero-intensity point at the center called the optical vortex. The relationship between the optical
vortex and theweak value has been investigated fromdifferent perspectives [13, 69, 82–85]. Thus, a general
treatment of the post-selected vonNeumannmeasurements with LG-mode pointer states will provide an
efficientmethod for further exploration of weak-value applications in higher-order optical beams and optical
vortices. Next, we present an explicit treatment of post-selected vonNeumannmeasurements with LG-mode

pointer states for the systemoperator Â that satisfies the properties A Iˆ ˆ2 = and A Aˆ ˆ2 = .

4.1. A I
^ ^2

= case
By using the same process as that used in theHG-mode cases, after the unitary evolution given in equation (4)
and the post-selection of the system to fψ∣ 〉, we can obtain the normalized final-pointer states as

Figure 3. SNR in the x-direction forHG-mode pointer states with the operator Â satisfying the property A Aˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s for some specificweak values: (a) A 0.5w〈 〉 = , (b) A 0.5 iw〈 〉 = + , (c) A 5w〈 〉 = , and (d)
A 5 5iw〈 〉 = + (see footnote 9).
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′
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where the normalization coefficient is given by

( )

( )

A

C C L s

1
1

2
1

e * 1 . (34)

w

j j k k

j k j k k j k j k j

2
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2s2

2
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δ
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α β α β α β
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′= ′=
′ ′ ′+ ′ + + − −

−

By using equation (33) and the displaced Fock states, i.e. equation (15), we can obtain the expectation value
of the position operator X̂ under thefinal pointer states f1

φ∣ 〉 as

X g A . (35)f w
LG 2

1
Rλ〈 〉 = ′ 〈 〉

Similarly, the expectation value of themomentumoperator P̂x under the final pointer states f1
φ∣ 〉 is given by

g P s A C C

k j
s

l

L
s

L
s

2 e *

( ) !
4

!

4 4
. (36)

x
f
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j j k k
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, ; , , ; , ,

0
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2
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2
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⎞
⎠

⎛
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⎞
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⎛
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⎞
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I ∑ ∑

∑

λ δ

α β

= ′ 〈 〉

×
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×
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α β α β
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α β
α β

α β
α β

−

′= ′=
′ ′ ′+ ′ +

=

∞
− + − −

+ − −
− + − −

+ − −
+ − + − −

From the definitions of theHGand LGmodes in the Fock state representation, i.e. equations (11) and (31),
respectively, we can see that the LGmodes are not factorable into functions depending only on x and y, in
contrast to theHGmodes. This feature of the LGmodes causes the coupling of the systemobservable Â with the
x- and y-dimension of the pointer. Thus, the pointer also shifts values in the y-direction. The pointer value is
given by

{ }

( )

{ }

( )

Y g A C C

k j

k j
L s

g A C C

k j

k j
L s

e i *

( 1)

e i *

1

( )
. (37)

f w

j j k k

j k j k

k j k j k j

w

j j k k

j k j k

k j k j k j

LG 2

, 0 , 0

, ; , , ; ,

, 1
(1) 2

2

, 0 , 0

, ; , , ; ,

, 1 1
(1) 2

s

s

1

2
2

2
2

I R

I R

∑ ∑

∑ ∑

λ

δ
α β

λ

δ
α β

〈 〉 = ′ 〈 〉

×
+

+ − − +

− ′ 〈 〉

×
+ +

+ − −

α β

α β α β

α β

α β

α β α β

α β

−

′= ′=
′ ′

′+ ′ + − + − −

−

′= ′=
′ ′

′+ ′ + + + − − −

These expectation values are the general forms of the desired values in post-selected vonNeumann

measurements with LGpointer states for the systemoperator Â satisfying the property A Iˆ ˆ2 = .
For theweak value (22)with 0ϕ = fixed, the SNR is determined to be a function of the coupling parameter s

and the pre-selection angle θ for lower radial and azimuthal indices p and l, respectively, as shown infigure 4. In
thefigure, we showplots only for p 0, 1, 2= and the corresponding l 0, 1, 2= cases. Furthermore, by
selecting specificweak values, we plot the SNR as a function of themeasurement-strength parameter s, as shown
infigure 5. Fromfigures 4 and 5, we can see that the higher-order LGmodes have no advantages in improving
the SNRover the case of the fundamental Gaussianmode (corresponding to the p 0,= l= 0 case). From
figure 5, we can also see that the imaginary part of theweak value has no role in improving the SNR in the x-
direction.

The SNR for the y-direction shift is shown infigures 6 and 7. Infigure 6, the SNRs for the lower-order cases
of LGmodes are shown, while infigure 7, the SNR in the y-direction is plotted as a function of themeasurement-
strength parameter s for some specificweak valueswith the radial index fixed at p=0 and azimuthal index l
increasing.We can observe that the SNR in the y-direction is related to the azimuthal indices l, while the SNR
decreases as the radial indices p are increased (see figure 6). Thus, when l=0, there is no information about the y-
direction.We should emphasize that while themaximumof the y-direction shift is very small compared to that
of the x-direction shift, in theweakmeasurement regime, the y-direction shift is sufficiently large compared to
the x-direction shift. Infigure 7, we can also observe that the real part of theweak value has no role in improving
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the SNR in the y-direction. Because there is no direct interaction between the pointer and themeasured system
along the y-direction, the strongmeasurement regime (s 1≫ ) includes only the x-direction shift. In theweak
measurement regime, however, the pointer state can be shifted along not only the x-direction but also the y-
direction because the unfactorability of the LGmodes induces y-direction interference for x-direction
interaction.On the improvement of the SNR in the y-direction, it seems to be converged to the specific value on
increasing the azimuthal indices l.

4.2. A A
^ ^2

= case
Using a process similar to that in the previous section, we can determine the normalizedfinal state of the LG-
mode pointer states as follows:

A A D
g

1
2

, , (38)f w w LG
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⎠
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Figure 4. SNR in the x-direction for LG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s and pre-selection angle θwith 0ϕ = fixed. Thesefigures show the SNRs for the lowest-
order LGmodes.
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for the normalization coefficient
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The expectation values of the position operators X̂ , Ŷ , and themomentumoperator P̂x under the final state f2
φ∣ 〉

are given by
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respectively.

Figure 5. SNR in the x-direction for LG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s for some specificweak values: (a) A 0.5w〈 〉 = , (b) A 0.5 iw〈 〉 = + , (c) A 5w〈 〉 = , and (d)
A 5 5iw〈 〉 = + (see footnote 9).
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For LG-mode pointer states with the systemoperator Â satisfying the property A Aˆ ˆ2 = , we verify the SNR
values in the x- and y-direction as functions ofmeasurement-strength parameter swith some specificweak
values, and the numerical results are given infigures 8 and 9, respectively. For the SNR in the x-direction, we
reach the same conclusions as before: the higher-order LGmodes and imaginary parts of theweak value have no
advantages in improving the SNR in the x-direction (see figure 8).

Infigure 9, we plot the SNR curves in the y-directionwith the radial index fixed at p= 0 and azimuthal index l
changing. Fromfigure 9, we can observe that in theweakmeasurement regime (s 1≪ ), the SNR in the y-

direction is improved in comparisonwith the case A Iˆ ˆ2 = shown infigure 7.We numerically find that the
maximumvalue of the SNRoccurs for A 0.5 iw〈 〉 = + , as shown infigure 9(e). Themaximumcondition of this
SNR corresponds to theminimumcondition for equation (39). Furthermore, fromfigure 9, we also can see that
when the azimuthal index l increases, the SNR in the y-direction increases for afixed radial index p.When the
coupling between the system (x-direction) and the pointer devices is sufficiently strong, the SNR in the y-
direction gradually vanishes. Fromfigure 9, we can further deduce that the real part of theweak value has no role
in improving the SNR in the y-direction. Note that these results investigate the importance of the imaginary part
of theweak value such as [22, 78]. Also, there still is the open problemwhether the unified information of the x
-and y-directions is useful as the optical implementation of the parameter estimation.
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Figure 6. SNR in the y-direction for LG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s. Here, we take

2
ϕ = π

in equation (22).
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5. Some approximation cases

5.1. A I
^ ^2

= case
If we take the fundamental Gaussian beam as the initial pointer state (this corresponds to taking m n 0= = and

0α β= = in equations (11) and (30), respectively), the general expectation values for position operator X̂ , i.e.

equations (17) and (35), andmomentumoperator P̂ , i.e. equations (18) and (36), are reduced to

Figure 7. SNR in the y-direction for LG-mode pointer states with the operator Â satisfying the property A Iˆ ˆ2 = for (a) A iw〈 〉 = , (b)
A 0.5 iw〈 〉 = + , (c) A 5iw〈 〉 = , and (d) A 5 5iw〈 〉 = + (see footnote 9).

Figure 8. SNR in the x-direction for LG-mode pointer states with the operator Â satisfying the property A Aˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s for specific weak values: (a) A 0.5w〈 〉 = , (b) A 0.5 iw〈 〉 = + , (c) A 5w〈 〉 = , and (d)
A 5 5iw〈 〉 = + (see footnote 9).
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2 s2
2 = + − 〈 〉 −−

These results were also presented in [59].
Furthermore, under theweakmeasurement regime (s 1≪ ), if we only consider evolution up to the first

order, our general expectation values reproduce the results given in [70]. In this case, theHG andLGpointer
states are shifted along x-directionwith the same value, i.e.

X g A . (46)f w,first1
R〈 〉 = 〈 〉

The expectation value in the y-direction, i.e. equation (37), is reduced to

Y lg A . (47)f w,first
LG

1
I〈 〉 = − 〈 〉

The expectation value of themomentumoperator for theHG-mode pointer states, i.e. equation (18), is reduced
to

P
g A

n
2

(2 1), (48)x
f

w

,first
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2
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I
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+

while that for the LG-mode pointer states, i.e. equation (36), is reduced to

P
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p l
2

(2 1). (49)x
f
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〈 〉
+ ∣ ∣ +

The validity conditions for equations (46)–(49) are

( )g n
A

2 1

2
max 1, 1, (50)wσ

+
〈 〉 ≪

for theHG-mode pointer states, and

( )
g p l

A
2 1

2
max 1, 1, (51)wσ

+ ∣ ∣ +
〈 〉 ≪

for the LG-mode pointer states.
The SNRs are directly related tomeasurement-strength parameter s. Thus, in the strongmeasurement

regime, if we take the limit s → ∞, we notice that SNRX becomes a function of theweak value

Figure 9. SNR in the y-direction for LG-mode pointer states with the operator Â satisfying the property A Aˆ ˆ2 = plottedwith respect
to themeasurement-strength parameter s for specific weak values: (a) A iw〈 〉 = , (b) A 0.5 iw〈 〉 = + , (c) A 1 iw〈 〉 = + , (d)
A 5iw〈 〉 = , (e) A 0.5 5iw〈 〉 = + , and (f) A 5 5iw〈 〉 = + (see footnote 9).
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Wecan observe this limiting trend from figures 2 and 5.

5.2. A A
^ ^2

= case
If we take the fundamental Gaussian beam as the initial pointer states, the general expectation values for the
position operator X̂ , i.e. equations (25) and (40), andmomentumoperator P̂x , i.e. equations (26) and (42), are
reduced to

( )
X g

A A A e
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respectively, where
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Furthermore, under theweakmeasurement regime (s 1≪ ), if we only consider evolution up to thefirst order,
our general expectation values are reduced to the following form:

X g A . (56)f w,first2
R〈 〉 = 〈 〉

In the case of the position operator X̂ , theHGmode and LGmode have the same value. The expectation value in
the y-direction, equation (41), is reduced to

Y lg A . (57)f w,first
LG

2
I〈 〉 = − 〈 〉

For themomentumoperator P̂x , the expectation values for theHG-mode pointer states, equation (26), and for
the LG-mode pointer states, equation (42), are reduced to

P
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respectively. The validity conditions for equations (56)–(59) are
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for theHG-mode pointer states and
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〈 〉 〈 〉 ≪

for the LG-mode pointer states.
For the SNR in the strong-measurement regime (s 1≫ ), if we consider the limiting case of s → ∞, we note

that SNRX becomes a function of theweak value
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Wecan observe this limiting trend from figures 3 and 8.
We emphasize here that the limiting values given in equations (52) and (62) are valid in the x-direction SNR

for theHG- and LG-mode pointer states in corresponding lower-ordermodes. It is assumed that the probe
wavefunction does not spread out during the interaction. Thus, for the case of the fundamental Gaussian
pointer, the expectation values of the position operators (43), (53) and its conjugatemomentumoperators (44),
(54) are the same as those in [86] under theweak-measurement condition.
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6. Conclusion and remarks

In summary, we studied the post-selected vonNeumannmeasurement withHG- and LG-mode pointer states

for the systemoperator Â satisfying A Iˆ ˆ2 = and A Aˆ ˆ2 = . Our general expectation formulas are valid in not only
theweak-measurement regime but also the strong-measurement regime. If we only consider evaluation up to
thefirst order, our general results reproduce all results given in [70].Moreover, if we let the initial pointer state
be a fundamental Gaussian state, our general results reflect the full evaluation values given in [59].

To clarify the practical advantages of high-order Gaussian beams, we verified the SNR and found that the
higher-orderHGand LGmodes have no advantages for improving the SNRover that for the case of the
fundamental Gaussianmode.Moreover, we found that the imaginary part of theweak values has no role in
improving the SNR in the x-direction in the cases ofHG- and LG-mode pointer states. For the SNR in the y-
direction in the LG-mode case, we also found that the SNR is related to the azimuthal index l and that the real

part of theweak value has no role in improving the SNR in the y-direction.However, in the case of A Iˆ ˆ2 = , the

SNR in the y-direction has an upper bound even for increasing azimuthal indices l. In the case of A Aˆ ˆ2 = , we
observed an improvement in SNR in the y-direction in theweak-measurement regime because the SNR
increases with increasing azimuthal index l. This factmay be helpful on the parameter estimation context as the
optical implementation of theweak-value amplification.However, we found that the SNR in the y-direction
gradually vanishes when the coupling strength between the system (x-direction) and pointer devices is
increased. It is noted that our choice of the pre- and post-selectionmay be not optimal tomaximize the SNR.
The SNR in the y-direction also disappeared in theweak-measurement regimewhen the post-selected state is
identical to the pre-selected one such that A Aw i iψ ψ〈 〉 = 〈 ∣ ∣ 〉.

Thesemethods can provide a new technique for calculating the expectation values of the generation
functions of themomentum and position operators. Thus, our results are useful for investigating applications of
theweak-measurement theory in quantumdynamics and quantum correlationswith higher-order optical
beams. Also, these provide the role of the imaginary part of theweak value to lead to the complementarity
relationship and the estimation problems in the Fourier domain for the LGhigher order case.

We expect that our general treatment of theweak valueswill be helpful for understanding the connection
betweenweak- and strong-measurement regimes andmay be used to propose new experimental setupswith
higher-order Gaussian beams to investigate further the applications of weakmeasurement in optical systems
such as the optical vortex. In this work, we only consider the pure higher-orderHGand LGmodes as initial
pointer states and investigate the corresponding SNRs.However, the entanglement of the initial pointer states
[87] and the non-classical initial pointer states [88] are useful for theweak-value amplification. Thus, our setup
may provide another scheme for improving the SNR if we consider the initial state of the pointer as a coherent-
superposition state of higher-order Gaussian beams.
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