New Realization of the Loop Algebras and Their Indecomposable Modules.

CHANG-PU SUN and HONG-CHEN FU

Physics Department, Northeast Normal University Changchen, Jilin Province, The People's Republic of China

(ricevuto l'8 Febbraio 1989)

Summary. — A new realization of the loop algebra \hat{G} (untwisted affine Kac-Moody algebra) is given on the enveloping field $\bar{\Omega}$ of the Bose algebra \mathscr{H} . By making use of this new realization nontrivial infinite-dimensional indecomposable representations and finite-dimensional representations of \hat{G} are constructed on $\bar{\Omega}$ and its quotient spaces. Finally, as an explicit example, the loop algebra $\widehat{SU}(2)$ associated with Lie algebra SU(2) is discussed in detail.

PACS 03.65.Fd - Algebraic methods.

1. - Introduction.

Indecomposable modules of physically relevant Lie algebras have been suggested [1-3] for the description of unstable particles. Gruber and his cooperators have studied indecomposable representations of some physically relevant Lie algebras on their universal enveloping algebras [4-6]. By making use of the method of Bose realization used to study the indecomposable representations of Lie algebra [7] and Lie superalgebras [8], we discussed Virasoro and Kac-Moody algebras [9], which have appeared as a new kind of symmetry algebra in many areas of physics [10].

The Bose algebra \mathcal{H} , also called the Heisenberg-Weyl algebra, is defined by

(1)
$$\mathcal{H}: \{a_i^+, a_i, E | i = 1, 2, ..., N\}, \quad [a_i, a_i^+] = \delta_{ij} E, \quad [a_i^+, E] = [a_i, E] = 0.$$

In ref. [9], because the representatives of element E in the indecomposable representations of the Bose algebra are unit matrices, the indecomposable

representations of loop algebras constructed in [9] are more trivial. However, it is significant in mathematical physics to consider the representation of \mathscr{K} in which the representative of E is not a unit matrix [11].

In this paper we give firstly a new realization of loop algebra \hat{G} on the enveloping field $\bar{\Omega}$ of \mathscr{H} in sect. 2. Then we construct a class of nontrivial infinite-dimensional indecomposable representations of loop algebra \hat{G} in which the representative of E is not unit matrix on $\bar{\Omega}$ and its quotient spaces in sect. 3. In sect. 4, a class of finite-dimensional (irreducible) representations is induced on quotient spaces of $\bar{\Omega}$. Finally, in sect. 5, as an explicit example, the loop algebra $\widehat{SU}(2)$ associated with Lie algebra SU(2) is discussed in detail.

The symbols N, N^+ , Z denote the set of nonnegative integers, the set of positive integers and the set of all integers, respectively. The symbol C denotes complex number field.

According to PBW theorem, the basis of universal enveloping algebra $\mathfrak{A}(\mathscr{K})$ of the Bose algebra \mathscr{K} can be chosen as

(2)
$$\left\{ f(m_i, n_i, n) \equiv \left[\prod_{i=1}^N a_i^{+m_i} a_i^{n_i} \right] E|m_i, n_i, n \in \mathbf{N} \right\}.$$

Because $\mathfrak{A}(\mathscr{H})$ is an Ore ring, one can introduce the enveloping field Ω of \mathscr{H} (also called Heisenberg field) which incorporates in a natural way, quotients of polynomials of the generators of $(\mathscr{H})[1]$. $\mathfrak{A}(\mathscr{H})$ is a subring of \mathscr{H} . As an algebra, Ω has a subalgebra $\overline{\Omega}$ with the basis

(3)
$$\left\{F(m_i, n_i, n) \equiv \left[\prod_{i=1}^N a_i^{+m_i} a_i^{n_i}\right] E^n | m_i, n_i, n \in \mathbf{Z}\right\}.$$

It can be regarded as the extension of the basis of $\mathfrak{A}(\mathscr{K})$ to $m_i, n_i, n \in \mathbf{Z}$.

2. – New realization of loop algebra G.

Let T be a finite-dimensional faithful representation of Lie algebra G with generators $\{X_{\alpha}|\alpha=1,2,...,N\}$ that satisfy the Lie product

$$[X_{\alpha}, X_{\beta}] = \sum_{\nu=1}^{N} C_{\alpha\beta}^{\nu} X_{\nu},$$

where complex numbers $C_{\alpha\beta}^{\nu}$ are structure constants. There exists a subalgebra of $\bar{\Omega}$ generated by

(5)
$$\left\{ X_{\alpha}^{m} | X_{\alpha}^{m} \equiv \sum_{j,k=1}^{N} T(X_{\alpha})_{jk} a_{j}^{+} a_{k} E^{m-1}, \ m \in \mathbf{Z} \right\}.$$

It is easy to prove that

$$[X_{\alpha}^{m}, X_{\beta}^{n}] = \sum C_{\alpha\beta}^{\nu} X_{\nu}^{m+n}$$

which is just the commutation relations of the loop algebra (also called untwisted affine Kac-Moody algebra, or Kac-Moody algebra without central term). Therefore, (5) generates a loop algebra \hat{G} associated with the Lie algebra G. The expression X_{α}^{m} is a new Bose realization of loop algebra $\bar{\Omega}$ which is different from that in ref. [9].

For example, for the Pauli's representation of Lie algebra SU(2), we can obtain the Bose realization of the loop algebra $\widehat{SU}(2)$ associated with SU(2)

(7)
$$\begin{cases} \sigma_{+}^{m} = a_{1}^{+} a_{2} E^{m-1}, & \sigma_{-}^{m} = a_{2}^{+} a_{1} E^{m-1}, \\ \sigma_{3}^{m} = [a_{1}^{+} a_{1} - a_{2}^{+} a_{2}] E^{m-1} & (m \in \mathbf{Z}), \end{cases}$$

where $\sigma_1, \sigma_2, \sigma_3$ are Pauli's matrices and $\sigma_{\pm} = \frac{1}{2}(\sigma_1 \pm i\sigma_2)$.

3. - Indecomposable representations of \hat{G} .

The enveloping field $\bar{\Omega}$ is regarded as a left-module of \mathcal{H} , then indecomposable representation of \mathcal{H} is obtained:

(8)
$$\begin{cases} \rho(a_{k}^{+})F(m_{i}, n_{i}, n) = F(m_{i} + \delta_{ik}, n_{i}, n), \\ \rho(a_{k})F(m_{i}, n_{i}, n) = F(m_{i}, n_{i} + \delta_{ik}, n) + m_{k}F(m_{i} - \delta_{ik} + \delta_{ij}, n_{i}, n + 1), \\ \rho(E)F(m_{i}, n_{i}, n) = F(m_{i}, n_{i}, n + 1). \end{cases}$$

Let J be a left ideal of $\bar{\Omega}$ and $\bar{\Omega}/J$ the quotient module, then $\rho(E)$ is not a unit matrix on $\bar{\Omega}/J$ if $(E - \lambda 1) \notin J$.

Making use of the following expression:

(9)
$$\Gamma(X_{\alpha}^{m}) = \sum_{ik} T(X_{\alpha})_{jk} \rho(a_{j}^{+}) \rho(a_{k}) \rho(E)^{m-1},$$

the indecomposable representation of \hat{G} on $\bar{\Omega}$ is obtained as

(10)
$$\Gamma(X_{\alpha}^{m}) F(m_{i}, n_{i}, n) = \sum_{jk} T(X_{\alpha})_{jk} [F(m_{i} + \delta_{ij}, n_{i} + \delta_{ik}, m + n - 1) + \\ + m_{k} F(m_{i} - \delta_{ik} + \delta_{ij}, n_{i}, m + n)].$$

The relations $\{a_i - \mu_i 1 | i = 1, ..., N, \mu_i \in \mathbf{C}\}$ generate a left ideal I of $\bar{\Omega}$. For the

quotient space $V = \overline{\Omega}/I$, a basis can be chosen as

$$V: \{D(m_i, n) \equiv F(m_i, 0, n) \operatorname{Mod} I | m_i, n \in \mathbf{Z}\}.$$

The representation (10) induces on V the representation

(11)
$$\Gamma(X_{\alpha}^{m})D(m_{i}, n) = \sum_{jk} T(X_{\alpha})_{jk} \left[\mu_{k} D(m_{i} + \delta_{ij}, m + n - 1) + m_{k} D(m_{i} - \delta_{ik} + \delta_{ii}, m + n) \right].$$

1) The case with $\mu_i \neq 0$. It is observed that the value $\left(\sum_{i=1}^N m_i\right)$ cannot decrease in (11), the integer $M \in \mathbf{Z}$ defines a \hat{G} -invariant subspace V_M of V with basis

$$V_M$$
: $\left\{D(m_i, n) | \sum_{i=1}^N m_i \geq M, m_i, n \in \mathbf{Z} \right\}$.

Since there does not exist an invariant complementary subspace for any invariant subspace V_M , the representation on V is indecomposable. It is easy to see that there is an invariant subspace chain

$$\dots \supset V_{-2} \supset V_{-1} \supset V_0 \supset V_1 \supset V_2 \supset \dots$$

The representation on each quotient space $V(M,K) = V_M/V_{M+K}$ with basis $(K \in \mathbf{N}^+)$

$$V(MK): \left\{ H(m_i, n) \equiv D(m_i, n) \operatorname{Mod} V_{M+K} \middle| M \leq \sum_{i=1}^{N} m_i \leq M + K - 1 \right\}$$

is obtained from (11) as

(12)
$$\Gamma(X_{\alpha}^{m})H(m_{i},n) = \sum_{j_{k=1}}^{N} T(X_{\alpha})_{j_{k}} \left[\mu_{k} H(m_{i} + \delta_{ij}, m+n-1) + m_{k} H(m_{i} - \delta_{ik} + \delta_{ij}, m+n) \right].$$

The representation (12) is the infinite-dimensional indecomposable representation when $K \ge 2$. In the case of K = 1, the representation on V(M, 1) becomes

(13)
$$\Gamma(X_{\alpha}^{m})H(m_{i},n) = \sum_{i,k=1}^{N} T(X_{\alpha})_{jk} m_{k} H(m_{i} - \delta_{ik} + \delta_{ij}, m + n),$$

which is the infinite-dimensional irreducible representation.

2) The case with $\mu_1 = \mu_2 = \dots = \mu_N = 0$. In the case of $\mu_1 = \mu_2 = \dots = \mu_N = 0$, the representation (11) becomes

(14)
$$\dot{\Gamma}(X_{\alpha}^{m})D(m_{i},n) = \sum_{jk=1}^{N} T(X_{\alpha})_{jk} m_{k} D(m_{i} - \delta_{ik} + \delta_{ij}, m+n).$$

It is noted that the value $\left(\sum_{i=1}^{N} m_i\right)$ cannot change in (14), the integer $R \in \mathbf{Z}$ defines a \hat{G} -invariant subspace $V^{[R]}$ of V with basis

$$V^{[R]} : \left\{ D(m_i, n) \middle| \sum_{i=1}^{N} m_i = R, \; m_i, n \in {\it Z}
ight\}$$

and V can be decomposed as

$$V = \sum_{R \in \mathbb{Z}} {}^{\oplus} V^{[R]}$$
.

Thus, the representation (14) on V is complete reducible. The representation subduced on each $V^{[R]}$ is the infinite-dimensional irreducible representation.

4. - Finite-dimensional representations.

The relation $\{E - \lambda 1, 1 | \lambda \neq 0, \lambda \in C\}$ generates a left ideal J of V. A basis for the quotient space W = V/J can be chosen as

$$W: \{P(m_i) \equiv D(m_i, 0) \operatorname{Mod} J | m_i \in \mathbf{Z} \}.$$

The representation (11) induces on W a new representation

(15)
$$\Gamma(X_{\alpha}^{m})P(m_{i}) = \sum_{jk} T(X_{\alpha})_{jk} \left[\mu_{k} \lambda^{m-1} P(m_{i} + \delta_{ij}) + m_{k} \lambda^{m} P(m_{i} - \delta_{ik} + \delta_{ij}) \right].$$

When $\mu_1 = \mu_2 = \dots = \mu_N = 0$, (15) is complete reducible, otherwise, decomposable. From (15), it can be seen that the subspace W^+ spanned by

(16)
$$W^+: \{P(m_i) | m_i \in \mathbf{N}, i = 1, ..., N\}$$

is a \hat{G} -invariant subspace. The representation subduced on W^+ is (15) with the condition $m_1, m_2, ..., m_N \in \mathbf{N}$.

a) The case with $\mu_i \neq 0$. In the case of $\mu_i \neq 0$, the representation on W^+ is indecomposable. It is noted that $\sum_{i=1}^{N} m_i$ in $P(m_i)$ cannot decrease under the action of the representation Γ of \hat{G} , therefore, for $M \in \mathbb{N}$, there exists a \hat{G} -invariant

subspace W_M^+ of W^+ with basis

(17)
$$W_{M}^{+}: \left\{ P(m_{i}) \middle| \sum_{i=1}^{N} m_{i} \geq M; m_{i} \in \mathbf{N} \right\}$$

and a \hat{G} -invariant subspace chain

$$W^+ = W_0^+ \supset W_1^+ \supset W_2^+ \supset \dots \supset W_M^+ \supset W_{M+1}^+ \supset \dots$$

For $K \in \mathbb{N}^+$, we can construct quotient spaces $W^+[M, K]$ with basis

$$W^+(M,K)$$
: $\left\{Q(m_i) \equiv P(m_i) \text{ Mod } W^+_{M+K} \middle| M \leq \sum_{i=1}^N m_i \leq M+K-1; m_i \in N\right\}$.

It is easy to prove that the dimension of $W^{+}[M, K]$ is

(18)
$$\dim W^{+}[M,K] = \sum_{t=M}^{M+K-1} \frac{(N+t-1)!}{(N-1)! \ t!} \ .$$

The representation on $W^+[M, K]$ can be obtained from (15):

(19)
$$\Gamma(X_{\alpha}^{m}) Q(m_{i}) = \sum_{ik} T(X_{\alpha})_{jk} \left[\mu_{k} \lambda^{m-1} Q(m_{i} + \delta_{ij}) + m_{k} \lambda^{m} Q(m_{i} - \delta_{ik} + \delta_{ij}) \right].$$

In the case of $K \ge 2$, this representation is indecomposable. When K = 1, the representation on $W^+[M, 1]$ is

(20)
$$P(X_{\alpha}^{m}) Q(m_{i}) = \sum_{jk} T(X_{\alpha})_{jk} m_{k} \lambda^{m} Q(m_{i} - \delta_{ik} + \delta_{ij}) \qquad \left(\sum_{i=1}^{N} m_{i} = M\right)$$

that is an irreducible representation with dimension

(21)
$$\dim W^+(M,1) = \frac{(M+N-1)!}{M!(N-1)!}.$$

b) The case with $\mu_1 = \mu_2 = \dots = \mu_N = 0$. In the case of $\mu_1 = \mu_2 = \dots = \mu_N = 0$, the representation on W^+ is complete reducible. In fact, W^+ can be decomposed as

(22)
$$W^{+} = \sum_{R \in \mathbb{N}} W^{+[R]},$$

where $W^{+[R]}$ is spanned by

(23)
$$W^{+[R]}: \left\{ P(m_i) \Big| \sum_{i=1}^{N} m_i = R; R, m_i \in \mathbf{N} \right\}.$$

The representation subduced on every $W^{+[R]}$ can be obtained as

(24)
$$\Gamma(X_{\alpha}^{m})P(m_{i}) = \sum_{jk} T(X_{\alpha})_{jk} m_{k} P(m_{i} - \delta_{ik} + \delta_{ij}) \qquad \left(\sum_{i=1}^{N} m_{i} = R; R, m_{i} \in \mathbf{N}\right),$$

that is an irreducible representation with dimension

(25)
$$\dim W^{+[R]} = \frac{(N+R-1)!}{(N-1)! \, R!} \ .$$

5. – Representation of loop algebra $\widehat{SU}(2)$.

According to Bose realization (7) of $\widehat{SU}(2)$ and expression (9), the indecomposable representation of $\widehat{SU}(2)$ on the enveloping field $\bar{\Omega}$ of 2-states Bose algebra $\mathcal H$

(26)
$$\bar{\Omega}$$
: $\{F(m_1, m_2, n_1, n_2, n) \equiv a_1^{+m_1} a_2^{+m_2} a_1^{n_1} a_2^{n_2} E^n | m_1, m_2, n_1, n_2, n \in \mathbf{Z} \}$ can be obtained:

$$\begin{cases} \Gamma(\sigma_{+}^{m})F(m_{1},m_{2},n_{1},n_{2},n) = F(m_{1}+1,m_{2},n_{1},n_{2}+1,n+m-1) + \\ + m_{2}F(m_{1}+1,m_{2}-1,n_{1},n_{2},m+n) , \\ \Gamma(\sigma_{-}^{m})F(m_{1},m_{2},n_{1},n_{2},n) = F(m_{1},m_{2}+1,n_{1}+1,n_{2},n+m-1) + \\ + m_{1}F(m_{1}-1,m_{2}+1,n_{1},n_{2},m+n) , \\ \Gamma(\sigma_{3}^{m})F(m_{1},m_{2},n_{1},n_{2},n) = F(m_{1}+1,m_{2},n_{1}+1,n_{2},m+n-1) - \\ - F(m_{1},m_{2}+1,n_{1},n_{2}+1,m+n-1) + (m_{1}-m_{2})F(m_{1},m_{2},n_{1},n_{2},m+n) . \end{cases}$$

Firstly, let us discuss the infinite-dimensional representation. The representation on $V = \bar{\Omega}/I$ is obtained from (27):

$$(28) \begin{cases} \Gamma(\sigma_{+}^{m}) D(m_{1}, m_{2}, n) = \mu_{2} D(m_{1} + 1, m_{2}, n + m - 1) + \\ + m_{2} D(m_{1} + 1, m_{2} - 1, m + n), \\ \Gamma(\sigma_{-}^{m}) D(m_{1}, m_{2}, n) = \mu_{1} D(m_{1}, m_{2} + 1, n + m - 1) + \\ + m_{1} D(m_{1} - 1, m_{2} + 1, m + n), \\ \Gamma(\sigma_{3}^{m}) D(m_{1}, m_{2}, n) = \mu_{1} D(m_{1} + 1, m_{2}, m + n - 1) - \\ - \mu_{2} D(m_{1}, m_{2} + 1, m + n - 1) + (m_{1} - m_{2}) D(m_{1}, m_{2}, m + n). \end{cases}$$

In the case of $\mu_1 \neq 0$ or $\mu_2 \neq 0$, the representation (28) is indecomposable. It is

observed that the value $(m_1 + m_2)$ cannot decrease in (28), the integer $M \in \mathbf{Z}$ defines an invariant subspace V_M of V with basis

(29)
$$V_M: \{D(m_1, m_2, n) | m_1 + m_2 \ge M; m_1, m_2 \in \mathbf{Z}\}.$$

There exists an invariant subspace chain

$$\dots V_{-2} \supset V_{-1} \supset V_0 \supset V_1 \supset V_2 \supset \dots$$

For $K \in \mathbf{N}^+$, we can define a quotient space V(M, K) with basis

(30)
$$V[M, K]: \{H(m_1, m_2, n) \equiv$$

 $\equiv D(m_1, m_2, n) \operatorname{Mod} V_{M+K} | M \leq m_1 + m_2 \leq M + K - 1 \}.$

The representation on V(M, K) is obtained from (28):

The representation on
$$V(M,K)$$
 is obtained from (28):
$$\begin{cases} \Gamma(\sigma_{+}^{m})H(m_{1},m_{2},n) = \mu_{2}H(m_{1}+1,m_{2},n+m-1) + \\ + m_{2}H(m_{1}+1,m_{2}-1,m+n) , \\ \Gamma(\sigma_{-}^{m})H(m_{1},m_{2},n) = \mu_{1}H(m_{1},m_{2}+1,n+m-1) + \\ + m_{1}H(m_{1}-1,m_{2}+1,m+n) , \\ \Gamma(\sigma_{3}^{m})H(m_{1},m_{2},n) = \mu_{1}H(m_{1}+1,m_{2},n+m-1) - \\ - \mu_{2}H(m_{1},m_{2}+1,m+n-1) + (m_{1}-m_{2})H(m_{1},m_{2},m+n) \\ (M \leq m_{1}+m_{2} \leq M+K-1) . \end{cases}$$

If we define an "angular momentum basis" for V(M, K)

(32)
$$|(n), j, s\rangle = \frac{H(j+s, j-s, n)}{\sqrt{(j+s)!(j-s)!}},$$

where j = M/2, (M + 1)/2, (M + 2)/2, ..., (M + K - 1)/2, $s \in \mathbb{Z}$, the representation (31) becomes

$$(33) \begin{cases} \Gamma(\sigma_{+}^{m})|(n),j,s\rangle = (j+s+1)^{1/2}\mu_{2}|(m+n-1),j+\frac{1}{2},s+\frac{1}{2}\rangle + \\ + [j(j+1)-s(s+1)]^{1/2}|(m+n),j,s+1\rangle, \\ \Gamma(\sigma_{-}^{m})|(n),j,s\rangle = (j-s+1)^{1/2}\mu_{1}|(m+n-1),j+\frac{1}{2},s-\frac{1}{2}\rangle + \\ + [j(j+1)-s(s-1)]^{1/2}|(m+n),j,s-1\rangle, \\ \Gamma(\sigma_{3}^{m})|(n),j,s\rangle = \mu_{1}(j+s+1)^{1/2}|(m+n-1),j+\frac{1}{2},s+\frac{1}{2}\rangle + \\ + \mu_{2}(j-s+1)^{1/2}|(m+n-1),j+\frac{1}{2},s-\frac{1}{2}\rangle + 2s|(m+n),j,s\rangle, \end{cases}$$

that is an infinite-dimensional indecomposable representation in the case of $K \ge 2$. When K = 1, the representation (32) becomes

(34)
$$\begin{cases} \Gamma(\sigma_{+}^{m})|(n),j,s\rangle = [j(j+1) - s(s+1)]^{1/2}|(m+n),j,s+1\rangle, \\ \Gamma(\sigma_{-}^{m})|(n),j,s\rangle = [j(j+1) - s(s-1)]^{1/2}|(m+n),j,s-1\rangle, \\ \Gamma(\sigma_{3}^{m})|(n),j,s\rangle = 2s|(m+n),j,s\rangle & \left[j = \frac{M}{2}, s \in \mathbf{Z}\right]. \end{cases}$$

that is an infinite-dimensional irreducible representation.

In the case of $\mu_1 = \mu_2 = 0$, the representation (28) becomes

(35)
$$\begin{cases} \Gamma(\sigma_{+}^{m}) D(m_{1}, m_{2}, n) = m_{2} D(m_{1} + 1, m_{2} - 1, m + n), \\ \Gamma(\sigma_{-}^{m}) D(m_{1}, m_{2}, n) = m_{1} D(m_{1} - 1, m_{2} + 1, m + n), \\ \Gamma(\sigma_{3}^{m}) D(m_{1}, m_{2}, n) = (m_{1} - m_{2}) D(m_{1}, m_{2}, m + n). \end{cases}$$

It is observed that the value $m_1 + m_2$ does not change in (35), the integer $R \in \mathbf{Z}$ defines an invariant subspace $V^{[R]}$

(36)
$$V^{[R]}: \{D(m_1, m_2, n) | m_1 + m_2 = R; m_1, m_2 \in \mathbf{Z} \}.$$

The quotient space $V = \overline{\Omega}/I$ can be decomposed as

$$(37) V = \sum_{R \in \mathbf{Z}} {}^{\oplus} V^{[R]}.$$

Therefore, the representation on V is complete reducible. On every $V^{[R]}$, the representation is (35) with the condition $m_1 + m_2 = R$. By defining "angular momentum basis" for V

(38)
$$|(n), j, s\rangle = \frac{D(j+s, j-s, n)}{\sqrt{(j+s)!(j-s)!}},$$

where $j = R/2 = 0, 1/2, 1, 3/2, ..., s \in \mathbb{Z}$, we can obtain the representation on $V^{[R]}$

(39)
$$\begin{cases} \Gamma(\sigma_{+}^{m})|(n),j,s\rangle = [j(j+1)-s(s+1)]^{1/2}|(m+n),j,s+1\rangle, \\ \Gamma(\sigma_{-}^{m})|(n),j,s\rangle = [j(j+1)-s(s-1)]^{1/2}|(m+n),j,s-1\rangle, \\ \Gamma(\sigma_{3}^{m})|(n),j,s\rangle = 2s|(n),j,s\rangle \end{cases} \qquad \qquad \left(j = \frac{R}{2}, s \in \mathbf{Z}\right),$$

that is an infinite-dimensional irreducible representation.

Now, let us discuss finite-dimensional representations.

The representation induced on W can be obtained from (28):

$$(40) \begin{cases} \Gamma(\sigma_{1}^{m})P(m_{1}, m_{2}) = \mu_{2} \lambda^{m-1}P(m_{1}+1, m_{2}) + m_{2} \lambda^{m}P(m_{1}+1, m_{2}-1), \\ \Gamma(\sigma_{1}^{m})P(m_{1}, m_{2}) = \mu_{1} \lambda^{m-1}P(m_{1}, m_{2}+1) + m_{1} \lambda^{m}P(m_{1}-1, m_{2}+1), \\ \Gamma(\sigma_{3}^{m})P(m_{1}, m_{2}) = \mu_{1} \lambda^{m-1}P(m_{1}+1, m_{2}) - \mu_{2} \lambda^{m-1}P(m_{1}, m_{2}+1) + \\ + (m_{1}-m_{2}) \lambda^{m}P(m_{1}, m_{2}) \qquad (\lambda \neq 0, m_{1}, m_{2} \in \mathbf{Z}). \end{cases}$$

The representation subduced on W^+ is (40) with the condition $m_1, m_2 \in \mathbb{N}$. In the case of $\mu_1 \neq 0$ or $\mu_2 \neq 0$, the representation on W^+ is indecomposable. The representation on $W^+(M, K)$ is

$$\begin{cases} \Gamma(\sigma_{+}^{m}) \, Q(m_{1}, m_{2}) = \mu_{2} \, \lambda^{m-1} \, Q(m_{1}+1, m_{2}) + m_{2} \, \lambda^{m} \, Q(m_{1}+1, m_{2}-1) \,, \\ \Gamma(\sigma_{-}^{m}) \, Q(m_{1}, m_{2}) = \mu_{1} \, \lambda^{m-1} \, Q(m_{1}, m_{2}+1) + m_{1} \, \lambda^{m} \, Q(m_{1}-1, m_{2}+1) \,, \\ \Gamma(\sigma_{3}^{m}) \, Q(m_{1}, m_{2}) = \mu_{1} \, \lambda^{m-1} \, Q(m_{1}+1, m_{2}) - \mu_{2} \, \lambda^{m-1} \, Q(m_{1}, m_{2}+1) + \\ \qquad \qquad + (m_{1}-m_{2}) \, \lambda^{m} \, Q(m_{1}, m_{2}) \quad (K \geq 2, \, \mu_{1} \neq 0 \, \text{ or } \, \mu_{2} \neq 0) \,, \end{cases}$$

with dimension

$$\dim W^+(MK) = \frac{1}{2} K[2M + K - 1].$$

The representation on $W^+(M, 1)$ is

$$(42) \begin{cases} \Gamma(\sigma_{+}^{m}) \, Q(m_{1}, m_{2}) = m_{2} \, \lambda^{m} \, Q(m_{1} + 1, m_{2} - 1) \,, \\ \\ \Gamma(\sigma_{-}^{m}) \, Q(m_{1}, m_{2}) = m_{1} \, \lambda^{m} \, Q(m_{1} - 1, m_{2} + 1) \,, \\ \\ \Gamma(\sigma_{3}^{m}) \, Q(m_{1}, m_{2}) = (m_{1} - m_{2}) \, \lambda^{m} \, Q(m_{1}, m_{2}) \quad (m_{1} + m_{2} = M, \mu_{1} \neq 0 \text{ or } \mu_{2} \neq 0) \,. \end{cases}$$

If we define an "angular momentum basis" for $W^+(M, 1)$,

(43)
$$|j,s\rangle = \frac{Q(j+s,j-s)}{\sqrt{(j+s)!(j-s)!}},$$

where j = M/2 = 0, 1/2, 1, 3/2, ..., s = j, j - 1, j - 2, ..., -j, the representation (42) becomes

(44)
$$\begin{cases} \Gamma(\sigma_{\pm}^{m})|j,s\rangle = \lambda^{m}\sqrt{(j\mp s)(j\pm s+1)}|j,s\pm 1\rangle, \\ \Gamma(\sigma_{3}^{m})|j,s\rangle = \lambda^{m}2s|j,s\rangle, \end{cases}$$

that is an irreducible representation with dimension M+1=2j+1.

In the case of $\mu_1 = \mu_2 = 0$, the representation on W^+ becomes

(45)
$$\begin{cases} \Gamma(\sigma_{+}^{m})P(m_{1}, m_{2}) = m_{2}\lambda^{m}P(m_{1}+1, m_{2}-1), \\ \Gamma(\sigma_{-}^{m})P(m_{1}, m_{2}) = m_{1}\lambda^{m}P(m_{1}-1, m_{2}+1), \\ \Gamma(\sigma_{3}^{m})P(m_{1}, m_{2}) = (m_{1}-m_{2})\lambda^{m}P(m_{1}, m_{2}), \qquad (\lambda \neq 0, m_{1}, m_{2} \in \mathbf{N}), \end{cases}$$

that is a complete reducible representation. Obviously, W^+ can be decomposed as

$$W^+ = \sum_{R=N}^{\oplus} W^{+[R]}$$
,

where $W^{+[R]}$ is spanned by

(46)
$$W^{+[R]}: \{P(m_1, m_2) | m_1 + m_2 = R; m_1, m_2 \in \mathbf{N}; R \in \mathbf{N}\}.$$

The representation subduced on $W^{+[R]}$ is (45) with the condition $m_1 + m_2 = R$. If we define an "angular momentum basis" for $W^{+[R]}$

(47)
$$|j,s\rangle = \frac{P(j+s,j-s)}{\sqrt{(j+s)!(j-s)!}},$$

where j = R/2 = 0, 1/2, 1, 3/2, ..., s = j, j - 1, j - 2, ..., -j, then we can obtain the representation on $W^{+[R]}$

(48)
$$\begin{cases} \Gamma(\sigma_{\pm}^{m})|j,s\rangle = \lambda^{m}\sqrt{(j\mp s)(j\pm s+1)}|j,s\pm 1\rangle, \\ \Gamma(\sigma_{3}^{m})|j,s\rangle = \lambda^{m}2s|j,s\rangle, \end{cases}$$

that is an irreducible representation with dimension R + 1 = 2j + 1.

According to (44) (or (48)), we can construct irreducible representations with any dimension $d \in \mathbb{N}$. For example, when j = 1, we can the obtain the irreducible representation of $\widehat{SU}(2)$ with dimension 3 (where $\lambda \neq 0$):

$$\Gamma(\sigma_+^m) = \lambda^m \left[\begin{array}{ccc} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{array} \right], \quad \Gamma(\sigma_-^m) = \lambda^m \left[\begin{array}{ccc} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{array} \right], \quad \Gamma(\sigma_3^m) = 2\lambda^m \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

* * *

The authors would like to thank Prof. Zhao-Yan Wu for his useful discussions.

REFERENCES

- [1] A. O. BARUT and R. RACZKA: Theory of Group Representations and Applications (Polish Scientific, Warsaw, 1977).
- [2] L. HLAVATY and J. NIEDERLE: Czech. J. Phys. B, 29, (3), 283 (1979).
- [3] P. A. M. DIRAC: Int. J. Theor. Phys., 23, (8), 677 (1984).
- [4] B. GRUBER, H. D. DOEBNER and P. J. FEINSILVER: Kinam, 4, 241 (1982).
- [5] B. GRUBER, A. U. KLIMYK and Y. F. SMIRNOV: Nuovo Cimento A, 69, 97 (1982).
- [6] R. LENCZEWSKI and B. GRUBER: J. Phys. A: Math. Gen., 19, 1 (1986).
- [7] C.-P. Sun: J. Phys. A, 20, 4551 (1987).
- [8] C.-P. Sun: J. Phys. A, 20, 5823 (1987).
- [9] C.-P. Sun: J. Phys. A, 20, L1157 (1987).
- [10] B. GODDARD and D. OLIVE: Int. J. Mod. Phys. A, 1, 303 (1986).
- [11] K. Wolf: in Group Theory and Its Applications, Vol. 3, edited by E. M. LOEBL (Academic Press, New York, N.Y.), p.190.

RIASSUNTO (*)

Si dà una nuova realizzazione dell'algebra ad ansa \hat{G} (algebra di Kac-Moody affine non intrecciata) sul campo inviluppante $\bar{\Omega}$ dell'algebra di Bose \mathscr{H} . Usando questa nuova realizzazione si elaborano rappresentazioni non scomponibili a dimensioni infinite non triviali e rappresentazioni a dimensioni finite di \hat{G} su $\bar{\Omega}$ e i suoi spazi quozienti. Infine si discute in dettaglio, come esempio esplicito, l'algebra ad ansa $\widehat{SU}(2)$ associata all'algebra di Lie SU(2).

(*) Traduzione a cura della Redazione.

Новая реализация алгебры петель и неприводимые модули.

Резюме (*). — Предлагается новая реализация алгебры петель \hat{G} (раскрученная аффинная алгебра Как-Муди) на огибающем поле $\overline{\Omega}$ алгебры Бозе \varkappa . Используя эту новую реализацию, конструируются нетривиальные бесконечномерные неприводимые представления и конечномерные представления \hat{G} на $\overline{\Omega}$ и их частные пространства. В заключение, подробно обсуждается пример алгебры петель $\widehat{SU}(2)$, связанной с алгеброй Ли SU(2).

(*) Переведено редакцией.