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Abstract

Through the von Neumann interaction followed by post-selection, we can extract not only the
eigenvalue of an observable of the measured system but also the weak value. In this post-selected von
Neumann measurement, the initial pointer state of the measuring device is assumed to be a
fundamental Gaussian wave function. By considering the optical implementation of the post-selected
von Neumann measurement, higher-order Gaussian modes can be used. In this paper, we consider
the Hermite—Gaussian (HG) and Laguerre—Gaussian (LG) modes as pointer states and calculate the
average shift of the pointer states of the post-selected von Neumann measurement by assuming the

system observable Awith A> = fand A> = A foran arbitrary interaction strength, where [
represents the identity operator. Our results show that the HG and LG pointer states for a given
coupling direction have advantages and disadvantages over the fundamental Gaussian mode in
improving the signal-to-noise ratio. We expect that our general treatment of the weak values will be
helpful for understanding the connection between weak- and strong-measurement regimes and may
be used to propose new experimental setups with higher-order Gaussian beams to investigate further
the applications of weak measurement in optical systems such as the optical vortex.

1. Introduction

In a quantum measurement, observable information in the measured system can be extracted from the statistical
average shift of a pointer. In this process, von Neumann interaction is initially used with the standard model of
quantum measurement by mathematically describing the coupling between the measured system and
measuring devices [1]. However, such strong measurements are not time symmetric. When considering time-
symmetric quantum measurements, post-selection of the measured system is required after the measurement
interaction [2]. On summing the post-selections, the statistical average shift of the pointer can be determined in
the standard model of quantum measurement. Therefore, throughout the present work, measurements with
post-selection are called post-selected von Neumann quantum measurements. A particular case of post-selected
von Neumann quantum measurements with sufficiently weak coupling between the measuring device and
measured system is called the weak measurement, as proposed by Aharonov et al [3]. This statistical average shift
of the pointer is characterized by the weak value of the observable in the measured system [4].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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A significant feature of the weak measurements is that the weak value of the measured quantity can lie
outside the usual range of eigenvalues of an observable applicable for a standard quantum measurement [3].
This feature is usually referred to as the amplification effect for weak signals and is different from conventional
quantum measurement, in which a coherent superposition of quantum states is collapsed [ 1]. A large weak value
can amplify small unknown parameters for detecting various properties such as beam deflection [5-10],
frequency shifts [11], phase shifts [12], angular shifts [13, 14], velocity shifts [15], and even temperature shifts
[16]. However, the advantages of the weak-value amplification are purely technical [17-25]. This is based on the
single parameter estimation theory. In general, the weak value is a complex number. Thus, weak measurements
areideal for examining the fundamentals of quantum physics such as quantum paradoxes (Hardy’s paradox
[26-29] and the three-box paradox [30]), quantum correlation and quantum dynamics [31-39], and quantum-
state tomography [40—45], as well as the violation of the generalized Leggett—Garg inequalities [46—51] and the
violation of the initial Heisenberg measurement—disturbance relationship [52, 53].

Thus far, most studies on weak measurement use the zero-mean Gaussian state as an initial pointer state and
expand the unitary operator of evolution up to the first order because, in the weak measurement scheme, the
coupling between the measured system and measuring device is very weak. However, when considering the
connection between weak and strong measurements, amplification limit, and measurement back-action of the
weak measurement scheme, the full-order effects of unitary evolution due to the von Neumann interaction
between the measured system and measuring device are required. The measurements of arbitrary coupling
strength beyond the first-order interaction have been previously discussed by Aharonov and Botero [54]. Di
Lorenzo and Egues [55] investigated von Neumann-type measurement to clarify detector dynamics in the weak-
measurement process. Wu and Li [56] proposed a general formulation of weak measurement that includes
second-order effects of the unitary evolution due to the von Neumann interaction between the system and
detector, and they theoretically demonstrated on the basis of the second-order calculation that the back-action
effect is important in the weak-value amplification. Recently, several studies [57—59] analytically showed that an
upper bound of the weak-value amplification exists in the post-selected von Neumann measurement by
assuming that the probe-state wave function is Gaussian and that the observable A satisfies A” = I, where [ is
the identity operator. On the other hand, there is no upper bound on the weak-value amplification on the
optimal probe-state wave function [60-62] while it is so difficult to implement this wave function [63].

In optical experiments, we encounter higher-order Gaussian beams such as Hermite—Gaussian (HG) and
Laguerre-Gaussian (LG) beams, which are higher-order solutions of the paraxial wave equation with
rectangular and cylindrical symmetry about their axes of propagation, respectively. Both HG and LG beams are
widely used in the theory of lasers and resonators [64, 65]. In fact, the zero-mean Gaussian beam is a special case
of HG and LG beams. The weak measurement with the higher-order Gaussian-beam pointer state has been
discussed in [66—70]. In particular, de Lima Bernardo et al [70] presented a simplified algebraic description of
the weak measurements with HG and LG pointer states. In [70], the unitary evolution operator is considered
only up to the first order, raising an intriguing question as to whether the higher-order Gaussian beams are more
advantageous in quantum measurement compared to the fundamental Gaussian beam.

In the present study, we determine the post-selected von Neumann quantum measurement for an arbitrary
coupling strength with HG- and LG-mode pointer states under the assumption that the system observable A
satisfies A> = Tand A” = A (projection operator). To clarify the practical advantages of higher-order Gaussian
beams, we investigate the signal-to-noise ratio (SNR) while considering the post-selection probability, which is
defined by

INE [(Wy|
SNRyy = W =X, Y. (1)

<W2>f - (W)fc ’

Here, (. ); denotes the expectation value of the measuring system operator under the final state of the pointer,
and X = f x |x) (x| dx (xis the coupling direction of the von Neumann measurement) and Y = f y y){(y| dy
(yis the orthogonal coupling direction). Here, P; is the probability that the post-selected state is included in the
pre-selection state, and N is the number of measurement time. To verify our general formulas, two special limits
are considered. If the zero-mean Gaussian pointer is used as the initial state, our general expectation values are
found to reduce to the results given in [56, 59]. On the other hand, if the evaluation is considered only up to the
first order, our general expectation values reproduce all results given in [70].

The remainder of this paper is organized as follows. In section 2, we present the model setup for the post-
selected von Neumann measurement. In sections 3 and 4, we first present the expressions of HG- and LG-mode
pointer states in the Fock-state representation in accordance with de Lima Bernardo et al [70]. We then present
general forms of the expectation values and discuss the SNRs with HG- and LG-mode pointer states for the
system operator Awith A = [ and A> = A, which were used in several optical implementation on the weak
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measurement [5-16, 30,47, 52,53, 69]. In section 5, to check the validity of our general results, we consider
some special initial pointer states and approximated treatments used in previous works and show that our
general formulas can reproduce all the related results reported in those previous works [56, 59, 70]. We present
the conclusions and remarks of our study in the final section 6. Throughout this paper, we use 7 = 1 units.

2. Model setup

For the post-selected von Neumann measurement, the coupling interaction between the system and detector is
considered with the standard von Neumann Hamiltonian:

H=g5(t—t0)/\®15x, (2)

where gis a coupling constant and P, isthe conjugate momentum operator for the position operator X of the
measurement device; i.e. [X R lﬁx ] = il. We have taken the interaction to be impulsive at time ¢ = ¢, for
simplicity. The time-evolution operator for such impulsive interaction is e IABE

The post-selected von Neumann measurement is characterized by the pre- and post-selection of the system
state. If we prepare an initial state |y;) of the system and pointer state, after some interaction time t,, we post-
selecta system state |y;) and obtain information on a physical quantity A from the pointer wave function by
using the following weak value:

(v [Alw)
<‘/’f"”i>

In general, the weak value is a complex number. It is evident from equation (3), that when the pre-selected state
ly;) and the post-selected state |y;) are nearly orthogonal to each other, the absolute value of the weak value can
be arbitrarily large, resulting in the weak-value amplification.

From the above definitions, we note that the unitary evolution operator e A®E for the operator A satisfies

(A = (3)

the property A® = T asfollows:

L a8 1/, A 1/, A
eh®h = — (] + A) ®D(i)+—(I—A) ®D(—i). (4)
2 2 2 2
Similarly, for the property A’ = A, the evolution operator satisfies
ek~ (1-4) @ 1+4®b(2) (5)

Here, we use the position operators X and Y as well as their corresponding momentum operators P.and ﬁy,
which can be written in terms of the annihilation (creation) operators 4; ((if) withi = x, yas [71]

X=0c(al+a,), (6)
V=0c(af +a,), (7)
px=i(&;_ﬁx>a (8)
b=—(4f - a) 9)

Here, o is the width of the fundamental Gaussian beam. It is worth noting that in these definitions, the
propagation direction of the beam is assumed to be fixed [72]. These annihilation (creation) operators satisfy the
commutation relations [d;, d]T] = §ljf with i, j = x, y. The parameter sis defined as s: = g/o,and D (£)isa
displacement operator with complex & defined as

D(&) = R (10)

Here, the parameter s characterizes the measurement strength. Note that the interaction between the system and
pointer is weak (strong) if s << 1 (s > 1).

In the following sections, we consider the post-selected von Neumann measurement with HG- and LG-
mode pointer states for an arbitrary measurement-strength parameter s for the system operator A with A =1
and A* = A, respectively. On the choice of the system operator A, A* = Tand A> = A are taken as the qubit
operator and the projector, respectively.
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3. Post-selected von Neumann measurements with HG-mode pointer states

The general HG modes can be generated from the fundamental Gaussian mode, |0,0) 1, and can be defined as
(70,71]

m mi = = (a1 ()" 1000 an
These modes are complete sets of solutions to the paraxial wave equation in rectangular coordinates. Any
arbitrary paraxial wave can be described as a superposition of HG modes with the appropriate weighting and the
phase factors. Practically, the higher-order HG modes can be simply generated by inserting cross wires into the
laser cavity with the wires aligned with the nodal lines of the desired HG mode [73, 74]. However, a more
convenient way for generating higher-order modes is the use of computer-generated holograms or a spatial light
modulator (SLM) [75], which allows reprogrammable waveform generation controlled using a computer.

In the present paper, the initial state of the HG-mode pointer is considered tobe |¢;) = |n, m)pc. Note that
the HG modes can be factored in functions that depend on x and y directions. In our standard von Neumann
measurement Hamiltonian (2), only x-direction interaction exists; thus, the y-direction quantum number m is
omitted in the HG-mode calculations.

In what follows, we discuss the post-selected von Neumann measurement for the system operator A that

satisfies the properties A*=Tand A* = A.

A2 A
3.1.A =1 case
After the unitary evolution given in equation (4), the system state is post-selected to |y). Then, we obtain the
following normalized final pointer states:

I I T | S

where the normalization coefficient is given by

A= [1 + %(1 - |(A)W|2)(e—§Ln(52) - 1)]_£. (13)

Here, the Laguerre polynomials are defined as

L = 3(2) e (1)

e=0

The explicit expression of equation (12) can be obtained using the displaced Fock states defined as [76, 77]

MWMﬂ%Z(WWUWMM (15)
k=0
Here, the generalized Laguerre polynomials are defined as
n _ 1)i '
L0 () = ”+”/)( Vi 16
P =Y (16)

i=0

where 7 is an integer. Using equations (12) and (15), we can calculate the general forms of the expectation values
of the conjugate momentum P, and position operator X under the final pointer states |¢ f) which are given by

ONC = |APgR(A), (17)

and

HG 2
2g<Px>f = |APs2T(A), e T

1
2 \k—1
n!(i)
< 4 52 52
(k=n)| 2 (k=n+1)] 2
(g (5)

respectlvely Equations (17), (18) are the general forms of expectation values for the system operator A satisfying
A’ =1,and they are valid for an arbitrary value of the measurement-strength parameter s.

To investigate the practical advantages of the higher-order Gaussian modes, we check the SNR in two cases.
Here, we consider the two-dimensional quantum (qubit) state and assume that the operator A to be observed is
the x-component of the spin of a spin-1/2 particle through the von Neumann interaction (2)
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Figure 1. SNR in the x-direction for HG-mode pointer states with the operator A satisfying the property A =1 plotted with respect

to the measurement-strength parameter s and pre-selection angle 0 for the mode (a) n=0, (b) n=1,and (c) n=2. Weuse ¢ = 0 in
equation (22) in all figures.

A=bo=| ) (b |+ ) (1 (19)

Here,| 1, )and| |, ) are eigenstates of 6, with corresponding eigenvalues of 1 and —1, respectively. We select
the pre- and post-selected states as

1//1-> = cos(§)| 12 > + ei¢sin(§)| 1, > (20)

and
) =11 a

respectively. Thus, we can obtain the weak value by substituting these states into equation (3):
. 0
(A),, = €l tan >’ (22)

where 8 € [0, z]and ¢ € [0, 2x). Here, the probability of post-selection is P, = cos? (8/2). Throughout the
present paper, these pre- and post-selected states are used in the analysis of SNRs.

In figure 1, the behavior of the SNR is shown as a function of the measurement-strength parameter s and pre-
selection angle §. When ¢ = 0, the weak value becomes tan g. We can see that the SNR decreases as #1 increases
(higher-order modes). A ridge exists around 6 = z/2, which is a result of strong measurement; when 6 = /2,
the pre-selection state is the eigenstate of the operator 6, with the corresponding eigenvalue +1. In figure 1, we
can also identify a bridge between the weak measurement regime (s < 1) and strong measurement regime
(s > 1). Asthe SNRis proportional to the root of the measurement time, we consider N = 1 throughout this
paper. These results show that the fundamental Gaussian pointer state is better than the other HG modes on the
improvement of the SNR.

We also check the SNR with some specific weak values, and the numerical results are given in figure 2. As
shown in figures 1 and 2, the higher-order HG modes have no practical advantages in improving the SNR. We
also note that the imaginary part of the weak value has no role in improving the SNR in the x-direction. These
results are in general supported by [22, 78].

A2 A
3.2.A = Acase
By following the process used for the A” = I case, we can obtain the normalized final pointer states after the
unitary evolution given in equation (5). The post-selection to |y;) is given as follows:

o) =r[1 = 0+ @.n(3)]|a). (23)
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Figure 2. SNR in the x-direction for HG-mode pointer states with the operator A satisfying the property AP =1 plotted with respect

to the measurement-strength parameter s for some specific weak values: (a) (A),, = 0.5, (b) (A),, = 0.5+1, (¢) (A),, = 5,and (d)

where y is the normalization coefficient given by

y = ll + z(wA)W - ‘(A)W‘2>(e‘5;Ln(1—2) - 1]]_2.

Thus, by using equations (15) and (23), we can calculate the general forms of expectation values of the conjugate
momentum P, and position operator X under the final pointer sates | ¢ £ ); the obtained results are given by

X = Iy Pg (R = [A)]")e v L, ( )+ v Pe | (A’

and

HG 2 s2
2% (k) o =PI S(L,SU(Z)H,SLH(

respectively. In these calculations, we use the following properties of the displaced Fock states [79]:

WD(1ep),
=)L (1eP),

sl D(©lmhne = e T L, (I€1).

ue{n+ d| D(&)|n)uc =

ue{n| D (&) |n+d)ng =

(n+d)!

n!

n+d)!

Tl

)

We know that the operator A satisfying the property A® = Acanbea projection operator A=
alsobetakenas A = (I + B)/2with B* = [. This type of operator has numerous applications in the weak
measurement theory, such as in the three-box paradox problem [30] and quantum tomography [40,41]. In the

present paper, we consider A = (I + 6,)/2and choose the pre- and post-selected states as given in

(24)

(25)

(26)

(27)

(28)

(29)

|C){C|that can

equations (20) and (21), respectively. The numerical results are shown in figure 3. As indicated in figure 3, the
higher-order HG modes have no practical advantages in improving the SNR for the operator A satisfying the

property A = A,and the imaginary part of the weak values has no role in increasing the SNR, as mentioned

above.

Inequatlon (22), (A),, = 0.5isabout ¢ = 0, 0 = 0.927,(A),, = iis ¢ = n/2, 0 = n/2,(A),, = 0.5 + iisabout ¢ = 1.11, O = 1.68,

(A), =1 + iisabout ¢ = 0.785, 0 = 1.91, (A),, = 5isabout ¢ = 0, § = 2.74, (A),, = Siisabout ¢p = 7/2, 0 = 2.74,and

(A),, = 5+ Siisabout ¢p = 0.785, 0 = 2.86.
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Figure 3. SNR in the x-direction for HG-mode pointer states with the operator A satisfying the property A=A plotted with respect
to the measurement-strength parameter s for some specific weak values: (a) (A),, = 0.5, (b) (A),, = 0.5 + 1, (c) (A),, = 5,and (d)
(A), =5 + 5i (see footnote9).

4. Post-selected von Neumann measurements with LG-mode pointer states

The general LG modes can be defined as [70, 71]

a+p
1y 1 At L aa st At}
I, V) = (—) (a,'f + 1a;)a (a;r - 1a;,r) [0,0)uG, (30)

2 Jalpl

where v and u are integers. Here, the indices a = (4 + v)/2and ff = (u — v)/2 arerelated to the usual radial
and azimuthal indices (p and ], respectively) by the relations p = min (@, f) and ! = |a — f|. Welet|0,0)ug
denote the HG-mode fundamental Gaussian state. If we use the binomial formula for equation (30), we can find
amore explicit form of LG-mode pointer states as a sum of HG modes:

a p
lus )i = D)) Cajipi la + = k = j, k + j)uc. (31)

j=0k=0

Here, we note that C, .5 1 is given by

o (YD
G V53 a1l

><J(a+ﬁ—k—j)!(k+j)z((;)(ﬁ). (32)

k

In the present paper, we take the initial state of the LG-mode pointer as |¢;) = |u, v)1G.

The LG modes are a complete set of solutions to the paraxial wave equation in cylindrical coordinates
characterized by radial and azimuthal indexes p and / [65]. Physically, the LG modes have been created using
various experimental setups such as SLMs [80] and reflection from a conical mirror [81]. Furthermore, the LG
modes have a zero-intensity point at the center called the optical vortex. The relationship between the optical
vortex and the weak value has been investigated from different perspectives [13, 69, 82—85]. Thus, a general
treatment of the post-selected von Neumann measurements with LG-mode pointer states will provide an
efficient method for further exploration of weak-value applications in higher-order optical beams and optical
vortices. Next, we present an explicit treatment of post-selected von Neumann measurements with LG-mode
pointer states for the system operator A that satisfies the properties A’=Tand A> = A.

A2 A
41. A =1 case

By using the same process as that used in the HG-mode cases, after the unitary evolution given in equation (4)
and the post-selection of the system to ), we can obtain the normalized final-pointer states as

7
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|og) = %[D(g) + D(—%) + <A>W{D(§) - D(—%)}]w, )16, (33)

where the normalization coefficient is given by

/1’=[1+%(1—|(A>W‘2)

1
2

s2 < ﬁ
X|e 7 Z Z Ca,j;ﬂ,kC;,j/;/;,k'5k/+j’,k+jLa+ﬂ—k—j(52) -1 : (34)
joj =0kk'=0

By using equation (33) and the displaced Fock states, i.e. equation (15), we can obtain the expectation value
of the position operator X under the final pointer states | @ f1> as

(X)f=¢

Similarly, the expectation value of the momentum operator B, under the final pointer states |¢ f]) is given by

2|’ (A),. (35)

a B
2g <Px>ic = |/1’| 23 (A Z Z Cajspok s O 41kt
! j,j' =0k,k'=0

) 52 I-(a+p—k—j)
o (a+ﬂ—k—])!(—z)
P> !

=0

2 2
(I=(a+p=k=j)| S (IH+1=(a+p-k=in| S
x Lisr ”)(—4 )L{H,,_kijﬂ ”)(—4 ) (36)

From the definitions of the HG and LG modes in the Fock state representation, i.e. equations (11) and (31),
respectively, we can see that the LG modes are not factorable into functions depending only on xand y, in
contrast to the HG modes. This feature of the LG modes causes the coupling of the system observable A with the
x- and y-dimension of the pointer. Thus, the pointer also shifts values in the y-direction. The pointer value is
given by

5 , & p
X T(A)e s Z 2 R { iCajipk Cajiipi }
jij' =0kk'=0

k+j ) 2
x 5k’+j’,k+j—1\/(a T h—k—j+ 1) La+ﬁ—k—j(s )

(V=g

a  p
20 _s2 .
J(A),e 2 Z z 9%{1C,,,j;/;,kc(:j/;ﬁ,kr}
i =0kk'=0
(@a+p—k—j) La+ﬂ—k—j—1(s )

j//

-8

X O i kajrl (37)

These expectation values are the general forms of the desired values in post-selected von Neumann
measurements with LG pointer states for the system operator A satisfying the property A =1.

For the weak value (22) with ¢ = 0 fixed, the SNRis determined to be a function of the coupling parameter s
and the pre-selection angle 6 for lower radial and azimuthal indices p and /, respectively, as shown in figure 4. In
the figure, we show plots only for p = 0, 1, 2 and the corresponding / = 0, 1, 2 cases. Furthermore, by
selecting specific weak values, we plot the SNR as a function of the measurement-strength parameter s, as shown
in figure 5. From figures 4 and 5, we can see that the higher-order LG modes have no advantages in improving
the SNR over the case of the fundamental Gaussian mode (corresponding to the p = 0, /=0 case). From
figure 5, we can also see that the imaginary part of the weak value has no role in improving the SNR in the x-
direction.

The SNR for the y-direction shift is shown in figures 6 and 7. In figure 6, the SNRs for the lower-order cases
of LG modes are shown, while in figure 7, the SNR in the y-direction is plotted as a function of the measurement-
strength parameter s for some specific weak values with the radial index fixed at p = 0 and azimuthal index
increasing. We can observe that the SNR in the y-direction is related to the azimuthal indices [, while the SNR
decreases as the radial indices p are increased (see figure 6). Thus, when /= 0, there is no information about the y-
direction. We should emphasize that while the maximum of the y-direction shift is very small compared to that
of the x-direction shift, in the weak measurement regime, the y-direction shift is sufficiently large compared to
the x-direction shift. In figure 7, we can also observe that the real part of the weak value has no role in improving

8
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Figure 4. SNR in the x-direction for LG-mode pointer states with the operator A satisfying the property A =1 plotted with respect
to the measurement-strength parameter s and pre-selection angle @ with ¢ = 0 fixed. These figures show the SNRs for the lowest-
order LG modes.

the SNR in the y-direction. Because there is no direct interaction between the pointer and the measured system
along the y-direction, the strong measurement regime (s > 1) includes only the x-direction shift. In the weak
measurement regime, however, the pointer state can be shifted along not only the x-direction but also the y-
direction because the unfactorability of the LG modes induces y-direction interference for x-direction
interaction. On the improvement of the SNR in the y-direction, it seems to be converged to the specific value on
increasing the azimuthal indices /.

A2 A
42.A = Acase
Using a process similar to that in the previous section, we can determine the normalized final state of the LG-
mode pointer states as follows:

o) = y'[l — (A + <A>WD(%)]|;¢, Vi, (38)
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Figure 5. SNR in the x-direction for LG-mode pointer states with the operator A satisfying the property A =1 plotted with respect
to the measurement-strength parameter s for some specific weak values: (a) (A),, = 0.5, (b) (A),, = 0.5 + i, (c) (A),, = 5,and (d)
(A),, = 5 + 5i (see footnote9).

for the normalization coefficient

y’:[l + z(mm)w - ‘(A)W|2)

2

$2 d s 52
x|eh 20 X Ca,j;ﬁ,kCoT,f;/ﬁ,k'5k’+j',k+jLa+ﬁ—k—j(Z) e | (39)
i,/ =0kk'=0

The expectation values of the position operators X, Y, and the momentum operator P, under the final state | £
are given by

2

7| e (T - [@an]’)e

a p 2

N

x )y Ca,j;ﬂ,kCi,f;ﬁ,k'5k'+j',k+jLa+ﬂ—k—j(Z)
i =0kKk=0

(A

(X0 =

| 2

+g|r , (40)
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respectively.
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Figure 6. SNR in the y-direction for LG-mode pointer states with the operator A satisfying the property A =1 plotted with respect
to the measurement-strength parameter s. Here, we take ¢ = % inequation (22).

For LG-mode pointer states with the system operator A satisfying the property A® = A, we verify the SNR
values in the x- and y-direction as functions of measurement-strength parameter s with some specific weak
values, and the numerical results are given in figures 8 and 9, respectively. For the SNR in the x-direction, we
reach the same conclusions as before: the higher-order LG modes and imaginary parts of the weak value have no
advantages in improving the SNR in the x-direction (see figure 8).

In figure 9, we plot the SNR curves in the y-direction with the radial index fixed at p = 0 and azimuthal index /
changing. From figure 9, we can observe that in the weak measurement regime (s < 1), the SNRin the y-
direction is improved in comparison with the case A® = I shownin figure 7. We numerically find that the
maximum value of the SNR occurs for (A4),, = 0.5 + i, asshown in figure 9(e). The maximum condition of this
SNR corresponds to the minimum condition for equation (39). Furthermore, from figure 9, we also can see that
when the azimuthal index /increases, the SNR in the y-direction increases for a fixed radial index p. When the
coupling between the system (x-direction) and the pointer devices is sufficiently strong, the SNR in the y-
direction gradually vanishes. From figure 9, we can further deduce that the real part of the weak value has no role
in improving the SNR in the y-direction. Note that these results investigate the importance of the imaginary part
of the weak value such as [22, 78]. Also, there still is the open problem whether the unified information of the x
-and y-directions is useful as the optical implementation of the parameter estimation.

11



10P Publishing

New]. Phys. 17 (2015) 083029

Y Turek et al

p=0.1=1
p=0.=2 p=0,=1
p=0.1=3 p=0.1=
p=0.1=4 g
p=0.1=4
S S
3 4 5 3 4 5
p=0.l=1 p=0.1=1
03 L p=0.1=2 p=0.1=2
p=0.1=3 - p=0l=
02 -— p=0.1=4 02 — p=0.1=4
0.1 0.1
i S Ve S
0 | 2 3 4 5] 0 1 2 3 4 5]

Figure 7. SNR in the y-direction for LG-mode pointer states with the operator A satisfying the property A* = ffor (a) (A),, = 1,(b)
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Figure 8. SNR in the x-direction for LG-mode pointer states with the operator A satisfying the property A=A plotted with respect
to the measurement-strength parameter s for specific weak values: (a) (A4),, = 0.5, (b) (A),, = 0.5 + 1, (c) (A),, = 5,and (d)
(A),, = 5 + 5i (see footnote9).

5. Some approximation cases

A2 A
5.1.A =1 case
If we take the fundamental Gaussian beam as the initial pointer state (this corresponds to taking m = n = 0 and
a = f = Oinequations (11) and (30), respectively), the general expectation values for position operator X, ie.
equations (17) and (35), and momentum operator Die. equations (18) and (36), are reduced to
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Figure 9. SNR in the y-direction for LG-mode pointer states with the operator A satisfying the property A=A plotted with respect
to the measurement-strength parameter s for specific weak values: (a) (A),, = i, (b) (A),, = 0.5 +1,(c) (A), =1 +i,(d)
(A),, = 5i,(e) (A),, = 0.5 + 5i,and (f) (A),, = 5 + 5i (see footnote 9).

gR(A)w

(X)f.p6 = Z (43)
and
J(A s
(n), =8t (44)
f,,FG 202Z
respectively, where
1 2 _2
Z=1+E<l—|(A)W|)(eZ—1). (45)
These results were also presented in [59].

Furthermore, under the weak measurement regime (s << 1), if we only consider evolution up to the first
order, our general expectation values reproduce the results given in [70]. In this case, the HG and LG pointer
states are shifted along x-direction with the same value, i.e.

<X>f1,ﬁrst = gm<A>w (46)
The expectation value in the y-direction, i.e. equation (37), is reduced to
<Y>Iffﬁrst = _lgj<A>w (47)

The expectation value of the momentum operator for the HG-mode pointer states, i.e. equation (18), is reduced
to

<Px> HG gI(A),

2n+ 1), 48
= @D (48)

while that for the LG-mode pointer states, i.e. equation (36), is reduced to

L6 gJ(A),
<Px>f1,ﬁrst_ pyeanl R U (49)

The validity conditions for equations (46)—(49) are

37“22”6“ max (1, |(4)]) < 1, (50)

for the HG-mode pointer states, and

gy2p + |11+ 1

max (1,
20

(A)W‘) <1, (51)

for the LG-mode pointer states.
The SNRs are directly related to measurement-strength parameter s. Thus, in the strong measurement
regime, if we take the limit s — co, we notice that SNRy becomes a function of the weak value
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) Jre2 @] + [ - o),

(SNRX) (52)

We can observe this limiting trend from figures 2 and 5.

A2 A
52.A = Acase
If we take the fundamental Gaussian beam as the initial pointer states, the general expectation values for the
position operator X, ie. equations (25) and (40), and momentum operator B, ie. equations (26) and (42), are
reduced to

[(A)] "+ (WA)W - ‘(A)W‘Z)e—s

(X6 =g 1% , (53)
and
Ay 2
(B) e gZGZ I (54)
respectively, where
N=1+2(m(A>W—|<A>W‘2)(e—%_1). (55)

Furthermore, under the weak measurement regime (s << 1), if we only consider evolution up to the first order,
our general expectation values are reduced to the following form:

<X>f2,ﬁrst = gm<A>w (56)

In the case of the position operator X, the HG mode and LG mode have the same value. The expectation value in
the y-direction, equation (41), is reduced to

(V) e = —18T (A (57)

For the momentum operator P,, the expectation values for the HG-mode pointer states, equation (26), and for
the LG-mode pointer states, equation (42), are reduced to

HG g§I(Ahw
<Px>f2,ﬁrst o n+ ) (58)
and
16 gI(A)y
(Px>f2,ﬁm_ eI+, (59)

respectively. The validity conditions for equations (56)—(59) are

gv2n+1 (
Y max | 1,
c

|SR<A>W| ) <1, (60)

for the HG-mode pointer states and

e2p + I + 1
— INa

20

x (1] @] fJran]) <1, (61)
for the LG-mode pointer states.

For the SNR in the strong-measurement regime (s > 1), if we consider the limiting case of s = oo, we note
that SNRy becomes a function of the weak value

(A
Jr+ ] - 2w,

(SNRX) (62)

§— 00

We can observe this limiting trend from figures 3 and 8.

We emphasize here that the limiting values given in equations (52) and (62) are valid in the x-direction SNR
for the HG- and LG-mode pointer states in corresponding lower-order modes. It is assumed that the probe
wavefunction does not spread out during the interaction. Thus, for the case of the fundamental Gaussian
pointer, the expectation values of the position operators (43), (53) and its conjugate momentum operators (44),
(54) are the same as those in [86] under the weak-measurement condition.
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6. Conclusion and remarks

In summary, we studied the post-selected von Neumann measurement with HG- and LG-mode pointer states
for the system operator A satisfying A*=Tand A* = A.Our general expectation formulas are valid in not only
the weak-measurement regime but also the strong-measurement regime. If we only consider evaluation up to
the first order, our general results reproduce all results given in [70]. Moreover, if we let the initial pointer state
be a fundamental Gaussian state, our general results reflect the full evaluation values given in [59].

To clarify the practical advantages of high-order Gaussian beams, we verified the SNR and found that the
higher-order HG and LG modes have no advantages for improving the SNR over that for the case of the
fundamental Gaussian mode. Moreover, we found that the imaginary part of the weak values has no role in
improving the SNR in the x-direction in the cases of HG- and LG-mode pointer states. For the SNR in the y-
direction in the LG-mode case, we also found that the SNR is related to the azimuthal index / and that the real
part of the weak value has no role in improving the SNR in the y-direction. However, in the case of A* =1, the
SNRin the y-direction has an upper bound even for increasing azimuthal indices I In the case of A* = A, we
observed an improvement in SNR in the y-direction in the weak-measurement regime because the SNR
increases with increasing azimuthal index I. This fact may be helpful on the parameter estimation context as the
optical implementation of the weak-value amplification. However, we found that the SNR in the y-direction
gradually vanishes when the coupling strength between the system (x-direction) and pointer devices is
increased. It is noted that our choice of the pre- and post-selection may be not optimal to maximize the SNR.
The SNRin the y-direction also disappeared in the weak-measurement regime when the post-selected state is
identical to the pre-selected one such that (A),, = (y; |A]| w).

These methods can provide a new technique for calculating the expectation values of the generation
functions of the momentum and position operators. Thus, our results are useful for investigating applications of
the weak-measurement theory in quantum dynamics and quantum correlations with higher-order optical
beams. Also, these provide the role of the imaginary part of the weak value to lead to the complementarity
relationship and the estimation problems in the Fourier domain for the LG higher order case.

We expect that our general treatment of the weak values will be helpful for understanding the connection
between weak- and strong-measurement regimes and may be used to propose new experimental setups with
higher-order Gaussian beams to investigate further the applications of weak measurement in optical systems
such as the optical vortex. In this work, we only consider the pure higher-order HG and LG modes as initial
pointer states and investigate the corresponding SNRs. However, the entanglement of the initial pointer states
[87] and the non-classical initial pointer states [88] are useful for the weak-value amplification. Thus, our setup
may provide another scheme for improving the SNR if we consider the initial state of the pointer as a coherent-
superposition state of higher-order Gaussian beams.
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