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Abstract. We have developed a quantum noise approach for studying quantum
transport through nanostructures. The nanostructures, such as quantum dots, are
regarded as artificial atoms, subject to quasi-equilibrium fermionic reservoirs of
electrons in biased leads. Noise operators characterizing the quantum fluctuation
in the reservoirs are related to the damping and fluctuation of the artificial atoms
through the quantum Langevin equation. The average current and current noise
are derived in terms of the reservoir noise correlations. In the white-noise limit,
we show that the current and current noise can be calculated exactly by the
quantum noise approach, even in the presence of interactions such as Coulomb
blockade. As a typical application, the average current and current noise through
a single quantum dot are studied.
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1. Introduction

Quantum transport through nanostructures is of importance in nanoscience and nanotechnology.
Many electronic devices based on nanostructures, such as single-electron transistors, have been
studied in the past few decades for their potential in various applications. Recently, in an effort
to achieve coherent control of single electrons or electron spins, quantum transport methods
have been used to detect the quantized motion of electrons in nanostructures [1, 2].

To understand and analyze the quantum transport phenomena, various approaches have
been developed. For the general theory, the Landauer–Bütikker formula has established the
basic relationship between scattering amplitudes and currents through nanostructures [3, 4].
The non-equilibrium Green’s function (NEGF) method provides a perturbation theoretical
scheme for dealing with the many-body interaction effects in quantum transport [5, 6]. In recent
years, approaches based on notions in quantum optics have been developed for studying time-
dependent quantum transport processes in solid-state structures [7]–[11].

In addition to the average current, current noises also contain useful information about
the quantum dynamics in nanostructures [12]–[14]. Current noise was first analyzed semi-
classically based on the rate equations [15]–[18], which gave the basic physical picture and
predicted the non-trivial phenomena due to the presence of nanostructures. Full quantum
mechanical theories of current noise have been developed in recent years [19]–[27]. Most of
these theories use the (generalized) master equations for the density matrix in the Schrödinger
picture. Two major approximations are always applied either independently or simultaneously,
depending on the specific problem concerned: (i) the tunneling between the leads and
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Figure 1. Schematic illustration of transport through a quantum dot. The whole
system is divided into three parts: the central system and the left and right
reservoirs. The central system is characterized by eigenstates |i〉 with discrete
energies. Quantum noise operators L(t) and R(t) are introduced to describe the
reservoirs.

nanostructures are treated as perturbations, which is valid in the weak tunneling regime, and
(ii) the Markovian approximation for the noise correlation of the leads, which is justified in the
large bias situation. In this paper, instead of the rate equations or the master equations, we will
develop a quantum noise approach based on the quantum Langevin equation to the quantum
transport problem. It will be shown that using the quantum Langevin equations, the transport
problem under large bias conditions (Markovian noise) can be solved exactly without any further
approximations.

Essentially, we recognize that a general quantum transport problem can be regarded as a
system-plus-reservoir problem. In this sense, the total system is divided into several subsystems
(see figure 1). The central system (system for short) is a nanostructure, such as a quantum dot
or coupled quantum dots. This subsystem contains several discrete electronic energy levels,
resembling an artificial atom. The electrons in the leads, which have a continuous energy
spectrum and are kept in quasi-equilibrium, constitute the fermionic reservoirs. The electrons
in the reservoirs can be treated as free quasi-particles with the screened Coulomb interaction
taken into account as a renormalization of electron effective mass. The central system and the
reservoirs are coupled together to each other through hopping across the barriers. With this
observation, it is natural to treat the quantum transport problem in the framework of the quantum
open system method, the quantum Langevin equation. This method is a standard approach in
quantum optics for studying cavity photon decay and atom damping, and has also been used
for analyzing the noise behaviors in various problems, such as the conductance fluctuations in
mesocopic systems [28].

As compared with the application in quantum optics, the quantum Langevin approach in
the quantum transport problem has two features to be pointed out: (i) the reservoirs consist of
electrons, which are fermions, while the baths in quantum optics are bosonic, and (ii) when
finite biases are applied between different leads, the electronic reservoirs in different leads are
in quasi-equilibrium with different chemical potentials but do not stay in equilibrium with each
other. Our investigation in this paper will clarify these features. As illustrative applications of
our approach, the resonant transport through a single quantum dot is investigated for both the
single-level case and the Coulomb blockade case.
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The quantum Langevin approach is a natural formalism for studying the noise spectroscopy
of quantum dynamics in nanostructures [14], which is particularly interesting for small quantum
systems where the signals are often much weaker than the shot noises. When the coupling
between the leads and the nanostructures can be described in the Markovian approximation,
which is justified in large bias cases, the quantum Langevin approach provides an exact
treatment of the interaction within the nanostructure. Furthermore, the quantum Langevin
equation establishes a fundamental relationship and analogy between photon emission and
electron tunneling processes, providing better understanding of quantum transport phenomena
with notions and methods from quantum optics.

This paper is organized as follows. In section 2, we introduce the basic concepts and the
general formalism of the quantum noise approach to treat the quantum transport problem. In
sections 3 and 4, we apply the quantum noise approach to transport through a single quantum
dot containing a single level and double energy levels, respectively. In section 5, we show the
relations between our approach and other quantum transport theories. The conclusion and an
outlook for our approach are presented in section 6.

2. General formalism

2.1. Quantum Langevin equations for quantum transport

In general, the quantum transport problem of nanostructures can be modeled by the following
Hamiltonian,

H = Hsys(ai , a†
i ) + Hlead + HT, (1)

where Hsys describes the nanostructure, such as a quantum dot, with multiple discrete energy
levels. The leads, which play the role of reservoirs, are described by the Hamiltonian Hlead. The
electron tunneling between the leads and the nanostructure is included in HT. For the two-lead
case, the leads Hamiltonian Hlead and the tunneling Hamiltonian HT can be written as

Hlead =

∑
k

h̄ω
(L)

k b†
kbk +

∑
j

h̄ω
(R)

j c†
j c j , (2a)

HT = ih̄
∑
i,k

ξikb†
kai + ih̄

∑
i, j

ζi j c
†
jai + h.c., (2b)

where bk and c j are the annihilation operators of the left and right leads with continuous spectra
h̄ω

(L)

k and h̄ω
(R)

j , respectively. The tunneling is characterized by the coefficients ξik and ζi j .
Note that we have neglected the interaction in the leads as a common approximation for a
Fermi sea with the Coulomb interaction effectively taken into the renormalized quasi-particle
spectra.

Now, we consider the Heisenberg equations of motion of the system and reservoir
operators. For simplicity, we show equations of motion for the simplest single-level case, i.e.
ai(t)= a(t), ξik = ξk , ζi j = ζ j and Hsys = h̄ω0a†a. The multi-level case will be discussed later
in this paper. Straightforward calculation gives

ȧ(t)=−iω0a−
∑

k

ξkbk −

∑
j

ζ j c j , (3a)
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ḃk(t)=−iω(L)

k bk + ξka, (3b)

ċ j(t)=−iω(R)

j c j + ζ ja. (3c)

In the following, we try to eliminate the lead variables from the equation of motion (3a) of the
system operator. To this end, the formal solution for bk(t) is written as

bk(t)= e−iωk tbk(0) + ξk

∫ t

0
dt ′[e−iωk(t−t ′)a(t ′)]. (4)

With this formal solution, the following relation is obtained,∑
k

ξkbk(t)=−Lin(t) +
γL

2
a (t) , (5)

where the input noise operator Lin (t) due to the left lead is defined as

Lin(t)=−
∑

k

ξke−iω(L)
k tbk(0). (6)

The damping term in equation (5) arises from the Markovian approximation [29] under the
continuous limit,∑

k

ξ 2
k e−iω(L)

k (t−t ′)
=

∫
dωk[D(ωk)ξ

2(ωk)e
−iω(L)

k (t−t ′)]= γLδ(t − t ′), (7)

where D(ωk) is the density of the states of the lead. Here, we have assumed that D(ωk)ξ
2(ωk)

is flat around the frequency ω0 and

γL = 2πD(ω0)ξ
2(ω0) (8)

is widely used as the tunneling rate in nanostructure quantum transport problems.
Similarly, for the right lead,∑

j

ζ j c j(t)=−Rin(t) +
γR

2
a(t), (9)

where the noise operator of the right lead R(t) is defined as

Rin(t)=−
∑

j

ζ j e
−iω(R)

j tc j(0) (10)

and γR is the tunneling rate to the right lead. Using equations (5) and (9), we obtain the quantum
Langevin equation for the system operator a(t),

ȧ(t)=−iω0a(t)−
γL + γR

2
a(t) +Lin(t) +Rin(t). (11)

The noise operators in equation (11) can be regarded as the quantum counterpart of the
stochastic force in the classical Langevin equations. Similar to the cases in quantum optics,
the two electronic leads, which play the role of fermionic reservoirs, induce the damping and
the fluctuations through these noise operators.
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2.2. Projection operator formalism for interacting systems

For an interacting system, the complexity of the quantum Langevin equations arises from the
evolution induced by the system Hamiltonian Hsys. To deal with such complexity, we introduce
the projection operators of the interacting system in this subsection.

Although there may be interaction between the electrons in the system Hamiltonian Hsys,
the artificial atom can always be considered as consisting of a few discrete many-body energy
levels. In other words, we can diagonalize the system Hamiltonian Hsys as

Hsys(ai , a†
i )=

N∑
i=1

h̄ωi |i〉〈i | =
N∑

i=1

h̄ωiσi i , (12)

where σi j = |i〉〈 j | is the projection operator from | j〉 to |i〉, with |i〉 being the eigenstate of Hsys

of energy h̄ωi .
In the general cases, determined by the system Hamiltonian Hsys, the fermionic operators

ai and a†
i can be written in terms of the projection operators as

ai =

∑
k,l

T (i)
kl σkl and a†

i =

∑
k,l

T̃ (i)
kl σkl, (13)

where T (i) and T̃ (i) are N × N matrices associated with the fermionic operators ai and a†
i , and

T̃ (i)
≡ (T (i))†.
The commutative relation between the projection operators σi j can be calculated with

σi jσkl = σilδ jk . In the following calculations, we also need to identify the commutative relation
between the projection operators σi j and the reservoir operators, i.e. bk(b

†
k) and c j(c

†
j). Note

that the eigenstate |i〉 is also an eigenstate of the electron number operator in the quantum
dot N̂ =

∑
i a†

i ai , i.e. N̂ |i〉 = Ni |i〉. Thus, the projection operator σi j corresponds to a definite
electron number change Ni − N j , which is either odd or even. Consequently, σi j and bk(b

†
k) have

the following (anti-)commutative relation,

[σi j , bk]gi j ≡ σi j bk + gi j bkσi j = 0, (14)

where the factor

gi j =

{
1, for Ni−Nj = odd,

−1, for Ni−Nj = even.
(15)

The Heisenberg equation for the σi j is

σ̇i j(t)=
i

h̄
[Hsys, σi j ] +

i

h̄
[HT, σi j ]=−i1i jσi j (t)

−

∑
α,k,m,n

[(ξαk T (α)
mn b†

kσmn − h.c.), σi j ]−
∑

α, j,m,n

[(ζα j T
(α)

mn c†
jσmn − h.c.), σi j ]. (16)

With the help of the definition of noise operators and the first Markovian approximation, we
obtain the quantum Langevin equation for the projection operator σi j ,

σ̇i j(t)=−i1i jσi j(t)−
γL

2

∑
m,m′

Di j
mm′σmm′ (t) + (γL→ γR) +

∑
m,m′

C i j
mm′L

†
in(t)σmm′(t) + (L†

in→ R†
in)

+
∑
m,m′

C̃ i j
mm′Lin(t)σmm′(t) + (Lin→ Rin), (17)
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where 1i j = ω j −ωi , and the coefficients Di j
mm′ , C i j

mm′ and C̃ i j
mm′ are defined as follows,

Di j
mm′ = Ai j

mm′ + Ãi j
mm′ + B i j

mm′ + B̃ i j
mm′, (18a)

C i j
mm′ =

∑
α

(T (α)

mi δm′ j + gi j T
(α)

jm′δmi), (18b)

C̃ i j
mm′ =

∑
α

(T̃ (α)

mi δm′ j + gi j T̃
(α)

jm′δmi), (18c)

with

Ai j
mm′ =

∑
α,α′

gi j T̃
(α′)

mi T (α)

jm′ , (19a)

Ãi j
mm′ =

∑
α,α′

gi j T
(α′)

mi T̃ (α)

jm′ , (19b)

B i j
mm′ = δm′ j

∑
ν,α,α′

T̃ (α′)
mν T (α)

νi , (19c)

B̃ i j
mm′ = δm′ j

∑
ν,α,α′

T (α′)
mν T̃ (α)

νi . (19d)

In principle, the quantum Langevin equation for the system operators is equivalent to
a quantum stochastic equation if we introduce the quantum Wiener process [30], and the
properties of their solution can be discussed by defining the quantum stochastic integration [30].
Thus, we point out that the quantum transport problem provides an experimentally accessible
proving ground for the quantum stochastic theory. Instead of discussing the mathematical
properties of equation (17) further, in this paper we will focus, through concrete models, on
how to derive the observable quantities in quantum transport.

2.3. Boundary relation and causality

Besides the input noise operators Lin(t) and Rin(t), the output noise operators [30, 31] can be
defined as

Lout(t)=−
∑

k

ξke−iω(L)
k (t−tf)bk(tf), (20a)

Rout(t)=−
∑

j

ζ j e
−iω(R)

j (t−tf)c j(tf), (20b)

where tf is a time in the remote future. Similar to equations (5) and (9), the first Markovian
approximation gives the following relations,∑

k

ξkbk(t)=−Lout(t)−
γL

2
a(t). (21)
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According to equations (5) and (21), the ‘boundary relation’ between the noise operators
and the system operator is [31]

Lin(t)−Lout(t)= γLa(t). (22)

Similarly, for the right lead,

Rin(t)−Rout(t)= γRa(t). (23)

According to the quantum Langevin equation (11), the fermionic system operator d(t) ∈
{a(t), a†(t)} at time t only depends on the input noise operators at time t ′ < t . As a result, in the
Markovian limit, the causality relation reads [30, 32]

[Lin(t
′), d(t)]+ = 0, for t′ > t. (24)

For a similar reason, the system operator at t is independent of the output noise operators at
time t ′ < t ,

[Lout(t
′), d(t)]+ = 0, for t′ < t. (25)

According to equations (22)–(25), the anti-commutators between the noise and system operator
are converted to those between system operators [30, 32],

[Lin(t
′), d(t)]+ = γLθ(t − t ′)[a(t ′), d(t)]+, (26a)

[Rin(t
′), d(t)]+ = γRθ(t − t ′)[a(t ′), d(t)]+, (26b)

where the step function θ(t) is defined as

θ (t)=


1,
1
2 ,

0,

t > 0,

t = 0,

t < 0.

(27)

For the multi-level case, this causality relation equation (26) can be generalized to the system
projection operators σi j , i.e.

[Lin(t
′), σi j(t)]± = γLθ(t − t ′)[a(t ′), σi j(t)]±, (28a)

[Rin(t
′), σi j(t)]± = γRθ(t − t ′)[a(t ′), σi j(t)]±. (28b)

The choice of the commutative and anti-commutative relations in equation (28) is determined
by the parity of the electron number change (see equation (15)).

In the following, to simplify the notation, we will omit the subscript ‘in’ from the input
noise operators, unless stated otherwise.

2.4. The current and the current noise

For the quantum transport problem, we are interested in the average current and the current
noise spectra. In this subsection, we will give the expressions for such quantities in terms of the
noise operators.

We consider the current through the right lead as an example. For simplicity, let us first
study the single-level case. The formula for the multi-level case with Coulomb blockade will be
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discussed later. The current operator can be defined as the changing rate of the electron number
on the right lead, i.e.

Î R =
d

dt
N̂R =

∑
j

ζ j c
†
ja + h.c. (29a)

= γRa†(t)a(t)−R†(t)a(t)− a†(t)R (t). (29b)

The second line is obtained by noting the relations in equations (5) and (9). We point out that
the current operator can be divided into two parts: (i) the damping part γRa†(t)a(t), which is
proportional to the level occupation and the escaping rate γR, and (ii) the fluctuation part (the
last two terms), which is induced by the noise operators R(t) and R†(t).

For the average current, we take the average of the current operator Î R over the thermal
states of the leads,

〈 Î R〉 = γR〈a
†(t)a(t)〉− 〈R†(t)a(t)〉− 〈a†(t)R(t)〉. (30)

And for the current noise, we first calculate the current–current correlation function,

g(2)(τ )= lim
t→+∞

Re[〈 Î R (t) Î R (t + τ)〉]−〈 Î R〉
2. (31)

At steady state, its Fourier transformation gives the current noise spectrum [33],

S(ω)= 4
∫
∞

0
g(2) (τ ) cos(ωτ) dτ. (32)

To calculate the correlation 〈 Î R(t) Î R(t + τ)〉 in g(2)(τ ), by the definition of Î R in equation (29b),
one needs to calculate the two-time correlations, such as

〈a†(t)a(t)a†(t + τ)a(t + τ)〉, (33a)

〈a†(t)R(t)a†(t + τ)a(t + τ)〉, (33b)

〈a†(t)R(t)R†(t + τ)a(t + τ)〉. (33c)

In section 3, we will show that the fluctuation part in the current operator does not contribute
to the average current, so the average current 〈 Î R〉 = γR〈a†(t)a(t)〉 is held. But the fluctuation
terms will contribute to the current noise through the correlations in equation (33).

3. Application I: single-level transport

In this section, the general quantum Langevin formula is applied to the resonant transport
through a quantum dot. As the first example, we consider a model in which only a single energy
level in the quantum dot is relevant. The system Hamiltonian reads

Hsys = h̄ω0a†a. (34)

We consider the large bias condition and assume that the single-particle energy level with
energy h̄ω0 is well within the bias window, i.e. µL−ω0, ω0−µR� γL, γR, with µL/R being
the chemical potentials of the left/right leads. According to the discussion in section 2.1, the
quantum Langevin equation reads

˙̃a(t)=−
γL + γR

2
ã(t) + L̃(t) + R̃(t), (35)
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where ã(t)= a(t)eiω0t , L̃(t)= eiω0tL(t), and R̃(t)= eiω0tR(t) are defined in the rotating
reference frame to single out the slow-varying dynamics. In the white-noise limit, the correlation
between the noise operators can be written as (see appendix)

〈L̃
†
(t)L̃(t ′)〉 = γLδ(t − t ′), (36a)

〈R̃(t)R̃
†
(t ′)〉 = γRδ(t − t ′), (36b)

〈L̃(t)L̃
†
(t ′)〉 = 〈R̃

†
(t)R̃(t ′)〉 = 0. (36c)

Using these relations, we calculate the average current and the current noise.

3.1. Average current

From equation (35), the system operator ã(t) in terms of the noise operators is

ã(t)= e−0/2t ã(0) +
∫ t

0
e−0/2(t−t ′)L̃(t ′) dt ′ +

∫ t

0
e−0/2(t−t ′)R̃(t ′) dt ′, (37)

where 0 = γL + γR. Multiplying by the noise operator L̃
†
(t) both sides of equation (37), we have

〈L̃
†
(t)ã(t)〉 = e−0/2t

〈L̃
†
(t)ã(0)〉+

∫ t

0
e−0/2(t−t ′)

〈L̃
†
(t)L̃(t ′)〉 dt ′

=

∫ t

0
dt ′[e−0/2(t−t ′)γLδ(t − t ′)]=

γL

2
. (38)

Here, we have assumed that at initial time t = 0, the system and the reservoir are independent,
i.e. 〈L̃

†
(t)ã(0)〉 = 〈L̃

†
(t)〉〈ã(0)〉 = 0. Similarly, we obtain

〈ã†(t)L̃(t)〉 =
γL

2
(39)

and

〈ã†(t)R̃(t)〉 = 〈R̃
†
(t)ã(t)〉 = 0. (40)

Thus, according to equation (29b), the fluctuation part of the current operator does not contribute
to the average current, and the average current becomes

〈IR〉 = γR〈ã
†ã〉. (41)

To determine the mean occupation number 〈ã†ã〉, we use the equation of motion

d

dt
ã†ã = ȧ†ã + ã†ȧ

= −0ã†ã + ã†(t)L̃(t) + L̃
†
(t) ã(t) + ã†(t)R̃(t) + R̃

†
(t)ã(t). (42)

The ensemble average leads to

d

dt
〈ã†ã〉 = −0〈ã†ã〉+ γL. (43)

Thus, the averaged population in the quantum dot is

〈ã†ã〉 =
γL

γL + γR
−

γL

γL + γR
e−(γL+γR)t . (44)
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As a result, the average current at steady state for t→ +∞ is

〈 Î R〉ss =
γLγR

γL + γR
, (45)

which is the well-known result for the resonant tunneling transport [6, 8].

3.2. Current noise

To investigate the current noise, we calculate the current–current correlation 〈 Î R(t) Î R(t + τ)〉.
With the definition of the current operator in equation (29b), the noise contains typically two-
time correlations, such as

〈a†(t)a(t)a†(t + τ)a(t + τ)〉 ≡ 〈n̂(t)n̂ (t + τ)〉 (46)

and

〈a†(t)R̃(t)R̃
†
(t + τ)a(t + τ)〉. (47)

We will discuss such correlations one by one.
Noting that the electron number correlation function 〈n̂(t)n̂ (t + τ)〉 contains only the

system operators, we use the quantum regression theorem [35] and equation (43) and
obtain

d

dτ
〈n̂(t)n̂(t + τ)〉 = −0〈n̂(t)n̂(t + τ)〉+ γL〈n̂(t)〉. (48)

This equation, together with the initial condition with respect to τ , i.e. for τ = 0,
〈n̂(t)n̂ (t + τ)〉 = 〈n̂(t)n̂(t)〉 = 〈n̂(t)〉, determines the occupation number fluctuation in the
quantum dot. The steady state correlation is

lim
t→+∞
〈n̂(t)n̂(t + τ)〉 =

γ 2
L

(γL + γR)2 +
γLγR

(γL + γR)2 e−(γL+γR)τ . (49)

The other terms contain the correlations between the system and noise operators. Taking
〈ã†(t)R̃(t)R̃

†
(t + τ) ã (t + τ)〉, for example, according to equation (37), we have

〈ã†(t)R̃(t)R̃
†
(t + τ)ã(t + τ)〉 =

∫ t

0
dt1

∫ t+τ

0
dt2e−0/2(t−t1)−0/2(t+τ−t2)G(t1, t, t + τ, t2), (50)

where the four-time noise correlation is defined as

G(t1, t2, t3, t4)= 〈L̃
†
(t1)R̃(t2)R̃

†
(t3)L̃(t4)〉. (51)

According to the independent noise assumption and the white-noise approximation,

G(t1, t2, t3, t4)= γLγRδ (t1− t4) δ (t2− t3) . (52)

Thus, we have

〈ã†(t)R̃(t)R̃
†
(t + τ)ã(t + τ)〉 =

∫ t

0
dt1

∫ t+τ

0
dt2[e−0/2(2t+τ−t1−t2)δ (t1− t2) δ (τ )]

=
γLγR

γL + γR
e−(γL+γR)/2τδ(τ ), for t→ +∞. (53)

Similarly,

〈ã†(t)R̃(t)ã†(t + τ)ã(t + τ)〉 =
γLγR

γL + γR
e−(γL+γR)τ , for t→ +∞. (54)
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It can be checked that all other terms in the current–current correlation function vanish.
Consequently, the current–current correlation function is

g(2)(τ )=−
γ 2

L γ 2
R

(γL + γR)2 e−0τ +
γLγR

γL + γR
e−0/2τδ(τ ), (55)

and its Fourier transformation gives the current noise spectra,

S(ω)= 2e〈 Î R〉ss
γ 2

L + γ 2
R + ω2

(γL + γR)2 + ω2
. (56)

This result agrees with the ones derived from other approaches [26] and shows that the presence
of the single-level quantum dot suppresses the zero-frequency current noise to half of the
Poisson value SP = 2e〈IR〉ss in the case of γL = γR.

It is worth emphasizing that, as clearly shown in our quantum noise approach, although the
fluctuation part (see equation (29b)) of the current operator does not contribute to the average
current, it does to the current noise. According to our approach, the current–current correlation
originates from three different kinds of sources: (i) the on-site number–number correlation
(equation (49)), which always contributes a positive correlation, (ii) the correlation between the
fluctuation terms equation (53), which induces a white-noise correlation, and (iii) the correlation
between the on-site number and the fluctuation term equation (54), which always provides
a negative correlation. This classification of current–current correlation is also valid in the
interacting case, as will be discussed below.

4. Application II: Coulomb blockade

4.1. Average current

Now we apply the general theory to the Coulomb blockade case. As an example, we consider
that a single orbital level in the quantum dot is relevant (i.e. within the energy range of interest).
The system Hamiltonian reads

Hsys(ai , a†
i )= h̄ω↑a

†
↑
a↑ + h̄ω↓a

†
↓
a↓ + Ua†

↑
a↑a

†
↓
a↓, (57)

where h̄ω↑,↓ are the single-electron energy for spin-up and spin-down electrons in the quantum
dot, and U is the Coulomb interaction strength between two electrons. To illustrate the
application of the quantum Langevin approach, we focus on the average current and current
noise in the regions near the Coulomb blockade peaks, and consider the large U limit,
i.e. h̄ω↑ + U, h̄ω↓ + U � µL� h̄ω↑, h̄ω↓� µR. The higher-order (e.g. cotunneling) processes,
which are dominant near the Coulomb blockade valleys at low temperatures, are not included
in the example discussed below.

As has been discussed in section 2.2, although there is interaction between the electrons in
the system Hamiltonian, Hsys is diagonalized as

Hsys = h̄ω↑σ↑↑ + h̄ω↓σ↓↓ + (h̄ω↑ + h̄ω↓ + U )σdd, (58)

and the projection operators are related to the Fermion operators by

a↑ = σv↑− σ↓d, (59a)

a↓ = σv↓ + σ↑d, (59b)

New Journal of Physics 13 (2011) 013005 (http://www.njp.org/)

http://www.njp.org/


13

Figure 2. Schematic illustration of Coulomb blockade transport. The quantum
dot can be regarded as a four-level artificial atom with |v〉, |↑〉, |↓〉 and |d〉
representing the vacuum, spin-up, spin-down and doubly occupied states. The
lower panel shows the two elementary processes of a spin-up electron tunneling
out of the quantum dot depending on whether the spin-down state is occupied
or not.

where σi j = |i〉〈 j | for i, j = v,↑,↓ and d. The subscripts v,↑,↓ and d represent the vacuum,
spin-up, spin-down and doubly occupied states, respectively (figure 2). Annihilating an electron
with definite spin (say spin-up) from the quantum dot consists of two different projection
processes depending on whether the spin-down level is occupied or not.

Here, we assume that the quantum dot is coupled to ferromagnetic leads. Thus, the electron
with different spin can tunnel on and off the quantum dot with different rates. The quantum
Langevin equations of the projection operators σi j in this Coulomb blockade case follow the
general formula in section 2.2. The resultant equations for the diagonal elements are

σ̇vv =−
0↑ + 0↓

2
σvv +

0↑

2
σ↑↑ +

0↓

2
σ↓↓− [F†

↑
σv↑ +F†

↓
σv↓−F↑σ↑v −F↓σ↓v], (60a)

σ̇↑↑ =−
0↑ + 0↓

2
σ↑↑ +

0↑

2
σvv +

0↓

2
σdd + [F†

↑
σv↑−F

†
↓
σ↑d −F↑σ↑v +F↓σd↑], (60b)

σ̇↓↓ =−
0↑ + 0↓

2
σ↓↓ +

0↓

2
σvv +

0↑

2
σdd + [F†

↑
σ↓d +F†

↓
σv↓−F↑σd↓−F↓σ↓v], (60c)

σ̇dd =−
0↑ + 0↓

2
σdd +

0↓

2
σ↑↑ +

0↑

2
σ↓↓− [F†

↑
σ↓d −F

†
↓
σ↑d −F↑σd↓ +F↓σd↑], (60d)

and those for the off-diagonal elements are

σ̇v↑ =−i1v↑σv↑−
0↑ + 0↓

2
σv↑−

0↓

2
σ↓d + [F↑(σvv + σ↑↑) +F↓σ↓↑ +F†

↓
σvd], (61a)

σ̇↓d =−i1↓dσ↓d −
0↑ + 0↓

2
σ↓d −

0↓

2
σv↑− [F↑(σ↓↓ + σdd)−F↓σ↓↑−F

†
↓
σvd], (61b)
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σ̇v↓ =−i1v↓σv↓−
0↑ + 0↓

2
σv↓−

0↑

2
σ↑d + [F↓(σvv + σ↓↓) +F↑σ↑↓−F

†
↑
σvd], (61c)

σ̇↑d =−i1↑dσ↑d −
0↑ + 0↓

2
σ↑d +

0↑

2
σv↓ + [F↓(σ↑↑ + σdd)−F↑σ↑↓ +F†

↑
σvd], (61d)

σ̇vd =−i1vdσvd −
0↑ + 0↓

2
σvd + [F↑(σ↑d + σv↓)−F↓(σv↑− σ↓d)], (61e)

σ̇↑↓ =−i1↑↓σ↑↓−
0↑ + 0↓

2
σ↑↓ + [F†

↑
(σ↑d + σv↓)−F↓(σ↑v − σd↓)], (61 f )

where 1i j = ω j −ωi , Fs ≡ Fs(t)= Ls(t) +Rs(t) for s ∈ {↑,↓}, and the spin-dependent noise
operators Ls(t) and Rs(t) are defined as

Ls(t)=−
∑

k

ξkse
−iω(L)

ks tbks(0), (62a)

Rs(t)=−
∑

j

ζ jse
−iω(R)

js tc js(0). (62b)

The damping rate 0s = γLs + γRs , with the spin-dependent tunneling rates

γLs = 2πξ 2
s (ωs)D(L)

s (ωs), (63a)

γRs = 2πζ 2
s (ωs)D(R)

s (ωs), (63b)

where ξs and ζs are the coupling amplitudes of the quantum dot to the left and right leads, and
D(L)

s (ω) and D(R)
s (ω) are the spin-resolved density of states of left and right leads, respectively.

These Langevin equations of the system variables are analogous to the ones used to
describe the quantum theory of laser [34, 35]. In the quantum theory of laser, the atoms are
subject to bosonic reservoirs, while in our quantum transport case, the quantum dot is ‘pumped’
by a fermionic reservoir (the left lead) and output to another fermionic reservoir (the right lead).

In contrast to the non-interacting case (see equation (35)), the noise operators couple to the
system projection operators in equations (60) and (61). The correlations between noise operators
and projection operators, such as 〈L†

s (t)= σi j(t)〉, are calculated according to the generalized
causality relation equation (26). Taking 〈L†

↑
(t)= σv↑(t)〉, for example,

〈L†
↑
(t)σv↑(t)〉 = 〈L̃

†
↑
(t)σ̃v↑(t)〉 = 〈[L̃

†
↑
(t), σ̃v↑(t)]+〉− 〈σ̃v↑(t)L̃

†
↑
(t)〉

=
1
2γL〈[a

†
↑
(t), σv↑(t)]+〉 =

1
2γL〈σvv(t) + σ↑↑(t)〉, (64)

where σ̃v↑(t)= σv↑(t)eiω↑t is the slow-varying amplitude of projection operator, and L̃
†
↑
(t)=

L†
↑
(t)e−iω↑t . The correlation 〈σ̃v↑(t)L̃

†
↑
(t)〉 in the second line of equation (64) vanishes when the

noise operator L̃
†
↑
(t) acts on the full-filled Fermi sea of the left lead (see appendix).

With these correlations, the ensemble average of equations (60) and (61) gives the ‘rate
equations’ for the diagonal elements,

〈σ̇vv〉 = −(γL↑ + γL↓)〈σvv〉+ γR↑〈σ↑↑〉+ γR↓〈σ↓↓〉, (65a)

〈σ̇↑↑〉 = −γR↑〈σ↑↑〉+ γL↑〈σvv〉+ (γL↓ + γR↓)〈σdd〉, (65b)
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〈σ̇↓↓〉 = −γR↓〈σ↓↓〉+ γL↓〈σvv〉+ (γL↑ + γR↑)〈σdd〉, (65c)

〈σ̇dd〉 = −(γL↑ + γL↓ + γR↑ + γR↓)〈σdd〉, (65d)

and for off-diagonal elements,

〈σ̇v↑〉 = −(i1v↑ + 01)〈σv↑〉−
γL↓ + 2γR↓

2
〈σ↓d〉, (66a)

〈σ̇↓d〉 = −(i1↓d + 02)〈σ↓d〉−
γL↓

2
〈σv↑〉, (66b)

〈σ̇v↓〉 = −(i1v↓ + 03)〈σv↓〉+
γL↑ + 2γR↑

2
〈σ↑d〉, (66c)

〈σ̇↑d〉 = −(i1↑d + 04)〈σ↑d〉+
γL↑

2
〈σv↓〉, (66d)

〈σ̇vd〉 = −(i1vd + 2γL↑ + 2γL↓ + γR↑ + γR↓)〈σvd〉, (66e)

〈σ̇↑↓〉 = −(i1↑↓ + γR↑ + γR↓)〈σ↑↓〉, (66 f )

where 01 = (γL↑ + γL↓ + γR↑)/2, 02 = (γL↑ + γL↓ + γR↑ + 2γR↓)/2, 03 = (γL↑ + γL↓ + γR↓)/2 and
04 = (γL↑ + γL↓ + 2γR↑ + γR↓)/2. Equation (65) shows that the coherence between energy levels
vanishes after a long time, i.e.

〈σi j(t)〉 = 0, for i 6= j and t→ +∞. (67)

This indicates that the two different spin channels are incoherent, which physically arises from
the fact that noise operators with different spins are uncorrelated, i.e. 〈L†

↑
(t)L↓(t ′)〉 = 0.

The rate equations (65) describe the population transfer between each energy level, and the
steady-state populations are

〈σvv〉 =
γR↑γR↓

γL↓γR↑ + γL↑γR↓ + γR↑γR↓
, (68a)

〈σ↑↑〉 =
γL↑γR↓

γL↓γR↑ + γL↑γR↓ + γR↑γR↓
, (68b)

〈σ↓↓〉 =
γL↓γR↑

γL↓γR↑ + γL↑γR↓ + γR↑γR↓
, (68c)

〈σdd〉 = 0. (68d)

The average current is

〈 Î R〉 = 〈 Î R↑〉+ 〈 Î R↓〉 = γR↑〈σ↑↑〉+ γR↓〈σ↓↓〉

=
(γL↑ + γL↓)γR↑γR↓

γL↓γR↑ + γL↑γR↓ + γR↑γR↓
. (69)

The current vanishes if γR↑ = 0 or γR↓ = 0. This is because turning off a certain spin channel,
say the spin-up channel, i.e. γR↑ = 0, will induce the accumulation of the spin-up electron on
the quantum dot. Then the electron tunneling of both spin channels is blocked due to the strong
Coulomb interaction. When the tunneling rates are spin independent, i.e. γL↑ = γL↓ = γL and
γR↑ = γR↓ = γR, the average current in equation (69) becomes 〈 Î R〉 = 2γLγR/(2γL + γR), which
agrees with the results obtained by other methods [8, 9, 26].
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4.2. Current noise

Now we turn to the current noise. Similar to the non-interacting case, the two-time correlations
of the following form should be calculated,

〈ns(t)ns′(t + τ)〉, (70a)

〈a†
s (t)Rs(t)R

†
s′(t + τ)as′(t + τ)〉, (70b)

〈a†
s (t)Rs(t)R

†
s′(t + τ)as′(t + τ)〉. (70c)

In the interacting case, the system projection operators cannot be expressed in terms of the
simple integration of the noise operators as in the non-interacting case (see equation (37)). The
causality relations introduced in section 2.3 provide us with a convenient way of converting the
noise–system correlation to the system–system correlation. Thus, in the white-noise limit, as
a powerful tool, the quantum regression theorem is applied to calculate the two-time system
correlations.

Noting that the noise operator Rs(t) plays the role of ‘annihilation operator’, the
correlations between noise and system operators can be calculated following the spirit of
Wick’s theorem (see the appendix). Taking the spin-up component, for example, the correlation
〈a†
↑
(t)R↑(t)R

†
↑
(t + τ)a↑(t + τ)〉 is

〈a†
↑
(t)R↑(t)R

†
↑
(t + τ)a↑(t + τ)〉

= 〈a†
↑
(t)[R↑(t),R

†
↑
(t + τ)]+a↑(t + τ)〉− 〈a†

↑
(t)R†

↑
(t + τ)R↑(t)a↑(t + τ)〉

= γR〈a
†
↑
(t)a↑(t + τ)〉δ(τ ). (71)

The second line of equation (71) is simplified by noting the fact that [R↑(t),R
†
↑
(t ′)]+ = γRδ(t −

t ′), and the third line vanishes since [a†
↑
(t),R†

↑
(t + τ)]+ = 0. This white-noise correlation

provides a constant current noise background. Due to the δ(τ ) function, only equal-time
correlation (τ = 0) is relevant. By noting equation (69), this correlation is written as

〈a†
↑
(t)R↑(t)R

†
↑
(t + τ)a↑(t + τ)〉 = 〈 Î R↑〉δ(τ ). (72)

For the correlation 〈a†
↑
(t)R↑(t)a

†
↑
(t + τ)a↑(t + τ)〉 ≡ 〈a†

↑
(t)R↑(t)n↑(t + τ)〉, it can be

translated into the correlations between the system operators using the causality relations as

〈a†
↑
(t)R↑(t)n↑(t + τ)〉 = 〈a†

↑
(t)[R↑(t), n↑(t + τ)]〉 = γR〈a

†
↑
(t)[a↑(t), n↑(t + τ)]〉

= γR〈n↑(t)n↑(t + τ)〉− γR〈a
†
↑
(t)n↑(t + τ)a↑(t)〉. (73)

The first term cancels out the contribution of equation (70a). As a result, the spin-up
current–current correlation is

g(2)

↑↑
(τ )= lim

t→+∞
〈 Î R↑(t) Î R↑(t + τ)〉

= lim
t→+∞
〈 Î R↑〉δ(τ ) + γ 2

R↑〈a
†
↑
(t)n↑(t + τ)a↑(t)〉. (74)

The current–current correlations of different spin components are calculated similarly, and, in
general, they can be expressed in terms of the correlations of system operators as

g(2)

ss′ (τ )= lim
t→+∞
〈 Î Rs (t) Î Rs′(t + τ)〉

= lim
t→+∞
〈 Î Rs〉δ(τ )δss′ + γRsγRs′〈a

†
s (t)ns′(t + τ)as(t)〉. (75)

New Journal of Physics 13 (2011) 013005 (http://www.njp.org/)

http://www.njp.org/


17

Here, we have shown an analogous form of the current–current correlation to the second-
order optical coherence function [35]. The last term of equation (75) can be calculated from
the quantum regression theorem. By this theorem, the current–current correlation function is
determined by the rate equations (65), and in the Coulomb blockade case, it does not show the
effect of the quantum coherence terms in equation (66).

The total current correlation function is

g(2)(τ )= lim
t→+∞
〈 Î R(t) Î R(t + τ)〉− 〈 Î R〉

2

= g(2)

↑↑
(τ ) + g(2)

↑↓
(τ ) + g(2)

↓↑
(τ ) + g(2)

↓↓
(τ )−〈 Î R〉

2. (76)

Its Fourier transformation gives the current noise spectrum S(ω). In the spin-independent
tunneling rate case, i.e. γL↑ = γL↓ = γL and γR↑ = γR↓ = γR, the noise spectrum is

S(ω)= 2e〈 Î R〉
4γ 2

L + 3γLγR + γ 2
R

(2γL + γR)2 + ω2
. (77)

This result deviates from the single-level case (see equation (56)), due to the presence of the
Coulomb interaction.

Typical current noise spectra for the spin-dependent tunneling rate case are shown in
figure 3(a). The Fano factor is

F ≡ S(ω = 0)/2e〈 Î R〉

= 1−
γR↑γR↓(γL↓γR↑ + γL↑γR↓)− γL↑γL↓(γR↑− γR↓)

2

2(γL↓γR↑ + γL↑γR↓ + γR↑γR↓)2
. (78)

It is found that super-Poissonian noise arises when the tunneling is spin dependent, which
can be realized, e.g., by using magnetized barriers between the leads and the quantum dot.
Super-Poissonian noise appears when the numerator of the second term becomes negative. The
Fano factor as a function of the tunneling rate imbalance is shown in figure 3(b).

Physically, the super-Poissonian noise is the consequence of the dynamical channel
blockade effect [21, 24]. The tunneling rate imbalance induces different average currents for
the two spin channels. Thus, in addition to the noises of the channels themselves, the shot noise
between the two channels gives rise to the low-frequency noise enhancement. Such a kind of
shot noise is absent when PL = 1− PR since the two spin channels have the same current.

5. Relation to other theories

5.1. Relation to the Landauer–Büttiker formula

Here, we show that the Landauer–Büttiker formula can be reproduced by the quantum Langevin
approach. For simplicity, let us consider the single energy level transport example.

According to equation (29b) and the boundary relations equation (23), the current operators
can be expressed solely by the input and output noise operators. For example,

Î R =
1

γR
(R̃

†
out(t)R̃out(t)− R̃

†
in(t)R̃in(t)). (79)

Thus, it is clear that the average current is divided into the input current proportional to
〈R̃

†
in(t)R̃in(t)〉 and the output current proportional to 〈R̃

†
out(t)R̃out(t)〉.
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Figure 3. (a) Current noise spectra S(ω) (normalized by the Poisson value
SP = 2e〈 Î R〉) for γR↓ = 0.1, 0.3, . . . , 0.9. Other parameters are chosen as γL↑ =

γL↓ = γR↑ = 1. (b) The Fano factor as a function of the imbalance between
spin-resolved tunneling rates PL and PR, which are defined as PL = γL↑/(γL↑ +
γL↓) and PR = γR↑/(γR↑ + γR↓), for given total tunneling rates γL↑ + γL↓ = γR↑ +
γR↓ = 1. The white thick lines are the boundary between sub-Poisson and super-
Poisson regimes, i.e. F = 1.

Furthermore, defining the scattering matrix S, the Fourier transformation of output noise
operators is expressed in terms of the input operators as(

L̃out(ω)

R̃out(ω)

)
= S

(
L̃in(ω)

R̃in(ω)

)
, (80)

with

L̃in/out(ω)=

∫
∞

−∞

eiωt L̃in/out(t) dt, (81a)

R̃in/out(ω)=

∫
∞

−∞

eiωtR̃in/out(t) dt, (81b)

and

S(ω)≡

(
RL←L(ω) TL←R(ω)

TR←L(ω) RR←R(ω)

)
=

2

γL + γR− 2iω

(
γL−γR

2 − iω γL

γR −
γL−γR

2 + iω

)
, (82)

where the functions Ti← j(ω) and Ri← j(ω) can be regarded as the energy-dependent
transmission and reflection coefficients from lead j to lead i . The Fourier transformation of
the average current is

〈 Î R(ω)〉 =

∫
〈 Î R(t)〉eiωt dt

=
1

γR

∫
∞

−∞

[〈R̃
†
out(ω

′)R̃out(ω
′ + ω)〉− 〈R̃

†
in(ω

′)R̃in(ω
′ + ω)〉]

dω′

2π
. (83)
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Noting the relation equation (80) and the correlations between the noise operators,

〈L̃†
in(ω

′)L̃in(ω
′ + ω)〉 = 2πγLδ(ω), (84a)

〈R̃†
in(ω

′)R̃in(ω
′ + ω)〉 = 0, (84b)

we obtain the Landauer–Büttiker-like formula of the average current,

〈 Î R〉 =

∫ +∞

−∞

T (ω′)
dω′

2π
=

γLγR

γL + γR
, (85)

with the transmission spectrum,

T (ω)=
γLγR

(
γL+γR

2 )2 + ω2
. (86)

5.2. Relation to non-equilibrium Green’s function (NEGF) theory

Here we discuss the relation between the quantum Langevin approach and the NEGF
for the quantum transport problems. In the NEGF theory, various Green’s functions (e.g.
retarded/advanced Green’s function and lesser/greater Green’s function) are defined. These
Green’s functions are related to different physical quantities (e.g. local density of states and
level occupations). Using the quantum Langevin approach, the Green’s functions and the related
quantities could be calculated straightforwardly. Here we take the retarded Green’s function, for
example, which is defined as [36]

Gs(τ )=−iθ(τ )〈{as(t + τ), a†
s (t)}〉, (87)

for s =↑ or ↓. The local density of states (LDOS) Ds(ω) is given by

Ds(ω)=−
1

π
Im[Gs(ω)], (88)

where G̃s(ω) is the Fourier transformation of Gs(τ ). The LDOS contains the essential
information about the system relevant to quantum transport. In the following, we take the
Coulomb blockade example, and give the retarded Green’s function and the LDOS using the
quantum noise approach.

Noting that the definition of the retarded Green’s function equation (87) only involves
the system operators as(t) and a†

s (0), we apply the quantum regression theorem to calculate
their correlations. The retarded Green’s function can be expressed in terms of the two-time
correlations between the projection operators. Consider the spin-up component, for example,

G↑(τ )=−iθ(τ )〈{σv↑(t + τ)− σ↓d(t + τ), σ↑v(t)− σd↓(t)}〉. (89)

The equations of motion for these projection operators are given in equation (66). By the
quantum regression theorem, the two-time correlations are determined by

d

dτ

(
〈σ↑v(t)σv↑ (t + τ)〉

〈σ↑v(t)σ↓d (t + τ)〉

)
=M

(
〈σ↑v(t)σv↑ (t + τ)〉

〈σ↑v(t)σ↓d (t + τ)〉

)
, (90)

with the initial condition for τ = 0(
〈σ↑v(t)σv↑(t)〉
〈σ↑v(t)σ↓d(t)〉

)
=

(
〈σ↑↑(t)〉

0

)
, (91)
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Figure 4. LDOS for the Coulomb blockade case obtained by the quantum
Langevin approach. Parameters are ω↑ = 10, U = 30 and γ = 1. LDOS shows a
double-peak structure for U � γ .

where the coefficient matrix M is defined as

M=
(
−3γ /2− iω↑ −3γ /2
−γ /2 −5γ /2− i(ω↑ + U )

)
. (92)

Here, γL↑ = γL↓ = γR↑ = γR↓ = γ is assumed for simplicity. The other correlations involved in
equation (89) can be similarly calculated.

Thus, the retarded Green’s function is

G↑(τ )=−iθ(τ )e−2γ τ (W+e−iω+τ + W−e−iω−τ ), (93)

with the renormalized frequencies

ω± = ω↑ +
U

2
±

1

2

√
U 2− 2iγU − 4γ 2 (94)

and the weight factors

W± =
1

2
±

U/6− iγ

2
√

U 2− 2iγU − 4γ 2
. (95)

The Fourier transformation of the Green’s function gives the LDOS (see figure 4). It is obvious
that, for the large U case considered in this paper, the LDOS consists of two Lorentz-shaped
peaks, centered around ω↑ and ω↑ + U . The two peaks separate from each other by U , which is
a signature of the Coulomb blockade [6].

6. Conclusions and outlook

In this paper, we have developed a quantum noise approach to treat the quantum transport
through a nanostructure such as a quantum dot. We formulate the average current and the current
noise in terms of the correlations between the noise operators. The quantum noise approach is
applied to a paradigmatic example, namely transport through a single quantum dot under large
biases and both the non-interacting and Coulomb blockade cases are investigated. With the
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Markovian approximation for the tunneling processes, the electron–electron interaction in the
quantum dot can be treated exactly.

The quantum noise approach provides a bridge between quantum optics and quantum
transport. Thus the notions and methods in quantum optics could be adopted to study quantum
transport through nanostructures. Although we show the application of the quantum noise
approach by a single quantum dot example, the theory is not limited to this simple case. On the
one hand, the system could be generalized to more complicated ones, such as coupled quantum
dots, multi-end nano-circuits or systems with spin interaction. On the other hand, the reservoirs
of other kinds, such as phonon baths or spin baths, could be included to explore how such
reservoirs would affect the current and current noise, providing a method of studying the bath
dynamics via current noises. The Markovian approximation may also be released with colored
noise correlation functions of the reservoir used in lieu of the white-noise model adopted in this
paper.
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Appendix. Properties of the noise operators

In this appendix, we give the correlations between noise operators. We consider the single-level
case here. The physical quantities of interest are determined by the noise correlations, such as
〈L̃†(t)L̃(t ′)〉. According to the definition of the noise operators,

〈L̃†(t)L̃(t ′)〉 =
∑
k,k′

ξkξk′e
i(ωk−ω0)t−i(ωk′−ω0)t ′〈b†

kbk′〉

=

∑
k

ξ 2
k ei(ωk−ω0)(t−t ′)n(L)

th (ωk)

=

∫
∞

0
ξ 2(ωk)D(ωk)n

(L)

th (ωk) ei(ωk−ω0)(t−t ′) dωk, (A.1)

where D(ωk) is the density of states in the leads, and

n(L)

th (ω)≡
1

1 + e(h̄ω−µL)/kBT
(A.2)

is the thermal occupation number of the lead in quasi-equilibrium. The Markovian
approximation requires two assumptions. First assumed is the ‘flat band’ condition that the
relative change in the effective density of states around the resonant ω0 over a range of the
characteristic damping rate γL is much less than unity, i.e.(

∂ ln D̄(ωk)

∂ωk

)−1

� γL, (A.3)
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where D̄(ωk)≡ ξ 2(ωk)D(ωk). Under this condition, D̄(ωk) can be replaced by its value at ω0,
and the correlation becomes

〈L̃†(t)L̃(t ′)〉 = D̄(ω0)

∫ µL

0
ei(ωk−ω0)(t−t ′) dωk. (A.4)

Here, the zero-temperature case has been considered for simplicity. Secondly, under the large
bias condition, the resonant level ω0 is far away from the Fermi energy and the conduction band
bottom (chosen as the energy origin), i.e.

µL−ω0, ω0� γL. (A.5)

In this case, the integration over ωk is extended to ±∞ and finally results in the white-noise
correlation,

〈L̃†(t)L̃(t ′)〉 = γLδ(t − t ′), (A.6)

where γL = 2πξ 2(ω0)D(ω0).
Similarly, for the right lead,

〈R̃(t)R̃†(t ′)〉 = γRδ(t − t ′). (A.7)

Here, we use the fact that the thermal occupation number n(R)

th (ω j)= 0 for the right lead around
the resonant level ω0. In the same way, one can show that other noise correlations vanish, i.e.

〈L̃(t)L̃†(t ′)〉 = 〈R̃†(t)R̃(t ′)〉 = 0. (A.8)

Note that equation (A.8) implies that the noise operators L̃†(t) and R̃(t) play the role
of ‘annihilation operators’, since they always give zero correlations when they stand on the
rightmost position. With this observation, the normal-ordered product of noise operators can be
defined by placing L̃†(t) and R̃(t) on the rightmost position, and the expectation value of the
normal-ordered product vanishes identically. Thus, Wick’s theorem is generalized to the noise
operators and the current and current noise can be exactly calculated in the white-noise limit.
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