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Summary. --  In this paper the representation theory of q-boson algebra in the 
non-generic case that q is a root of unity is studied from a purely mathematical point 
of view. Emphasis is placed on its cyclic representations. Various cyclic 
representations of the q-boson algebra are thereby constructed in explicit form. 
Using them, we obtain the cyclic representations of quantum superalgebras 
Uqosp(1, 2), Uqosp(1, 4) and quantum algebra (C2)q through the q-deformed- 
boson realization method. 

PACS 03.65.Fd - Algebraic methods. 

1.  - I n t r o d u c t i o n .  

At present much progress in the representation theory of quantum algebras and 
quantum superalgebras [1-4] has been made for both the generic ease that q is not a 
root of unity [5, 6] and the non-generic case that q is a root of unity [7-15]. For the 
latter, a completely new class of representations, cyclic representations, of quantum 
algebras (superalgebras) is constructed by different authors. In the cyclic 
representation, the generators beyond the Cartan sector are not nilpotent and thus it 
is not a highest-weight or lowest-weight representation. More recently, we 
generalized the q-boson realization theory[16-18] in the generic case to construct 
cyclic representations for slq (2) and slq (3). However, up to now, there is not a quite 
general theory to answer the foundamental questions in the representation of the 

(*) This work is supported by the Cha Chi Ming Fellowship through the CEEC at State 
University of New York at Stony Brook, and in part by the NFS of China through Northeast 
Normal University. 

499 



500 CHANG-PU SUN 

q-boson algebra Bq in the non-generic case: When does a finite-dimensional 
representation (FDR) of Bq exist? How many kinds of irreducible FDR are there for 
Bq ? One of the main purposes in this paper is to build such a theory. Thereby, we also 
give the explicit constructions of irreducible FDRs for Bq. Using them, we explicitly 
obtain the cyclic representations of quantum superalgebras A = Uqosp(1, 2), 
A ' =  Uq osp (1, 4) and quantum algebra (C2)q through the q-boson realization method 
for the first time. 

Notice that our obtained FDRs of the q-boson algebra Bq include its cyclic 
representations and the obtained cyclic FDRs of A, A ' ,  and (C2)q may be probably 
used to construct new R-matrices of the Yang-Baxter equation in connection with the 
generalized Potts models according to the recent works of Date et al. [13]. 

2. - Cyclic representation and other irreducible FDRs of the q-boson algebra. 

The q-boson algebra Bq is an associative algebra over the complex-number field C 
by a +, a - = a and Q -* satisfying 

a a q ~ l a  § a=Q~+ , Q+ Q- = Q  Q+ = 1 ,  

Q+ a_~ = q_*l a-* Q+ , Q a • = qXl a_+ Q- , q ~ C. 
(2.1) 

Formally, if we write Q-+ = q§ then the above relations are rewritten as fol- 
lows: 

(2.2) aa + = [ f i ' + l ] ,  a + a = [ N ] ,  [ .~ ,a  •  - a  -~ , 

where [f]  = ( q f - q - f ) / ( q - q - 2 ) .  Notice that the relations (2.1) or (2.2) are just 
satisfied by the original q-boson operators in ref. [16-20] constrained on the q-Fock 
space. Now, we are trying to prove 

Proposition 1. Only when q is a root of unity, the FDR of Bq exists. 

Proof. Let V be the carrier space of an FDR ~ of B, i.e. dim V < ~. As the field C 
is algebraically closed and Q+ commutes with Q , there must exist a non-zero vector 
such that 

Q• fo = q~)~ fo , 

where we formally denote ~(x) by x for x e Bq. The vectors 

f0, a + fo, a+2f0 . . . .  , a+kfo, ... 

are the eigenvectors of Q+ corresponding to the eigenvalues 

I~C,  

q)~, q;~+l, q~+2, . . . ,  q ~ + k ,  . . . .  

If q is not a root of unity, they are linearly independent when they are non-zero. This 
is because they correspond to different eigenvalues in this case. Due to dim V < ~,  
there must be l E Z + = {0, 1, 2 . . . .  } such that (a + )zfo = 0 but (a + )l-lfo ~ 0. Similarly, 
for the vectors 

~ 0  = a + l - 1  f o ,  Ul = a u o ,  u2 = a 2 u o ,  . . .  U k  = a k U o ,  . . . ,  
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there must exist l '  such that  a~'uo = 0 but aZ' - lUo ~ O. Then 

0 -- aa  +t fo = [N + 1]a +t-1 f0 = [~ + 1]Uo, 

0 = a + a l 'Uo = [ N ] a t ' - l a  +1-1 fo = [~ + l -  l ' ] u l , - 1  , 

that  is to say 

501 

[~ + l -  l ' ]  = 0, [)~ + 1] = 0 

or q e l ' -  1. So, q must be a root of unity. The proof ends. 

According to the above proposition, the focus to study the FDRs of Bq must be 
placed on the non-generic case. In the following discussions, we suppose that  q is a 
primitive p-th root of 1, i.e. qP = 1. With the help of a direct calculation and eqs. (2.1) 
or (2.2), we have 

L e m m a  1. (Q • and (a*)  kp belong to the centre of Bq at q P =  1, k e Z  += 
= {0, 1, 2, ...}. 

Therefore, due to Schur's lemma, it is reasonable to find the cyclic representation 
of Bq in which 

(p(a -~ ))kp = ~• (k) I ,  

where I is a unit matrix and ~• (k) e G. When k = 1, we denote ~• (1) by ~_+. Let  us 
state a central result in this paper. 

Propos i t ion  2. i) I f  ~+ or ~_ ~ 0, there exist an irreducible FDR of Bq which is 
cyclic, i.e. (a +)P or (a F;~0, where p is also the dimension of the representation. 

ii) If  ~§ = ~_ = 0, there exists a p- or (1/2)p-dimensional irreducible FDR 
of Bq. 

Proof. i) Let  V be the carrier space of an irreducible FDR of Bq. If  dim V > p, 
a +~ = ~§ I ~ 0 implies that  the vectors f~ = a+nfo(O <<- n < p - 1) ~ 0 and so they are 
linearly independent. Let  us t ry  to prove that  they span a Bq-invariant subspace that  
is irreducible. In fact, due to 

a+ fp-1 = a+~ f0 = ~+ fo - ~f0, 

~afo --- aa§ fp-1 = [N + 1]a +p-I fo = [~]fp-1 , 

we have the actions of Bq on {fn}: 

a+ fn  = f~+l , 0 ~ < n ~ < p - 2 ;  

a+fp - i  = ~ fo ,  

(2.3) afn = [n + ~] fn -1 ,  1 <<. n < p - 1, 

afo = D~] $-l fp 1, 

Q • ---- q +-(~+'~)f~. 
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They define a p-dimensional representa t ion on an invariant  subspace V(~, ~): { f ~ l  
0 ~< m ~< p - 1 }. I t  is contradictory to the irreducibility of V. 

I f  d i m V < p ,  there  exists l < p - 1  such that  f o , f ~ , f 2 , . . . , f t  ~ are linearly 
independent,  but fo, f l ,  ..., f /  ~, f i  are linearly dependent.  Since the eigenvalue offz is 
different from those of f~ (0 ~< n ~< 1 - 1 ~< p - 1), f l  = 0. Thus, 

~fo = a+P fo  = (a + F - l (  a+ ) t fo  = 0 

or ~ = 0 and the contradiction appears .  Pa r t  i) of the proposition is proved. 

ii) I f  dim V < p, there  exists m( < p) �9 Z + such tha t  a +m f0 = 0, but  a + ~ - l f 0  = 
= u0 ~ 0. Similarly, there exists m '  such that  a m ' u o  = 0 but  a m ' - l u o  ~ O. Then, the 
following equations: 

(2.4) t a u0 = 0 ; a + un = [~ + m - 1] u n 1 , 

a u  n = Un+ 1 , (n  ~ 0) ,  a u m , - i  = O, 

-+ _ - + ( , ~ + m - n -  1) 
[ Q  u ~ - q  U n ,  

n ~ 0 ,  

define an m ' ( <  p)-dimensional subrepresenta t ion on {u~ = a ~ u o  [0 <~ n <~ m '  - 1}. 
However,  

0 = a + a '~ 'Uo  = [~ + m - m ']urn,  1 , 

6 = a a  +'~ fo = [A + m] Uo, 

that  is to say, m = (1/2)p for even p or 0 for odd p. A similar discussion shows tha t  
there does not exist an irreducible representa t ion with dimension larger  than p. 

In the irreducible F D R  (2.3) constructed above, a +p = ~+I  and a p - - - ~ _ I =  
=~-1[~] [ )~+  1 ] . . . [ ~ + p - 1 ] I .  So we call the F D R  (2.3) cyclic representat ion.  
However,  the F D R  (2.4) is a highest-weight representat ion,  which is equivalent to 
that  given in ref. [14]. 

3. - H i g h e r - d i m e n s i o n a l  c y c l i c  r e p r e s e n t a t i o n  o f  Bq. 

In this section we construct  a class of cyclic representat ions,  in which (a • = 
= ~§ (~) (~ �9 Z +) but  (a + )P are not multiples of a unit matrix. To this end, we consider a 
subspace W genera ted  by an eigenvector I A) of Q • which satisfies 

(3.1) Q -+ [~) = q +)~ [2), ~ �9 C.  

I f  W carries the above-mentioned representat ions,  its basis can be chosen as 

[0 ( )0 )  - I0) = [)~), 11(~))  = a + [ ~ ) ,  12(~)) = a+2l~), . . . ,  I m(~)) = a + ~ l ~ ) ,  . . . .  

Obviously, they are  degenera te  as the eigenvectors of Q + when ~ >/2. In  the 
following discussion, we denote W by W(~(~), ~) for ~ >I 2. 
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Suppose that ~(a) --- $+ (a) ~ 0. Considering the following relations: 

[~] I~p - 1} = a a  + lap  - 1} = ~(~) a l~p  - 1}, 

we write down an ap-dimensional cyclic representation z~(~), ~ of Bq: 

"a + In(h)) = In + 1(~)t, 

a+ IP - 1(2)} = ~(a)]0(~)), 

(3.2) a I n ( ~ )  ) = [n + 2 ] l n  - 1(~)}, 

a I 0(;~)) 8 ( ~ ) - 1  [)~] ] o~p - 1()~)), 

Q-+ [n(~)) = q -~(~§ [n(~)). 

It  follows from eqs. (3.3) that  

(a § )~p = ~(~)I, 

(a-)~P = r  - ~ ( ~ ) - l [ ) k ]  [ )~ -~- 1] . . .  [), + ~p - 1] I .  
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0 ~ < n ~ < ~ p - 2 ,  

According to Schur's lemma, this representation is reducible because the central 
elements (a -+ )P are not multiples of the unit matrix. In fact, with the help of a direct 
calculation, we observe that  the p linearly independent vectors 

(3.3) f ( m )  = E V- l  l lP + m()O) ,  0 <~ m <. p - 1 
l=O 

span a Bq-invariant subspace for V~= ~(~), on which the irreducible representa-  
tion 

0 ~ < m ~ < p - 2 ;  a+ f ( m )  = f ( m  + 1), 

a§ f ( p  - 1) = ~f (O) ,  

a f ( m )  = [ m  + ,~]f(m + 1), 

af(O) = V-l[~]f(p _ 1), 

Q*- f ( m )  -= q • (~ + m) f ( m ) ,  

is isomorphic to that carried by V = W(~(~ = 1), 7). 

m ~ 0 ,  

4. - E l a b o r a t i o n s  o n  t h e  q - b o s o n  r e a l i z a t i o n .  

The q-boson realization theory of quantum algebras is a q-analogue of the boson 
realization of Lie algebras that is also called Jordan-Schwinger mapping (for Lie 
algebra of SU(2))[21]. In order to construct cyclic representations of quantum 
algebras and superalgebras,  we reformulate it in a general framework and then give 
its elaboration for the cyclic-representation case. 
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Let A and S be two given associative algebras, and ~: S ~ End (V) representation 
of S. If  there exists a homomorphism 9: A --~ S, then a representation ~: A --~ End (V) 
of A can be constructed through the following commutative diagram: 

A ~ S  

End (V) 

from the representation ~ of S, namely 

(4.1) y(g) x = ~(9(g)) x, Vg �9 A, x �9 V. 

Usually, S is chosen to be -simpler, than A. We call 9(A) and ~ = ~ o 9 S-realizations 
of A and its representation, respectively. When S is taken to be Heisenberg-Weyl 
(HW) algebra, the algebra of operators x and d / d x ,  and the super HW algebra, 
respectively, the above theory specifies the boson realization of the universal 
enveloping algebra (UEA) A of a Lie algebra [22, 23], the differential realization of 
the UEA A of a Lie algebra [24], and the UEA A of a Lie superalgebra [25]. 

The focus of this paper is placed on the q-boson realization of quantum algebras 
and superalgebras. In this sense, S is the many-state q-boson algebra B q ( N )  
generated by 

g ~ = I | 1 7 4  | 1 7 4 1 7 4 1 7 4 1 7 4  

where g = a-* and Q-*;A is a quantum algebra or quantum superalgebra. The 
representation of Bq (N) used in constructing representation of A is defined by 

~(gi)= 1 |  1 ... @ 1 | 174  1 | ... |  ~(g)�9 EndV(,~i,)~i) 
1, 2, i - l ,  i, i + l ,  ..., N 

where ~ is the cyclic representation (2.3). The product space 

V - -  V(~I, )kl) (~ V(~2, )~2) ~ ... @ V ( ~ i ,  )~i) @ . . .  @ V ( ~ N ,  AN)  

is thus the carrier space of ~. Usually, the q-boson realization of A with generators 
{x~} is formally expressed as 

N 
= l-I a~ m' a n'Dr' (4.2) 22 9(Z2) : E C { m i ,  n . . . .  } i "-~i , 

ml, n,; +_ritZ + "= i=1 

where Q ~ = (Q + )'~ for r/> 0 and = (Q - )-~ for r < 0 and C{~ ........ } are the coefficients 
to be determined. Correspondingly, the q-boson realization of the representation of A 
is defined by 

N 
(4.3) ~(Zi) : E C{mi,n~,r,}i~=l ~(ai+)m~(ai)n~p(Qi) r~. 

As shown in the following discussion, the representations constructed through 
eqs. (4.3) are cyclic for the well-chosen q-boson realizations 9. The key to our 
construction is that the cyclic representation (2.3) is used. 
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5. -- Cyclic representations of  quantum superalgebras Uq osp (1, 2) and Uq osp (1, 4). 

Following the definition of Uqosp(1,2) in ref.[26], we first write down the 
algebraic relations of generators V• and K • (=q • for Yqosp(1,2) 

(5.1) 
v+ v_ + v~ v+ - ! [2H~, 

K+V• =q--IV.K+ K - V •  =q+-~V• 

Its q-boson realization was given in ref. [27] as follows: 

(5.2) 

Uq 08p (1, 2) ~ Bq 

1) H ~ / 4  = ~(/-I) = -~ ~ . 

Then, we obtain an ap-dimensional representation ~(~(~), k), 

(5.3) 

i 
~ ] ] 2 ]  In + 1(2)}, "?+ In(h))= 

P + lap - 1(~)) = ~ ~(~)1o(~)), 

I7"_ In(2)) = g [a + n] In - 100), 

~-_ to(~))-= 

O<~n<ap-1 ,  

l <~n<<.~p-1, 

of Uqosp(1,2). Obviously, it is a cyclic representation because 

(17 + )~p = ~(~) I ,  (y_ )ap  = 2" ~(~)-1 [~] [~ + 1] . . .[2 + ~p -- 1]. 

When ~/> 2, it is reducible and {f(m)]0 ~< m ~ < p -  1} is an invariant subspace 
carrying an irreducible cyclic representation equivalent to 7~(~(1), ~) defined by (5.3). 
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Applying the same method, we obtain the p 2-dimensional cyclic representation of 
Uqosp (1, 4) [28, 29]: 

e lF(ml ,  m2)=[m2+ )~2]F(ml+l, m 2 - 1 ) ,  0~<ml~<p-2 ,  l < m 2 ~ < p - 1 ,  

elF(p - 1, m2)=[m2 + ),2]~1F(0, m 2 -  1), l~<m2~<p-1 ,  

elF(m1, O) = ~1 [)~2]F(m 1 + 1, p - 1), O<~ml<~p-2, 

e lF(p - 1, 0) = ~2 1 [~2] $1F(0, p - 1); 

f l F ( m l , m 2 ) = [ m l + ~ l ] F ( m l - l ,  m 2 + l ) ,  l<~m,<~p-1, 0~<m2~<P - 2 ,  

f l F ( m l ,  p - 1) = [ml + )~l]~2F(mt - 1), l <~ml <~P-1, 

flF(O, me) = ~1[~, ]F(p - 1, me + 1), O<~me <~p-2, 

fzF(O, p - 1) = ~ 1  [~1] ~2F( p - 1, 0); 

eeF(ml,  m e ) = ~ [  2 ]F(m~,me  + l),  O<~m2<~P-1, 

~ [  1 ] ~ F ( m ~ ,  0), eeF(m,,  p - 1) = 

1 ~ 1  F f2F(ml ,  O ) = ~ [ - ~ ] ~  [he] (ml, p - 1 ) ,  

K 1  F(ml ,  me) = q *_(m, m~)F(ml ' me), 

K~ F(ml ,  m2) = q +-(1/2+m~) F(ml ,  me);  

from its q-boson realization [28, 29]: 

t 
el  = al  + ae ,  f l  = a2 + a l ,  

~ :  + . ~ 1 

[ K (  = Q? Q? , K~ = q~-I/~q; , 

on the space V = V(~I, 71)| V(~2, ?2): 

{F(m~, me) = f ~  |  I f.~ ~ V(~l, )'1), f.~ ~ Y(~e, ~e)}. 
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Notice that the above results (5.3) and (5.4) are obtained for this first time to our 
best knowledge and a similar method can be used to construct cyclic representations 
of other quantum superalgebras through their explicit realizations, some of which are 
given in ref. [29]. 

6. - Cyclic representations of  (C2)q. 

In this section, we discuss the q-boson realization of cyclic representations of 
quantum algebra (Ce)q with generators El,  E2, F~, F2, H1 and He satisfying 

(6.1) 

[ H i ,  E l ]  -- E1  , [H1, E2] = - 2E2 , 

[H> El]  - E l  , [He, Eel = E2 , 

[Hi, F1] = - F 1  , [H1, F2] = 2E2 , 

[He, F1] = E i , [He, F2] = - F e  , 

[El, F2] = 0, [Ee ,  F1 ]  = 0 ,  

[ E i ,  F1] = [ H 1 ] ,  [E2,  F 2 ]  = [ H 2 ] ,  

GaGe - [3]q~G~i G2G1 + [3]q~G,G2G21 - G~G~ = O, 

G ~ G l - ( q + q  1 )GeG1G2+G1G~=O,  

[H1, He] = O, 

[f i t  _ t f -  t - f  

G = E , F .  

Using its q-boson realization [19], 

(6.2) I 
F, l = a ? a 2 ,  H = a ~ a i ,  [ l l  

1 +~ 1 a~ 
9 e =  [ ~ a e  , F 2 -  [2] ' 

~ r l  /V2 , - + = - Ki-  = Q ~ Q 2  

1 [ i ~  = Q~ q +_l/~ 
[1~ = N2 + ~ ,  

we obtain its cyclic representation 

(6.3a) 

E1 I m, n) = [~, + n] Im + 1, n - 1), 

E1 [ P -  1, n) = 4[,.r + n] [0, n - 1), 

E l l  m , O ) = v  l [ t ~ ] l m + l , p - 1 ) ,  

E i  IP - 1, 0) = @- i  [/~] 10 ' p _ 1), 

F1 Im, n) = [)~ + m] I r a -  1, n + 1), 

F1 [m, p - 1) = rj-l[Z + m] [ m -  1, 0), 

H l l0 ,  n ) = $  l [ 2 ] l p - l , n + l ) ,  

F1 [0, p - 1) -- vr  IP - 1, 0),  

/ ~  [m, n) = q +(m-n+~-~)[m, n);  

m ; ~ p - 1 ,  

m ~ O ,  

n ~ O ,  

n;~O,  

m ~ p - 1 ,  

n ; ~ p - 1 ,  

m ~ O ,  
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(6.3b) 

I 
/~2 Im, n) = [2~ Im' n + 2),  

g21m,  p - 1) = ~z]: lm,  1), 

E z l  m , p - 2 ) =  1--- : lm,  0), 
[2] 

I F z l m ,  n ) =  -- ~2][~ + n][,~ + n - 1 ]  lm, n -  2),  

f '2  Ira, O) = -- ! [ , ~ ]  [,~ _ 1 ]  Ira, p - 2 ) ,  
[2] 

] f ' z l m ,  1 ) - - - - ~ 2 ] [ , ~ + l ] [ ~ ] l m ,  p 1), 

[ /~2 Ira, n) = q • n) 
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O <<. n <<. p - 3 ,  

2 <<. n <<. p - 1 ,  

on t he  space  V = V(:: = :, ~1 ---- )~) ~) V(~2 -- 7, ~2 -- ~): 

{ Im, n) =fro |  I fro �9 V(:, ~), f ,  �9 V(r~, ~)}. 

Now, let us consider the reduction of the representat ion (6.3). When p is even, 
( -  1) m§ is invariant under  the action of the representat ion and so there exist two 
invariant subspaces 

W •  n ) l ( - 1 ) " + n =  __1}. 

They carry two irreducible cyclic FDRs,  respectively, for A and t~ ;~ 0. However, 
when p is odd, Ez and F2 mix W + and W -  with each other because they respectively 
change Ira, 0) into I m, 2), I m, 2) into I m, 4). . .  Ira, p - 1) into I m, 1) and I m, 1) into 
Ira, 3) . . . .  , Ira, p - 4 )  into Ira, p - 2 ) ,  Ira, p - 2 )  into Ira, 0), i.e. E2 and Fz 
mix lm, 0), Im, 2), ..., I m, p - 1) and Ira, 1), Ira, 3), ..., I m, p - 2) due to odd p. In 
this case, the representat ion (6.3) is irreducible. 

Finally, we discuss the constraint  of the representat ion (6.3) of (Cz)q on its 
subalgebra s/q(2) generated by E l ,  F1 and H : .  Obviously, there are p-invariant 
subspaces W(k)(0  <<. k <~ p - 1): 

{ f k ( m ) =  Im, k - m), O <<- m <<. k; f k ( m )  = Im, k + p - m), k + l <<- m <~ p - 1 }  

of slq (2) and 

p-1 

v= Zo w(k). 
k=0 



CYCLIC REPRESENTATIONS OF q-BOSON ALGEBRA ETC. 509 

Then, a p-dimensional cyclic 
follows: 

representation of S/q(2) is obtained on W(k) as 

m # k , p - 1 ,  I E l f k ( m )  -~ [m + k - m]fk(m)  , 
! 

I E~f~(k) = ~-l[tz]fk(k + 1), 

I E l f p _ l ( p  - 1) = @-l[~]fp_~(0) ,  

~ E l f k ( P  - 1) = ~[/z + k]fk(0),  

] F l f k ( m ) - - [ ~ + m ] f k ( m - 1 ) ,  m ~ O ,  k; k ~ p - 1 ,  

( 6 . 4 ) )  ] Fl fk(0)  = ~-~ [~]fk(P - 1), 

~ l f k (k  + l) = V l [ ~ + k - 1 ] f k ( k ) ,  

F l f p - l ( 0 )  = ~ l[)~]fp-l(p - 1), 

I k ~  fk (m)  = q ~(2m-k+~-~) f k (m) ,  

[ k~  f~ (m) = q ~ (k- m +~ + 1/2) fk (m).  

In the above representation, since 

E l f k ( P  - 1) = ~fk(0), F l fk(0)  = flfk(P -- 1) 

and ~ = $[~ + k] ~ 0 and/~ = ~-1 [;(] ~ 0, a similar discussion shows that  it is equivalent 
to the standard cyclic representation of S/q(2) given by De Concini and Kac in 
ref. [12], in which only two parameters are contained. In the representation (6.4), the 
extra parameters are introduced by the similarity transformation of the basis. 
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