New Realization of the Loop Algebras and Their Indecomposable Modules.

Chang-Pu Sun and Hong-Chen Fu
Physics Department, Northeast Normal University
Changchen, Jilin Province, The People's Republic of China

(ricevuto l'8 Febbraio 1989)

Abstract

Summary. - A new realization of the loop algebra \hat{G} (untwisted affine KacMoody algebra) is given on the enveloping field $\bar{\Omega}$ of the Bose algebra \mathscr{K}. By making use of this new realization nontrivial infinite-dimensional indecomposable representations and finite-dimensional representations of \hat{G} are constructed on $\bar{\Omega}$ and its quotient spaces. Finally, as an explicit example, the loop algebra $\widehat{S U}(2)$ associated with Lie algebra $S U(2)$ is discussed in detail. PACS 03.65.Fd - Algebraic methods.

1. - Introduction.

Indecomposable modules of physically relevant Lie algebras have been suggested [1-3] for the description of unstable particles. Gruber and his cooperators have studied indecomposable representations of some physically relevant Lie algebras on their universal enveloping algebras [4-6]. By making use of the method of Bose realization used to study the indecomposable representations of Lie algebra [7] and Lie superalgebras [8], we discussed Virasoro and Kac-Moody algebras [9], which have appeared as a new kind of symmetry algebra in many areas of physics [10].

The Bose algebra \mathscr{H}, also called the Heisenberg-Weyl algebra, is defined by

$$
\begin{equation*}
\mathscr{H}:\left\{a_{i}^{+}, a_{i}, E \mid i=1,2, \ldots, N\right\}, \quad\left[a_{i}, a_{j}^{+}\right]=\delta_{i j} E, \quad\left[a_{i}^{+}, E\right]=\left[a_{i}, E\right]=0 \tag{1}
\end{equation*}
$$

In ref. [9], because the representatives of element E in the indecomposable representations of the Bose algebra are unit matrices, the indecomposable
representations of loop algebras constructed in [9] are more trivial. However, it is significant in mathematical physics to consider the representation of \mathscr{F} in which the representative of E is not a unit matrix [11].

In this paper we give firstly a new realization of loop algebra \hat{G} on the enveloping field $\bar{\Omega}$ of \mathscr{F} in sect. 2. Then we construct a class of nontrivial infinite-dimensional indecomposable representations of loop algebra \hat{G} in which the representative of E is not unit matrix on $\bar{\Omega}$ and its quotient spaces in sect. 3. In sect. 4, a class of finite-dimensional (irreducible) representations is induced on quotient spaces of $\bar{\Omega}$. Finally, in sect. 5 , as an explicit example, the loop algebra $\widehat{S U}(2)$ associated with Lie algebra $S U(2)$ is discussed in detail.

The symbols $\boldsymbol{N}, \boldsymbol{N}^{+}, \boldsymbol{Z}$ denote the set of nonnegative integers, the set of positive integers and the set of all integers, respectively. The symbol \boldsymbol{C} denotes complex number field.

According to PBW theorem, the basis of universal enveloping algebra $\mathfrak{A}(\mathscr{K})$ of the Bose algebra \mathscr{F} can be chosen as

$$
\begin{equation*}
\left\{f\left(m_{i}, n_{i}, n\right) \equiv\left[\prod_{i=1}^{N} a_{i}^{+m_{i}} a_{i}^{n_{i}}\right] E \mid m_{i}, n_{i}, n \in \mathbf{N}\right\} \tag{2}
\end{equation*}
$$

Because $\mathfrak{Y}(\mathscr{F})$ is an Ore ring, one can introduce the enveloping field Ω of \mathscr{F} (also called Heisenberg field) which incorporates in a natural way, quotients of polynomials of the generators of $(\mathscr{F})[1] . \mathscr{A}(\mathscr{F})$ is a subring of \mathscr{F}. As an algebra, Ω has a subalgebra $\bar{\Omega}$ with the basis

$$
\begin{equation*}
\left\{F\left(m_{i}, n_{i}, n\right) \equiv\left[\prod_{i=1}^{N} a_{i}^{+m_{i}} a_{i}^{n_{i}}\right] E^{n} \mid m_{i}, n_{i}, n \in \boldsymbol{Z}\right\} \tag{3}
\end{equation*}
$$

It can be regarded as the extension of the basis of $\mathfrak{A}(\mathscr{K})$ to $m_{i}, n_{i}, n \in Z$.

2. - New realization of loop algebra G.

Let T be a finite-dimensional faithful representation of Lie algebra G with generators $\left\{X_{\alpha} \mid \alpha=1,2, \ldots, N\right\}$ that satisfy the Lie product

$$
\begin{equation*}
\left[X_{\alpha}, X_{\beta}\right]=\sum_{v=1}^{N} C_{\alpha \beta}^{v} X_{v}, \tag{4}
\end{equation*}
$$

where complex numbers $C_{\alpha \beta}^{v}$ are structure constants. There exists a subalgebra of $\bar{\Omega}$ generated by

$$
\begin{equation*}
\left\{X_{\alpha}^{m} \mid X_{\alpha}^{m} \equiv \sum_{j, k=1}^{N} T\left(X_{\alpha}\right)_{j k} a_{j}^{+} a_{k} E^{m-1}, m \in Z\right\} \tag{5}
\end{equation*}
$$

It is easy to prove that

$$
\begin{equation*}
\left[X_{\alpha}^{m}, X_{\beta}^{n}\right]=\sum C_{\alpha \beta}^{\eta} X_{\gamma}^{m+n} \tag{6}
\end{equation*}
$$

which is just the commutation relations of the loop algebra (also called untwisted affine Kac-Moody algebra, or Kac-Moody algebra without central term). Therefore, (5) generates a loop algebra \hat{G} associated with the Lie algebra G. The expression X_{α}^{m} is a new Bose realization of loop algebra $\bar{\Omega}$ which is different from that in ref. [9].

For example, for the Pauli's representation of Lie algebra $S U(2)$, we can obtain the Bose realization of the loop algebra $\widehat{S U}(2)$ associated with $S U(2)$

$$
\left\{\begin{array}{l}
\sigma_{+}^{m}=a_{1}^{+} a_{2} E^{m-1}, \quad \sigma_{-}^{m}=a_{2}^{+} a_{1} E^{m-1}, \tag{7}\\
\sigma_{3}^{m}=\left[a_{1}^{+} a_{1}-a_{2}^{+} a_{2}\right] E^{m-1}
\end{array}\right.
$$

where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are Pauli's matrices and $\sigma_{ \pm}=\frac{1}{2}\left(\sigma_{1} \pm i \sigma_{2}\right)$.

3. - Indecomposable representations of \hat{G}.

The enveloping field $\bar{\Omega}$ is regarded as a left-module of \mathscr{K}, then indecomposable representation of \mathscr{H} is obtained:

$$
\left\{\begin{array}{l}
\rho\left(a_{k}^{+}\right) F\left(m_{i}, n_{i}, n\right)=F\left(m_{i}+\delta_{i k}, n_{i}, n\right), \tag{8}\\
\rho\left(a_{k}\right) F\left(m_{i}, n_{i}, n\right)=F\left(m_{i}, n_{i}+\delta_{i k}, n\right)+m_{k} F\left(m_{i}-\delta_{i k}+\delta_{i j}, n_{i}, n+1\right), \\
\rho(E) F\left(m_{i}, n_{i}, n\right)=F\left(m_{i}, n_{i}, n+1\right) .
\end{array}\right.
$$

Let J be a left ideal of $\bar{\Omega}$ and $\bar{\Omega} / J$ the quotient module, then $\rho(E)$ is not a unit matrix on $\bar{\Omega} / J$ if $(E-\lambda 1) \notin J$.

Making use of the following expression:

$$
\begin{equation*}
\Gamma\left(X_{\alpha}^{m}\right)=\sum_{j k} T\left(X_{x}\right)_{j k} \rho\left(a_{j}^{+}\right) \rho\left(a_{k}\right)_{\rho}(E)^{m-1}, \tag{9}
\end{equation*}
$$

the indecomposable representation of \hat{G} on $\bar{\Omega}$ is obtained as

$$
\begin{align*}
\Gamma\left(X_{\alpha}^{m}\right) F\left(m_{i}, n_{i}, n\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k}\left[F \left(m_{i}+\delta_{i j}\right.\right. & \left., n_{i}+\delta_{i k}, m+n-1\right)+ \tag{10}\\
& \left.+m_{k} F\left(m_{i}-\delta_{i k}+\delta_{i j}, n_{i}, m+n\right)\right] .
\end{align*}
$$

The relations $\left\{a_{i}-\mu_{i} \mid i=1, \ldots, N, \mu_{i} \in C\right\}$ generate a left ideal I of $\bar{\Omega}$. For the
quotient space $V=\bar{\Omega} / I$, a basis can be chosen as

$$
V:\left\{D\left(m_{i}, n\right) \equiv F\left(m_{i}, 0, n\right) \operatorname{Mod} I \mid m_{i}, n \in \boldsymbol{Z}\right\}
$$

The representation (10) induces on V the representation

$$
\begin{align*}
\Gamma\left(X_{\alpha}^{m}\right) D\left(m_{i}, n\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k}\left[\mu _ { k } D \left(m_{i}+\delta_{i j}, m+\right.\right. & n-1)+ \tag{11}\\
& \left.+m_{k} D\left(m_{i}-\delta_{i k}+\delta_{i j}, m+n\right)\right]
\end{align*}
$$

1) The case with $\mu_{i} \neq 0$. It is observed that the value $\left(\sum_{i=1}^{N} m_{i}\right)$ cannot decrease in (11), the integer $M \in \boldsymbol{Z}$ defines a \hat{G}-invariant subspace V_{M} of V with basis

$$
V_{M}:\left\{D\left(m_{i}, n\right) \mid \sum_{i=1}^{N} m_{i} \geqslant M, m_{i}, n \in \boldsymbol{Z}\right\}
$$

Since there does not exist an invariant complementary subspace for any invariant subspace V_{M}, the representation on V is indecomposable. It is easy to see that there is an invariant subspace chain

$$
\ldots \supset V_{-2} \supset V_{-1} \supset V_{0} \supset V_{1} \supset V_{2} \supset \ldots
$$

The representation on each quotient space $V(M, K)=V_{M} / V_{M+K}$ with basis ($K \in \mathbf{N}^{+}$)

$$
V(M K):\left\{H\left(m_{i}, n\right) \equiv D\left(m_{i}, n\right) \operatorname{Mod} V_{M+K} \mid M \leqslant \sum_{i=1}^{N} m_{i} \leqslant M+K-1\right\}
$$

is obtained from (11) as

$$
\begin{align*}
\Gamma\left(X_{\alpha}^{m}\right) H\left(m_{i}, n\right)=\sum_{j k=1}^{N} T\left(X_{\alpha}\right)_{j k}\left[\mu _ { k } H \left(m_{i}+\delta_{i j},\right.\right. & m+n-1)+ \tag{12}\\
& \left.+m_{k} H\left(m_{i}-\delta_{i k}+\delta_{i j}, m+n\right)\right]
\end{align*}
$$

The representation (12) is the infinite-dimensional indecomposable representation when $K \geqslant 2$. In the case of $K=1$, the representation on $V(M, 1)$ becomes

$$
\begin{equation*}
\Gamma\left(X_{\alpha}^{m}\right) H\left(m_{i}, n\right)=\sum_{j k=1}^{N} T\left(X_{\alpha}\right)_{j k} m_{k} H\left(m_{i}-\delta_{i k}+\delta_{i j}, m+n\right) \tag{13}
\end{equation*}
$$

which is the infinite-dimensional irreducible representation.
2) The case with $\mu_{1}=\mu_{2}=\ldots=\mu_{N}=0$. In the case of $\mu_{1}=\mu_{2}=\ldots=\mu_{N}=0$, the representation (11) becomes

$$
\begin{equation*}
\dot{\Gamma}\left(X_{\alpha}^{m}\right) D\left(m_{i}, n\right)=\sum_{j k=1}^{N} T\left(X_{\alpha}\right)_{j k} m_{k} D\left(m_{i}-\delta_{i k}+\delta_{i j}, m+n\right) . \tag{14}
\end{equation*}
$$

It is noted that the value $\left(\sum_{i=1}^{N} m_{i}\right)$ cannot change in (14), the integer $R \in \boldsymbol{Z}$ defines a \hat{G}-invariant subspace $V^{[R]}$ of V with basis

$$
V^{[R]}:\left\{D\left(m_{i}, n\right) \mid \sum_{i=1}^{N} m_{i}=R, m_{i}, n \in \mathbf{Z}\right\}
$$

and V can be decomposed as

$$
V=\sum_{R \in Z}^{\oplus} V^{[R]}
$$

Thus, the representation (14) on V is complete reducible. The representation subduced on each $V^{[R]}$ is the infinite-dimensional irreducible representation.

4. - Finite-dimensional representations.

The relation $\{E-\lambda 1,1 \mid \lambda \neq 0, \lambda \in C\}$ generates a left ideal J of V. A basis for the quotient space $W=V / J$ can be chosen as

$$
W:\left\{P\left(m_{i}\right) \equiv D\left(m_{i}, 0\right) \operatorname{Mod} J \mid m_{i} \in \mathbf{Z}\right\}
$$

The representation (11) induces on W a new representation

$$
\begin{equation*}
\Gamma\left(X_{\alpha}^{m}\right) P\left(m_{i}\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k}\left[\mu_{k} \lambda^{m-1} P\left(m_{i}+\delta_{i j}\right)+m_{k} \lambda^{m} P\left(m_{i}-\delta_{i k}+\delta_{i j}\right)\right] \tag{15}
\end{equation*}
$$

When $\mu_{1}=\mu_{2}=\ldots=\mu_{N}=0$, (15) is complete reducible, otherwise, decomposable. From (15), it can be seen that the subspace W^{+}spanned by

$$
\begin{equation*}
W^{+}:\left\{P\left(m_{i}\right) \mid m_{i} \in \mathbf{N}, i=1, \ldots, N\right\} \tag{16}
\end{equation*}
$$

is a \hat{G}-invariant subspace. The representation subduced on W^{+}is (15) with the condition $m_{1}, m_{2}, \ldots, m_{N} \in \boldsymbol{N}$.
a) The case with $\mu_{i} \neq 0$. In the case of $\mu_{i} \neq 0$, the representation on W^{+}is indecomposable. It is noted that $\sum_{i=1}^{N} m_{i}$ in $P\left(m_{i}\right)$ cannot decrease under the action of the representation Γ of \hat{G}, therefore, for $M \in \boldsymbol{N}$, there exists a \hat{G}-invariant
subspace W_{M}^{+}of W^{+}with basis

$$
\begin{equation*}
W_{M}^{+}:\left\{P\left(m_{i}\right) \mid \sum_{i=1}^{N} m_{i} \geqslant M ; m_{i} \in \boldsymbol{N}\right\} \tag{17}
\end{equation*}
$$

and a \hat{G}-invariant subspace chain

$$
W^{+}=W_{0}^{+} \supset W_{1}^{+} \supset W_{2}^{+} \supset \ldots \supset W_{M}^{+} \supset W_{M+1}^{+} \supset \ldots
$$

For $K \in \mathbf{N}^{+}$, we can construct quotient spaces $W^{+}[M, K]$ with basis

$$
W^{+}(M, K):\left\{Q\left(m_{i}\right) \cong P\left(m_{i}\right) \operatorname{Mod} W_{M+K}^{+} \mid M \leqslant \sum_{i=1}^{N} m_{i} \leqslant M+K-1 ; m_{i} \in \mathbf{N}\right\}
$$

It is easy to prove that the dimension of $W^{+}[M, K]$ is

$$
\begin{equation*}
\operatorname{dim} W^{+}[M, K]=\sum_{t=M}^{M+K-1} \frac{(N+t-1)!}{(N-1)!t!} \tag{18}
\end{equation*}
$$

The representation on $W^{+}[M, K]$ can be obtained from (15):

$$
\begin{equation*}
\Gamma\left(X_{\alpha}^{m}\right) Q\left(m_{i}\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k}\left[\mu_{k} \lambda^{m-1} Q\left(m_{i}+\delta_{i j}\right)+m_{k} \lambda^{m} Q\left(m_{i}-\delta_{i k}+\delta_{i j}\right)\right] \tag{19}
\end{equation*}
$$

In the case of $K \geqslant 2$, this representation is indecomposable. When $K=1$, the representation on $W^{+}[M, 1]$ is

$$
\begin{equation*}
P\left(X_{\alpha}^{m}\right) Q\left(m_{i}\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k} m_{k} \lambda^{m} Q\left(m_{i}-\delta_{i k}+\delta_{i j}\right) \quad\left(\sum_{i=1}^{N} m_{i}=M\right) \tag{20}
\end{equation*}
$$

that is an irreducible representation with dimension

$$
\begin{equation*}
\operatorname{dim} W^{+}(M, 1)=\frac{(M+N-1)!}{M!(N-1)!} \tag{21}
\end{equation*}
$$

b) The case with $\mu_{1}=\mu_{2}=\ldots=\mu_{N}=0$. In the case of $\mu_{1}=\mu_{2}=\ldots=\mu_{N}=0$, the representation on W^{+}is complete reducible. In fact, W^{+}can be decomposed as

$$
\begin{equation*}
W^{+}=\sum_{R \in N}^{\oplus} W^{+[R]} \tag{22}
\end{equation*}
$$

where $W^{+[R]}$ is spanned by

$$
\begin{equation*}
W^{+[R]}:\left\{P\left(m_{i}\right) \mid \sum_{i=1}^{N} m_{i}=R ; R, m_{i} \in \mathbf{N}\right\} \tag{23}
\end{equation*}
$$

The representation subduced on every $W^{+[R]}$ can be obtained as

$$
\begin{equation*}
\Gamma\left(X_{x}^{m}\right) P\left(m_{i}\right)=\sum_{j k} T\left(X_{\alpha}\right)_{j k} m_{k} P\left(m_{i}-\delta_{i k}+\delta_{i j}\right) \quad\left(\sum_{i=1}^{N} m_{i}=R ; R, m_{i} \in \boldsymbol{N}\right), \tag{24}
\end{equation*}
$$

that is an irreducible representation with dimension

$$
\begin{equation*}
\operatorname{dim} W^{+[R]}=\frac{(N+R-1)!}{(N-1)!R!} . \tag{25}
\end{equation*}
$$

5. - Representation of loop algebra $\widehat{S U}(2)$.

According to Bose realization (7) of $\widehat{S U}(2)$ and expression (9), the indecomposable representation of $\widehat{S U}(2)$ on the enveloping field $\bar{\Omega}$ of 2 -states Bose algebra \mathscr{H}

$$
\begin{equation*}
\bar{\Omega}:\left\{F\left(m_{1}, m_{2}, n_{1}, n_{2}, n\right) \equiv a_{1}^{+m_{1}} a_{2}^{+m_{2}} a_{1}^{n_{1}} a_{2}^{n_{2}} E^{n} \mid m_{1}, m_{2}, n_{1}, n_{2}, n \in \boldsymbol{Z}\right\} \tag{26}
\end{equation*}
$$

can be obtained:

$$
\left\{\begin{align*}
\Gamma\left(\sigma_{+}^{m}\right) F(& \left.m_{1}, m_{2}, n_{1}, n_{2}, n\right)=F\left(m_{1}+1\right. \\
& \left., m_{2}, n_{1}, n_{2}+1, n+m-1\right)+ \\
& +m_{2} F\left(m_{1}+1, m_{2}-1, n_{1}, n_{2}, m+n\right) \tag{27}\\
\Gamma\left(\sigma_{-}^{m}\right) F\left(m_{1}, m_{2}, n_{1}, n_{2}, n\right)=F\left(m_{1}, m_{2}\right. & \left.+1, n_{1}+1, n_{2}, n+m-1\right)+ \\
& +m_{1} F\left(m_{1}-1, m_{2}+1, n_{1}, n_{2}, m+n\right) \\
\Gamma\left(\sigma_{3}^{m}\right) F\left(m_{1}, m_{2}, n_{1}, n_{2}, n\right)=F\left(m_{1}+1,\right. & \left.m_{2}, n_{1}+1, n_{2}, m+n-1\right)- \\
-F\left(m_{1}, m_{2}+1, n_{1}, n_{2}+1, m+n-1\right) & +\left(m_{1}-m_{2}\right) F\left(m_{1}, m_{2}, n_{1}, n_{2}, m+n\right)
\end{align*}\right.
$$

Firstly, let us discuss the infinite-dimensional representation. The representation on $V=\bar{\Omega} / I$ is obtained from (27):

$$
\left\{\begin{align*}
\Gamma\left(\sigma_{+}^{m}\right) D\left(m_{1}, m_{2}, n\right)=\mu_{2} D\left(m_{1}+1, m_{2}, n+\right. & m-1)+ \\
& +m_{2} D\left(m_{1}+1, m_{2}-1, m+n\right) \tag{28}\\
\Gamma\left(\sigma_{-}^{m}\right) D\left(m_{1}, m_{2}, n\right)=\mu_{1} D\left(m_{1}, m_{2}+1, n+\right. & m-1)+ \\
& +m_{1} D\left(m_{1}-1, m_{2}+1, m+n\right)
\end{align*} \quad \begin{array}{rl}
\Gamma\left(\sigma_{3}^{m}\right) D\left(m_{1}, m_{2}, n\right)=\mu_{1} D\left(m_{1}+1, m_{2}, m+n-1\right)- \\
-\mu_{2} D\left(m_{1}, m_{2}+1, m+n-1\right) & +\left(m_{1}-m_{2}\right) D\left(m_{1}, m_{2}, m+n\right)
\end{array}\right.
$$

In the case of $\mu_{1} \neq 0$ or $\mu_{2} \neq 0$, the representation (28) is indecomposable. It is
observed that the value ($m_{1}+m_{2}$) cannot decrease in (28), the integer $M \in \boldsymbol{Z}$ defines an invariant subspace V_{M} of V with basis

$$
\begin{equation*}
V_{M}:\left\{D\left(m_{1}, m_{2}, n\right) \mid m_{1}+m_{2} \geqslant M ; m_{1}, m_{2} \in \boldsymbol{Z}\right\} \tag{29}
\end{equation*}
$$

There exists an invariant subspace chain

$$
\ldots V_{-2} \supset V_{-1} \supset V_{0} \supset V_{1} \supset V_{2} \supset \ldots
$$

For $K \in \boldsymbol{N}^{+}$, we can define a quotient space $V(M, K)$ with basis

$$
\begin{align*}
& V[M, K]:\left\{H\left(m_{1}, m_{2}, n\right) \equiv\right. \tag{30}\\
& \left.\quad \equiv D\left(m_{1}, m_{2}, n\right) \operatorname{Mod} V_{M+K} \mid M \leqslant m_{1}+m_{2} \leqslant M+K-1\right\}
\end{align*}
$$

The representation on $V(M, K)$ is obtained from (28):

$$
\left\{\begin{array}{c}
\Gamma\left(\sigma_{+}^{m}\right) H\left(m_{1}, m_{2}, n\right)=\mu_{2} H\left(m_{1}+1, m_{2}, n+m-1\right)+ \\
\\
+m_{2} H\left(m_{1}+1, m_{2}-1, m+n\right) \tag{31}\\
\Gamma\left(\sigma_{-}^{m}\right) H\left(m_{1}, m_{2}, n\right)=\mu_{1} H\left(m_{1}, m_{2}+1, n+m-1\right)+ \\
\\
+m_{1} H\left(m_{1}-1, m_{2}+1, m+n\right) \\
\Gamma\left(\sigma_{3}^{m}\right) H\left(m_{1}, m_{2}, n\right)=\mu_{1} H\left(m_{1}+1, m_{2}, n+m-1\right)- \\
-\mu_{2} H\left(m_{1}, m_{2}+1, m+n-1\right)+\left(m_{1}-m_{2}\right) H\left(m_{1}, m_{2}, m+n\right) \\
\left(M \leqslant m_{1}+m_{2} \leqslant M+K-1\right)
\end{array}\right.
$$

If we define an "angular momentum basis" for $V(M, K)$

$$
\begin{equation*}
|(n), j, s\rangle=\frac{H(j+s, j-s, n)}{\sqrt{(j+s)!(j-s)!}} \tag{32}
\end{equation*}
$$

where $j=M / 2,(M+1) / 2,(M+2) / 2, \ldots,(M+K-1) / 2, s \in Z$, the representation (31) becomes

$$
\left\{\begin{align*}
& \Gamma\left(\sigma_{+}^{m}\right)|(n), j, s\rangle=(j+s+1)^{1 / 2} \mu_{2} \mid\left.(m+n-1), j+\frac{1}{2}, s+\frac{1}{2}\right\rangle+ \tag{33}\\
&+[j(j+1)-s(s+1)]^{1 / 2}|(m+n), j, s+1\rangle \\
& \Gamma\left(\sigma_{-}^{m}\right)|(n), j, s\rangle=(j-s+1)^{1 / 2} \mu_{1}\left|(m+n-1), j+\frac{1}{2}, s-\frac{1}{2}\right\rangle+ \\
&+[j(j+1)-s(s-1)]^{1 / 2}|(m+n), j, s-1\rangle \\
& \Gamma\left(\sigma_{3}^{m}\right)|(n), j, s\rangle=\mu_{1}(j+s+1)^{1 / 2}\left|(m+n-1), j+\frac{1}{2}, s+\frac{1}{2}\right\rangle+ \\
&+ \mu_{2}(j-s+1)^{1 / 2}\left|(m+n-1), j+\frac{1}{2}, s-\frac{1}{2}\right\rangle+2 s|(m+n), j, s\rangle
\end{align*}\right.
$$

that is an infinite-dimensional indecomposable representation in the case of $K \geqslant 2$. When $K=1$, the representation (32) becomes

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right)|(n), j, s\rangle=[j(j+1)-s(s+1)]^{1 / 2}|(m+n), j, s+1\rangle \tag{34}\\
\Gamma\left(\sigma_{-}^{m}\right)|(n), j, s\rangle=[j(j+1)-s(s-1)]^{1 / 2}|(m+n), j, s-1\rangle \\
\Gamma\left(\sigma_{3}^{m}\right)|(n), j, s\rangle=2 s|(m+n), j, s\rangle \quad\left[j=\frac{M}{2}, s \in \boldsymbol{Z}\right]
\end{array}\right.
$$

that is an infinite-dimensional irreducible representation.
In the case of $\mu_{1}=\mu_{2}=0$, the representation (28) becomes

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right) D\left(m_{1}, m_{2}, n\right)=m_{2} D\left(m_{1}+1, m_{2}-1, m+n\right) \tag{35}\\
\Gamma\left(\sigma_{-}^{m}\right) D\left(m_{1}, m_{2}, n\right)=m_{1} D\left(m_{1}-1, m_{2}+1, m+n\right) \\
\Gamma\left(\sigma_{3}^{m}\right) D\left(m_{1}, m_{2}, n\right)=\left(m_{1}-m_{2}\right) D\left(m_{1}, m_{2}, m+n\right)
\end{array}\right.
$$

It is observed that the value $m_{1}+m_{2}$ does not change in (35), the integer $R \in \boldsymbol{Z}$ defines an invariant subspace $V^{[R]}$

$$
\begin{equation*}
V^{[R]}:\left\{D\left(m_{1}, m_{2}, n\right) \mid m_{1}+m_{2}=R ; m_{1}, m_{2} \in \boldsymbol{Z}\right\} \tag{36}
\end{equation*}
$$

The quotient space $V=\bar{\Omega} / I$ can be decomposed as

$$
\begin{equation*}
V=\sum_{R \in \mathbf{Z}}^{\oplus} V^{[R]} \tag{37}
\end{equation*}
$$

Therefore, the representation on V is complete reducible. On every $V^{[R]}$, the representation is (35) with the condition $m_{1}+m_{2}=R$. By defining "angular momentum basis" for V

$$
\begin{equation*}
|(n), j, s\rangle=\frac{D(j+s, j-s, n)}{\sqrt{(j+s)!(j-s)!}} \tag{38}
\end{equation*}
$$

where $j=R / 2=0,1 / 2,1,3 / 2, \ldots, s \in \boldsymbol{Z}$, we can obtain the representation on $V^{[R]}$

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right)|(n), j, s\rangle=[j(j+1)-s(s+1)]^{1 / 2}|(m+n), j, s+1\rangle \tag{39}\\
\Gamma\left(\sigma_{-}^{m}\right)|(n), j, s\rangle=[j(j+1)-s(s-1)]^{1 / 2}|(m+n), j, s-1\rangle \\
\Gamma\left(\sigma_{3}^{m}\right)|(n), j, s\rangle=2 s|(n), j, s\rangle \quad\left(j=\frac{R}{2}, s \in \mathbf{Z}\right)
\end{array}\right.
$$

that is an infinite-dimensional irreducible representation.
Now, let us discuss finite-dimensional representations.

The representation induced on W can be obtained from (28):

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right) P\left(m_{1}, m_{2}\right)=\mu_{2} \lambda^{m-1} P\left(m_{1}+1, m_{2}\right)+m_{2} \lambda^{m} P\left(m_{1}+1, m_{2}-1\right) \tag{40}\\
\Gamma\left(\sigma_{-}^{m}\right) P\left(m_{1}, m_{2}\right)=\mu_{1} \lambda^{m-1} P\left(m_{1}, m_{2}+1\right)+m_{1} \lambda^{m} P\left(m_{1}-1, m_{2}+1\right) \\
\Gamma\left(\sigma_{3}^{m}\right) P\left(m_{1}, m_{2}\right)=\mu_{1} \lambda^{m-1} P\left(m_{1}+1, m_{2}\right)-\mu_{2} \lambda^{m-1} P\left(m_{1}, m_{2}+1\right)+ \\
+\left(m_{1}-m_{2}\right) \lambda^{m} P\left(m_{1}, m_{2}\right) \quad\left(\lambda \neq 0, m_{1}, m_{2} \in \mathbf{Z}\right)
\end{array}\right.
$$

The representation subduced on W^{+}is (40) with the condition $m_{1}, m_{2} \in \boldsymbol{N}$. In the case of $\mu_{1} \neq 0$ or $\mu_{2} \neq 0$, the representation on W^{+}is indecomposable. The representation on $W^{+}(M, K)$ is

$$
\left\{\begin{align*}
\Gamma\left(\sigma_{+}^{m}\right) Q\left(m_{1}, m_{2}\right)= & \mu_{2} \lambda^{m-1} Q\left(m_{1}+1, m_{2}\right)+m_{2} \lambda^{m} Q\left(m_{1}+1, m_{2}-1\right) \tag{41}\\
\Gamma\left(\sigma_{-}^{m}\right) Q\left(m_{1}, m_{2}\right)= & \mu_{1} \lambda^{m-1} Q\left(m_{1}, m_{2}+1\right)+m_{1} \lambda^{m} Q\left(m_{1}-1, m_{2}+1\right) \\
\Gamma\left(\sigma_{3}^{m}\right) Q\left(m_{1}, m_{2}\right)= & \mu_{1} \lambda^{m-1} Q\left(m_{1}+1, m_{2}\right)-\mu_{2} \lambda^{m-1} Q\left(m_{1}, m_{2}+1\right)+ \\
& +\left(m_{1}-m_{2}\right) \lambda^{m} Q\left(m_{1}, m_{2}\right) \quad\left(K \geqslant 2, \mu_{1} \neq 0 \text { or } \mu_{2} \neq 0\right),
\end{align*}\right.
$$

with dimension

$$
\operatorname{dim} W^{+}(M K)=\frac{1}{2} K[2 M+K-1]
$$

The representation on $W^{+}(M, 1)$ is

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right) Q\left(m_{1}, m_{2}\right)=m_{2} \lambda^{m} Q\left(m_{1}+1, m_{2}-1\right) \tag{42}\\
\Gamma\left(\sigma_{-}^{m}\right) Q\left(m_{1}, m_{2}\right)=m_{1} \lambda^{m} Q\left(m_{1}-1, m_{2}+1\right), \\
\Gamma\left(\sigma_{3}^{m}\right) Q\left(m_{1}, m_{2}\right)=\left(m_{1}-m_{2}\right) \lambda^{m} Q\left(m_{1}, m_{2}\right) \quad\left(m_{1}+m_{2}=M, \mu_{1} \neq 0 \text { or } \mu_{2} \neq 0\right)
\end{array}\right.
$$

If we define an "angular momentum basis" for $W^{+}(M, 1)$,

$$
\begin{equation*}
|j, s\rangle=\frac{Q(j+s, j-s)}{\sqrt{(j+s)!(j-s)!}} \tag{43}
\end{equation*}
$$

where $j=M / 2=0,1 / 2,1,3 / 2, \ldots, s=j, j-1, j-2, \ldots,-j$, the representation (42) becomes

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{ \pm}^{m}\right)|j, s\rangle=\lambda^{m} \sqrt{(j \mp s)(j \pm s+1)}|j, s \pm 1\rangle \tag{44}\\
\Gamma\left(\sigma_{3}^{m}\right)|j, s\rangle=\lambda^{m} 2 s|j, s\rangle
\end{array}\right.
$$

that is an irreducible representation with dimension $M+1=2 j+1$.

In the case of $\mu_{1}=\mu_{2}=0$, the representation on W^{+}becomes

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{+}^{m}\right) P\left(m_{1}, m_{2}\right)=m_{2} \lambda^{m} P\left(m_{1}+1, m_{2}-1\right), \tag{45}\\
\Gamma\left(\sigma_{-}^{m}\right) P\left(m_{1}, m_{2}\right)=m_{1} \lambda^{m} P\left(m_{1}-1, m_{2}+1\right), \\
\Gamma\left(\sigma_{3}^{m}\right) P\left(m_{1}, m_{2}\right)=\left(m_{1}-m_{2}\right) \lambda^{m} P\left(m_{1}, m_{2}\right), \quad\left(\lambda \neq 0, m_{1}, m_{2} \in \boldsymbol{N}\right),
\end{array}\right.
$$

that is a complete reducible representation. Obviously, W^{+}can be decomposed as

$$
W^{+}=\sum_{R \in N}^{\oplus} W^{+[R]}
$$

where $W^{+[R]}$ is spanned by

$$
\begin{equation*}
W^{+[R]}:\left\{P\left(m_{1}, m_{2}\right) \mid m_{1}+m_{2}=R ; m_{1}, m_{2} \in \mathbf{N} ; R \in \boldsymbol{N}\right\} \tag{46}
\end{equation*}
$$

The representation subduced on $W^{+[R]}$ is (45) with the condition $m_{1}+m_{2}=R$. If we define an "angular momentum basis" for $W^{+[R]}$

$$
\begin{equation*}
|j, s\rangle=\frac{P(j+s, j-s)}{\sqrt{(j+s)!(j-s)!}} \tag{47}
\end{equation*}
$$

where $j=R / 2=0,1 / 2,1,3 / 2, \ldots, s=j, j-1, j-2, \ldots,-j$, then we can obtain the representation on $W^{+[R]}$

$$
\left\{\begin{array}{l}
\Gamma\left(\sigma_{ \pm}^{m}\right)|j, s\rangle=\lambda^{m} \sqrt{(j \mp s)(j \pm s+1)}|j, s \pm 1\rangle \tag{48}\\
\Gamma\left(\sigma_{3}^{m}\right)|j, s\rangle=\lambda^{m} 2 s|j, s\rangle
\end{array}\right.
$$

that is an irreducible representation with dimension $R+1=2 j+1$.
According to (44) (or (48)), we can construct irreducible representations with any dimension $d \in \boldsymbol{N}$. For example, when $j=1$, we can the obtain the irreducible representation of $\widehat{S U}(2)$ with dimension 3 (where $\lambda \neq 0$):
$\Gamma\left(\sigma_{+}^{m}\right)=\lambda^{m}\left(\begin{array}{ccc}0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0\end{array}\right], \quad \Gamma\left(\sigma_{-}^{m}\right)=\lambda^{m}\left(\begin{array}{ccc}0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0\end{array}\right], \quad \Gamma\left(\sigma_{3}^{m}\right)=2 \lambda^{m}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

The authors would like to thank Prof. Zhao-Yan Wu for his useful discussions.

REFERENCES

[1] A. O. Barut and R. Raczka: Theory of Group Representations and Applications (Polish Scientific, Warsaw, 1977).
[2] L. Hlavaty and J. Niederle: Czech. J. Phys. B, 29, (3), 283 (1979).
[3] P. A. M. Dirac: Int. J. Theor. Phys., 23, (8), 677 (1984).
[4] B. Gruber, H. D. Doebner and P. J. Feinsilver: Kinam, 4, 241 (1982).
[5] B. Gruber, A. U. Klimyk and Y. F. Smirnov: Nuovo Cimento A, 69, 97 (1982).
[6] R. Lenczewski and B. Gruber: J. Phys. A: Math. Gen., 19, 1 (1986).
[7] C.-P. Sun: J. Phys. A, 20, 4551 (1987).
[8] C.-P. Sun: J. Phys. A, 20, 5823 (1987).
[9] C.-P. Sun: J. Phys. A, 20, L1157 (1987).
[10] B. Goddard and D. Olive: Int. J. Mod. Phys. A, 1, 303 (1986).
[11] K. Wolf: in Group Theory and Its Applications, Vol. 3, edited by E. M. Loebl (Academic Press, New York, N.Y.), p.190.

- RIASSUNTO (*)

Si dà una nuova realizzazione dell'algebra ad ansa \hat{G} (algebra di Kac-Moody affine non intrecciata) sul campo inviluppante $\bar{\Omega}$ dell'algebra di Bose \mathscr{F}. Usando questa nuova realizzazione si elaborano rappresentazioni non scomponibili a dimensioni infinite non triviali e rappresentazioni a dimensioni finite di \hat{G} su $\bar{\Omega}$ e i suoi spazi quozienti. Infine si discute in dettaglio, come esempio esplicito, l'algebra ad ansa $\widehat{S U}(2)$ associata all'algebra di Lie $S U(2)$.
(*) Traduzione a cura della Redazione.

Новая реализация алгебры петель и неприводимые модули.

Резюме (*). - Предлагается новая реализация алгебры петель \hat{G} (раскрученная аффинная алгебра Как-Муди) на огибающем поле $\bar{\Omega}$ алгебры Бозе κ. Используя эту новую реализацию, конструируются нетривиальные бесконечномерные неприводимые представления и конечномерные представления \hat{G} на $\bar{\Omega}$ и их частные пространства. В заключение, подробно обсуждается пример алгебры петель $\widehat{S U}(2)$, связанной с алгеброй Ли $S U(2)$.
(*) Переведено редакцией.

