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Most recently ’t Hooft has postulated (G. ’t Hooft, Class. Quantum Grav. 16, 3263
(1999)) that quantum states at the “atomic scale” can be understood as equivalence
classes of primordial states governed by a dissipative deterministic theory underlying
quantum theory at the “Planck scale”. Defining invariant subspaces clearly for primordial
states according to a given evolution, we mathematically reformulate ’t Hooft’s theory
as a quotient space construction with the time-reversible evolution operator induced
naturally. With this observation and some analysis, ’t Hooft’s theory is generalized
beyond his case where the evolution at the “Planck scale” is a power of a one-time-step
evolution or the time is discrete.

1. Introduction

To probe the physical differences in locality and causality between the so-called
Planck scale physics such as quantum gravity and the usual quantum field theo-
ries in some flat background space–time, Gerard ’t Hooft postulated1,2 that there
should be a dissipative deterministic theory underlying the usual quantum theory.
In his theory, the generic quantum mechanics is no longer the crucial starting point.
Rather, a deterministic theory with dissipation of information at the Planck scale
is needed to derive quantum mechanics at the atomic scale. Quantum state used
to make probabilistic prediction about physical phenomenon is then shown to be a
derived concept.

In ’t Hooft’s opinion, at the atomic scale quantum states are equivalence classes
of primordial states at the Planck scale. If we only care the temporal evolution of
equivalence classes, the information within each equivalence class can be ignored.
Then from a non-time-reversible evolution, which characterizes a deterministic pro-
cess with dissipation at the Planck scale, we can obtain a time-reversible evolution
of the properly defined equivalence classes for primordial states. Taking the equiva-
lence classes to be quantum states we are then able to introduce a unitary evolution
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law at the atomic scale. Apparently, here the central problem is how to classify the
Planck scale states with respect to a deterministic evolution. ’t Hooft’s solution to
this problem is as follows. He argued that two Planck scale states are equivalent at
the atomic scale if, after some finite time interval, they evolve into the same state.
This leads to a natural definition of equivalence classes: Two states are in the same
equivalence class if and only if they evolve into the same state after some finite time
interval. Quantum states are identified with these equivalence classes.

To see ’t Hooft’s idea clearly, we will make use of algebraic terminologies such as
quotient space and induced representation of operators. We will first properly define
an invariant subspace of primordial states related to the equivalence classes defined
by ’t Hooft. Then we can identify the space of quantum states, which is spanned by
the equivalence classes according to ’t Hooft, with the quotient space and naturally
reformulate the time-reversible evolution at the atomic scale by the mechanism of
induced representation of the dissipative deterministic evolution operator on the
quotient space. Finally, we extend ’t Hooft’s theory to cases where the evolution of
primordial states is not necessarily a power of one-time-step evolution at the Planck
scale (’t Hooft has implicitly assumed the one-time-step evolution law in the case
of discrete time variable).

2. Quotient Representation of Quantum States

In ’t Hooft’s theory,1 primordial states at the Planck scale need not form a linear
space. Generally they can be denoted by a set

Σ = {φi|i ∈ I} ,

where I stands for an index set. The underlying deterministic evolution is a trans-
formation U (usually depending on time) of Σ to itself. It can be represented by a
matrix with the entry 0 or 1 if I is a countable set. The determinism requires that
there be at most one nonzero entry in each column. Otherwise, the system will be
forced to evolve into an uncertain state, namely, a superposition of several elements
that is not in Σ. As U is an evolution operator, we write it as U = U(tf , ti) by con-
vention. Physically, it represents the evolution in the time interval [ti, tf ]. Certainly
the evolution should satisfy the so-called semigroup condition

U(tf , tm)U(tm, ti) = U(tf , ti) ,

U(t, t) = 1 .
(1)

In general, U is singular, namely, it has no inverse. Such singular operator describes
deterministic process with dissipation. As a matter of fact, under such an evolution
some states will disappear and some states will evolve into the same state, or in
other words, some states with a different past may have the same deterministic
fate. ’t Hooft thinks that, if two states evolve in such a way that their futures are
identical, they should represent the same state at the atomic scale. In this view, he
divides the elements of Σ into equivalence classes φ̄j , φi1 and φi2 (i1, i2 ∈ I) being
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in the same equivalence class if they are evolved into the same state after finite
time interval. Denote by Ξ = {φ̄j |j ∈ J} the set of the equivalence classes, where
J is another index set. Then ’t Hooft postulates that the space of quantum states
is spanned by {φ̄j |j ∈ J} and claims that the reduced evolution on the space of
quantum states is reversible.

Now let us analyze ’t Hooft’s theory from mathematical point of view as follows.
Let V be the vector space spanned by {φi|i ∈ I}. Then U(tf , ti) can be extended
to a linear transformation of V . We will call V the space of primordial states in
spite of the fact that generally it contains elements (such as φi + φj) which are not
primordial states originally defined by ’t Hooft. Let V1 denote the subspace of V
consisting of the vectors annihilated by U(0, t) at some t, namely, a vector v belongs
to V1 if and only if there exists some U(t, 0) such that U(t, 0)v = 0. Now it is easy
to observe that the space of quantum states is none other than the quotient space

V/V1 = {|φ〉 , φ+ V1|φ ∈ V } .

It is also easy to notice that ’t Hooft’s construction implies the assumption that
the evolution operator U(t2, t1) only depends on the difference of t2 and t1, i.e. we
can write

U(t2, t1) = U(t2 − t1) . (2)

Since the time is discrete in the Planck scale, for the minimum time interval ∆, we
can label

U(t2, t1) = U(m2∆,m1∆) , U(m2,m1)

with integers m2 and m1. With this notation, Eq. (2) means that all of the one-
time-step evolutions are identical, namely,

U(m1 + 1,m1) = U(m2 + 1,m2)

or

U(1, 0) = U(2, 1) = · · · = U(m+ 1,m) .

Obviously, this equation is equivalent to the condition Eq. (2) in the case of discrete
time.

Indeed, if this is the case, a nonsingular evolution law of the quantum states
naturally follows from U(t2, t1). Otherwise, generally the evolution operator at the
Planck scale cannot be reduced to the space of quantum states at the atomic space.
Mathematically, this is because, for a linear transformation in End(V ) to have an
induced action on the quotient space V/V1, V1 should be invariant with respect
to it. Let v̄ ≡ |ν〉 denote the equivalence class containing v. We notice that V1 is
invariant under U(t2, t1) in this case. Thus U(t2, t1) induces a natural action on the
quotient space V/V1. We denote the induced operator by U(t2, t1), then we have

U(t2, t1)v̄ = U(t2, t1)v . (3)
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It is easily seen that U(t2, t1) is nonsingular, i.e. zero is not its eigenvalue. In
fact, if U(t2, t1)v̄ = 0̄, then U(t2, t1)v ∈ V1. Thus there exists some t such that
U(t, 0)U(t2, t1)v = 0. It then follows that

U(t, 0)U(t2, t1)v = U(t2 + t, t2)U(t2, t1)v

= U(t2 + t, t1)v = U(t2 − t1 + t, 0)v = 0 . (4)

By definition this means v ∈ V1, i.e. v̄ = 0̄. This proves the nonsingularity of
U(t2, t1). Now the unitary of U(t2, t1) remains to be established. We will handle
this problem in a special case below.

For more general case, if the condition U(t2, t1) = U(t2 − t1) is not satisfied, to
guarantee the nonsingularity of U(t2, t1), the definition of the invariant subspace
V1 needs to be modified. It seems that we should define V1 in the following way:

A vector v belongs to V1 if and only if there exist finitely many
ti (i = 1, 2, . . . , r) such that U(t1, t2)U(t3, t4) · · ·U(tr−1, tr)v = 0.

Unfortunately, in this definition the physical meaning of V1 is not clear. Let us
return to the case with the condition U(t2, t1) = U(t2 − t1). Following ’t Hooft, we
consider a system with discrete time coordinates. Actually, it stands for the same
one-step evolution process

U(n+ 1, n) = U(1, 0) , n ∈ Z+ (5)

in time unit ∆ = 1. We can assume that the time t takes values in Z+, the set of
non-negative integers. Then, we have

U(t) = U(t, 0) = U(1, 0)t

for the discrete time t ∈ Z+. For such a periodic system the invariant subspace V1

is

V1 = {v ∈ V |∃ t ∈ Z+ s.t. U(t)v = 0} . (6)

In Refs. 1 and 2 ’t Hooft presented a simple example to illustrate his theory.
Fit into the above mathematical framework, the example goes as follows: V is
four-dimensional:

V = span{v1, v2, v3, v4} (7)

and

U(1, 0) =


0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0





March 9, 2001 16:20 WSPC/146-MPLA 00286

Algebraic Construction of ’t Hooft’s Quantum Equivalence Classes 79

with respect to the basis {v1, v2, v3, v4}. It is easily seen that

V1 = span{v1 − v4} ,

V

V1
= span{v̄1, v̄2, v̄3}

and the induced evolution operator is

U(1, 0) =

 0 0 1
1 0 0
0 1 0


with respect to the basis {v̄1, v̄2, v̄3}. Clearly, U(1, 0) is unitary relative to a properly
defined inner product. This is not at all accidental. In fact, if the space of primor-
dial states is finite-dimensional, a dissipative deterministic evolution at the Planck
scale always induces a unitary evolution at the atomic scale if only we choose an
inner product on the space of quantum states adequately. We will present the proof
elsewhere.

3. Generalize Dynamics

We now turn to consider general evolution process which is not a power of the one-
step-evolution, such as scattering process, with time variable approaching infinity.
Assume such a process is described by an evolution operator U(0,+∞) ,W at the
Planck scale.

As above, let V be the space of primordial states. Suppose V is finite-
dimensional. Inspired by ’t Hooft’s theory, we postulate that the space of quantum
states at the atomic scale is the quotient space V/V1 with V1 defined as follows:

V1 = {v ∈ V |∃ n ∈ Z+ s.t. Wnv = 0} .

Suppose that the characteristic polynomial of W is

pw(λ) =
r∏
i=0

(λ− λi)mi , (8)

where λ0 = 0 and λj 6= 0 for j 6= 0. Obviously, V1 is just the kernel of Wm0 , namely,

V1 = KerWm0 = {v ∈ V |Wm0v = 0} (9)

and the characteristic polynomial of the induced operator W is

pw̄(λ) =
r∏
i=1

(λ − λi)mi . (10)

Therefore, W ∈ End(V/V1) is nonsingular. Let us go on to deal with the unitarity
problem of W .

W is called unitarizable if it is diagonalizable and all of its eigenvalues are of
modulus 1. By definition, ifW is unitarizable, there exists a basis {v̄1, v̄2, . . . , v̄m} of
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V/V1 such that Wv̄j = eiθj v̄j (j = 1, 2, . . . ,m) where θj is a real number. Therefore,
if we define the “canonical” inner product ( , ) on V/V1 satisfying (v̄i, v̄j) = δij , then
W is unitary with respect to it. We have shown that if an operator is unitarizable
it can be made unitary by properly defining an inner product on the space that
it acts on, as the term suggests. The converse statement is trivially true, as one
easily sees. As for the unitarizability condition for W , it is not difficult to show
that W is unitarizable if and only if the minimal polynomial of W is of the form
p(λ) = λn

∏m
j=1(λ − eiθj ) where θj (j = 1, 2, . . . ,m) are different nonzero real

numbers.
If W is not unitarizable we can construct a unitary operator from W by the

polar decomposition of W . Explicitly, we define

Uw = W (W
+
W )−1/2 . (11)

It is then elementary to show the unitarity of Uw. Certainly, Uw depends on the
inner product on V/V1. But it is always unitary with respect to the chosen inner
product. It is also clear that when W is unitarizable Uw coincides with W if we
choose the “canonical” inner product on V/V1. In general, there does not exist a
canonical way to construct a unitary operator fromW . This corresponds to the fact
that there does not exist a canonical way to introduce an inner product on V/V1.

We proceed to present a method of obtaining the matrix representation of W .
Denote by (KerWm0)⊥ the orthogonal complement to the subspace KerWm0 in V
with respect to the inner product on V . Then we have the decomposition

V = KerWm0 ⊕ (KerWm0)⊥ .

Obviously, the operator W+m0Wm0 is hermitian and (KerWm0)⊥ is a
W+m0Wm0-invariant subspace. Thus the restriction of W+m0Wm0 to (KerWm0)⊥

is also hermitian. Hence there are eigenvectors v1, v2, . . . , vd of W+m0Wm0 such
that they constitute a basis of (KerWm0)⊥. Choose a basis {vd+1, vd+2, . . . , vN} of
KerWm0 . Then {vi|i = 1, 2, . . . , N} is a basis of V and {v̄i , v̄i+V1|i = 1, 2, . . . , d}
is a basis of V/V1. Suppose that P is the projection operator upon (KerWm0)⊥.
Then the operator PWP has the following matrix representation

PWP =
(
M 0
0 0

)
(12)

with respect to the basis {vi|i = 1, 2, . . . , N}, where M is the matrix representation
of W with respect to the basis {v̄i|i = 1, 2, . . . , d}.

To illustrate the above arguments, let us take

W =


0 0 1 0
1 1 0 0
0 0 0 0
0 0 0 1


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as an example. Its characteristic polynomial is (λ− 1)2λ2. Thus the invariant sub-
space V1 = KerW 2. By simple calculation we have

V ⊥1 = span{v1, v2} , V1 = span{v3, v4} ,

where

v1 = (0, 0, 0, 1)T , v2 = (1, 1, 1, 0)T ,

v3 = (1, 0,−1, 0)T , v4 = (0, 1,−1, 0)T .

Then we obtain the matrix representation M =
(

1 0
0 1

)
of W relative to the basis

{v̄1, v̄2}.
In summary, in the finite-dimensional case, if we can find an adequate

classification of the so-called primordial states at the Planck scale such that the
information concerning the time irreversibility could be reasonably ignored, then
at the atomic scale we can manage to obtain a unitary evolution, describing a
quantum mechanical process. When we pass to the infinite-dimensional case, the
situation becomes subtle and hard to manage. In particular, it should be difficult
to identify the subspace V1. Nevertheless, the central idea of classifying primordial
states and identifying quantum states with equivalence classes is applicable without
difficulty. ’t Hooft has shown us two elegant examples: The classical motion with
limit cycles and the massless neutrinos moving as a plane in space–time.1,2 We wish
to try our hands on discrete infinite-dimensional case in the next section.

4. Remarks

To conclude this letter we should give some remarks on our mathematical reformu-
lation and the physical generalization for ’t Hooft’s equivalence class theory.

Firstly, a correct quantum theory requires a Hilbert space with properly defined
inner product to define probability. But it is not at all clear how to endow the
space of equivalence classes with such an inner product even though there may
be a natural inner product on the space of primordial states. Thus to establish
the unitarity of the induced evolution is really a problem if one does not know
in advance what the physical system at the atomic scale seems to be. So a gap
remains to be bridged between the so-called Planck scale physics and the atomic
scale physics even if ’t Hooft’s theory proves to be correct.

Secondly, we also notice that mathematically there is something in common
between the ’t Hooft’s equivalence class idea and the representation theory of the
Heisenberg–Weyl (HW) algebra.4 In this theory the Fock space of bosons follows
from the quotient space construction for the HW algebra4 generated by [a, a+] = 1.
The primordial description of the HW algebra is its master representation M with
the Poincaré–Birkhoff–Witt (PBW) basis, but it is not unitary forM(a) 6= M(a+)†.
However, from the master representation M , a unitary representation u which
satisfies u(a) = u(a+)† can be constructed on the quotient space for a certain HW-
invariant subspace. Based on this observation, we can construct the Fock space as
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a span of the equivalence class of certain primordial states obeying non-reversible
evolution.

Finally, it is a challenge to understand quantum decoherence or wave function
collapse in quantum measurement5 from the underlying deterministic theory at a
deeper level. However, like the hidden variable theory, which has been rejected by
experiments till now, quantum measurement problems such as quantum-classical
correspondence, quantum dissipation and quantum entanglement5,6 must be faced
if we are to take ’t Hooft’s theory seriously.
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