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The idea of quantum state storage is generalized to describe the coherent transfer of quantum
information through a coherent data bus. In this universal framework, we comprehensively
review our recent systematical investigations to explore the possibility of implementing the
physical processes of quantum information storage and state transfer by using quantum
spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic
Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental
problems behind the various protocols for the storage and transfer of quantum information in solid
state systems. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008129�
I. INTRODUCTION

The current development of quantum information sci-
ence and technology demands optimal systems serving as
long-lived quantum memories, through which the quantum
information carried by a quantum system with short decoher-
ence time can be coherently transferred.1 In this sense a
quantum channel or a quantum data bus is needed for perfect
transmission of quantum states. In this article, we will dem-
onstrate that both the quantum information storage and the
quantum state transfer can be uniquely described in a univer-
sal framework.

There exist some schemes2–5 concerning the quantum
storage of photon states, and there are also some efforts de-
voted to the universal quantum storage for a qubit �a basic
two-level system� state, which is necessary in quantum com-
putation. For example, most recently an interesting
protocol6–8 was presented to reversibly map the electronic
spin state onto the collective spin state of the surrounding
nuclei. Because of the long decoherence time of the nuclear
spins, the information stored in them can be robustly pre-
served. It was found that,9 only under two homogeneous con-
ditions with low excitations, such many-nuclei system ap-
proximately behaves as a single-mode boson to serve as an
efficient quantum memory.

The low-excitation condition requires a ground state
with all spins oriented, which can be prepared by applying a
magnetic field polarizing all spins along the same direction.
With the concept of spontaneous symmetry breaking �SSB�,
one can recognize that a ferromagnetic Heisenberg spin
chain usually has a spontaneous magnetization, which natu-
rally offers a ground state of this kind. In event of SSB, the
intrinsic interaction between spins will strongly correlate
with the nuclei to form the magnon, a collective mode of
spin wave, even without any external magnetic field. With
these considerations, Wang, Li, Song, and Sun10 explored the
possibility of using a ferromagnetic quantum spin system,
instead of the free nuclear ensemble, to serve as a robust
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quantum memory. A protocol was presented to implement a
quantum storage element for the electronic spin state in a
ring array of interacting nuclei. Under appropriate control of
both the electron and the external magnetic field, an arbitrary
quantum state of the electronic spin qubit, either a pure or a
mixed state, can be coherently stored in the nuclear spin
wave and then read out in the reverse process.

On the other hand, designed for a more realistic quantum
computing, a scalable architecture of quantum network
should be based on the solid state system.11,12 However, the
intrinsic feature of solid state based channels, such as the
finiteness of the correlation13,14 and the environment induced
noise �especially the low-frequency noise� may block this
scalability. Fortunately, analytical study shows that a spin
system possessing a commensurate structure of energy spec-
trum matched with the corresponding parity can ensure the
perfect state transfer.15–17 Based on this fact, an isotropic
antiferromagnetic spin ladder system can be pre-engineered
as a novel robust kind of quantum data bus.18 Because the
effective coupling strength between the two spins connected
to a spin ladder is inversely proportional to the distance of
the two spins, the quantum information can be transferred
between the two spins separated by a longer distance. An-
other example of the near-perfect transfer of quantum infor-
mation was given to illustrate an application of the theorem.
The proposed protocol of such near-perfect quantum state
transfer utilizes a ferromagnetic Heisenberg chain with uni-
form coupling constant but in an external parabolic magnetic
field.17

The present paper will give a broad overview of the
present situation of the our investigations mentioned above
on quantum state storage and quantum information coherent
transfer based on quantum spin systems. We will understand
the physical mechanisms and the fundamental problems be-
hind these protocols in the view of a unified conception, the
generalized quantum information storage.
© 2005 American Institute of Physics
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II. GENERALIZED QUANTUM STORAGE AS A DYNAMIC
PROCESS

For the dynamic process recording and reading quantum
information carried by quantum states, we first describe the
idea of generalized quantum storage, which was also intro-
duced in association with the Berry’s phase factor.19 Let M
be a quantum memory possessing a subspace spanned by
�M n� (n�1,2, . . . ,d , �M n�M m���nm), which can store the
quantum information of a system S with basis vectors �Sn� ,
n�1,2, . . . ,d . If there exists a controlled time evolution in-
terpolating between the initial state �Sn�� �M � and the final
state �S�� �M n� for each index n and arbitrarily given states
�S� and �M � , we define the usual quantum storage by using a
factorized evolution of time Tm

���Tm���U�Tm����0 ����S�� �M n� , �1�

starting from the initial state ��(0)���Sn�� �M � . The cor-
responding readout process is an inverse evolution of time T f

(�Tm)

���T f ���U�T f ����0 ����Sn�� �M � . �2�

In this sense, writing an arbitrary state �S(0)��	ncn�Sn� of
S into M with the initial state �M � of quantum memory can
be realized as a controlled evolution from time t�0 to
t�Tm

	
n

cn�Sn�� �M �→�S��	
n

cn�M n� . �3�

The readout process from M is another controlled evolution
from time t�Tm to t�T f :

�S��	
n

cn�M n�→	
n

cn�Sn�� �M � . �4�

Obviously, the combination of these two processes forms a
cyclic evolution in which a state totally returns to the initial
one.

However, in the view of the decoding approach, one
does not need ‘‘totally return’’ to revive the information of
initial state, and a difference is allowed by the n-independent
unitary transformation W�WS � 1, namely,

�S�� WM	
n

cn�M n�→(WS	
n

cn�Sn�) � �M � . �5�

This is a quantum dynamic process �QDP� for recording and
reading, which defines a quantum storage. Because the factor
WS is known to be independent of the initial state, it can be
easily decoded from WS	ncn�Sn� by the inverse transforma-
tion of WS . We notice that the quantum storage usually re-
lates to two quantum subsystems.

We will show as follows that the quantum state transfer
can be understood as a generalized quantum storage with
three subsystems, the input one with the Hilbert space SA,
the data bus with D , and the output one with SB. As illus-
trated in Fig. 1, the two subsystems SA and SB are located at
two distant locations A and B , respectively. Then the Hilbert
space of the total system can be written as

ST�SA
� D � SB
SA

� M , �6�

where M�D � SB can be regarded as the generalized quan-
tum memory with the memory space spanned by �M n�
��D��UB�Sn
B�. Here �D� is a robust state of the data bus and

UB represents some local unitary transformations with re-
spect to B , which are independent of the initial state. With
this notation, the quantum state transfer indeed can be re-
garded as a generalized QDP.

In fact, if one inputs a state of �SA��	ncn�Sn
A� localized

at A at t�0, the initial state of whole system can be written
as

���0 ���	
n

cn�Sn
A�� �M � , �7�

where �M ���D�� UB�SB� . The quantum state transfer can
be usually described as a factorized time evolution at time
t�T f

���T f ����S�� �D��	
n

cnUB�Sn
B���S��	

n
cn�M n�

�8�

with �M n���D�� UB�Sn
B� . The above equations just demon-

strate that the quantum state transfer is essentially a general-
ized quantum memory with WM�(1 � UB). In this sense the
revisable quantum state transfer can be regarded as a general
readout process.

Now we would like to remark on the differences be-
tween generalized quantum state storage and other two types
of quantum processes, quantum teleportation and quantum
copy. In fact, quantum teleportation is theoretically perfect,
yielding an output state which revives the input with a fidel-
ity F�1. Actually one of necessary procedure in teleporta-
tion is to measure the Bell state at location A , which will
induce wave packet collapse. On the other way around, the
quantum state storage process is always on time evolution
without any measurement. As for quantum copy the initial
state remains unchanged during its copy and can be gener-
ated in a dynamic process.

III. QUANTUM STATE TRANSFER IN SPIN SYSTEMS

A robust quantum information processing based on solid
state system is usually implemented in a working space
spanned by the lowest states, which are well separated from
other dense spectra of high excitations. In this sense the en-
ergy gap of the solid state system is an important factor we
should take into account. The decoherence induced by the

FIG. 1. Demonstration of quantum state transfer as a process of generalized
quantum information storage by grouping the data bus D and the target
subsystem SB as a generalized quantum memory.



688 Low Temp. Phys. 31 (8–9), August–September 2005 Z. Song and C. P. Sun
environmental noise can also destroy the robustness of quan-
tum information processing, such as the low-frequency �e.g.,
1/f ) noise prevalent in solid state devices.

People believe that the gap of the data bus can suppress
the stay of transferred state in the middle way in order to
enhance the fidelity, but the large gap may result in a shorter
correlation length. The relationship between correlation
length and the energy gap is usually established in the system
with translational symmetry. So we need to consider some
modulated-coupling systems or artificially engineered irregu-
lar quantum spin systems where the strong correlation be-
tween two distant site can be realized.

A. Theorem for the perfect quantum state transfer

Quantum mechanics shows that perfect state transfer is
possible. To sketch our central idea, let us first consider a
single-particle system with the usual spatial reflection sym-
metry �SRS� in the Hamiltonian H . Let P be the spatial
reflection operator. The SRS is implied by �H ,P��0. Now
we prove that at time �/E0 any state ��r� can evolve into the
reflected state ��(�r) if the eigenvalues 
n match the pari-
ties pn in the following way:


n�NnE0 ,pn����1 �Nn �9�

for arbitrary positive integer Nn and

H�n�r��
n�n�r�, P�n�r��pn�n�r�. �10�

Here �n(r) is the common eigen wave function of H and P ,
r is the position of the particle. We call Eq. �9� the spectrum-
parity matching condition �SPMC�. The proof of the above
rigorous conclusion is a simple but heuristic exercise in basic
quantum mechanics. In fact, for the spatial reflection opera-
tor, P�(r)���(�r). For an arbitrarily given state at t
�0, �(r,t)� t�0 , it evolves to

��r,t ��exp��iHt ���r��	
n

Cn exp��iNnE0t ��n�r�

�11�

at time t , where Cn���n��� . Then at time t��/E0 , we
have

�� r,
�

E0
��	

n
Cn��1 �Nn�n�r���P��r� �12�

that is �(r,�/E0)���(�r). This is just the central result20

discovered for quantum spin system that the evolution opera-
tor becomes a parity operator �P at some instant t�(2n
�1)�/E0 , that is exp(�iH�/E0)��P. From the above ar-
guments we have the consequence that if the eigenvalues

n�NnE0 of a 1D Hamiltonian H with spatial reflection
symmetry are odd-number spaced, i.e., Nn�Nn�1 are always
odd, any initial state �(x) can evolve into ��(�x) at time
t��/E0 . In fact, for such 1D systems, the discrete states
alternate between even and odd parities. Consider the odd-
number-spaced eigenvalues 
n�NnE0 . The next-nearest
level must be even-number spaced; then the SPMC is satis-
fied. Obviously, the 1D SPMC is more realizable for the
construction of the model Hamiltonian to perform perfect
state transfer.

Now, we can directly generalize the above analysis to
many particle systems. For the quantum spin chain, one can
identify the above SRS as the middle inversion of spins with
respect to the center of the quantum spin chain. As the dis-
cussion in Ref. 20, we write spin inversion operation

P��s1 ,s2 ,. . . ,sN�1 ,sN����sN ,sN�1 ,. . . ,s2 ,s1� �13�

for the wave function �(s1 ,s2 ,. . . ,sN�1 ,sN) of the spin
chain. Here, sn�0,1 denotes the spin values of the nth qubit.

B. Perfect state transfer in modulated coupling system

Based on the above analysis, in principle, perfect quan-
tum state transfer is possible in the framework of quantum
mechanics. According to SPMC, many spin systems can be
pre-engineered for perfect quantum states transfer. For in-
stance, two-site spin-1/2 Heisenberg system is the simplest
example which meets the SPMC. Recently, Christandl
et al.15,16 proposed an N-site XY chain with an elaborately
designed modulated coupling constants between two nearest-
neighbor sites, which ensures a perfect state transfer. It is
easy to find that this model corresponds the SPMC for the
simplest case Nn�n . A natural extension of the application
of the theorem leads to discover other models with Nn�n .
Following this idea, a new class of different models whose
spectrum structures obey the SPMC exactly were proposed
for perfect state transfer. Consider an N-site spin-1/2 XY
chain with the Hamiltonian

H�2	
i�1

N�1

Ji�Si
xSi�1

x �Si
ySi�1

y � , �14�

where Si
x , Si

y , and Si
z are Pauli matrices for the ith site, and

Ji is the coupling strength for the nearest-neighbor interac-
tion. For the open boundary condition, this model is equiva-
lent to the spinless fermion model. The equivalent Hamil-
tonian can be written as

H�	
i�1

N�1

Ji
�k�ai

†ai�1�h.c., �15�

where ai
† , ai are the fermion operators. This describes a

simple hopping process in the lattice. According to the
SPMC, we can present different models �labeled by different
positive integer k�0,1,2,.. .) through pre-engineering of the
coupling strength as Ji�Ji

[k]��i(N�i) for even i and Ji

�Ji
[k]��(i�2k)(N�i�2k) for odd i . By a straightfor-

ward calculation, one can find the k-dependent spectrum 
n

��N�2(n�k)�1 for n�1,2,.. . ,N/2, and 
n��N�2(n
�k)�1 for n�N/2�1,.. . ,N . The corresponding
k-dependent eigenstates are

��n��	
i�1

N

cni�i��	
i�1

N

cniai
†�0�, �16�

where the coefficients cni can be explicitly determined by the
recurrence relation presented in Ref. 18.

It is obvious that the model proposed in Ref. 15 is just
the special case of our general model with k�0. For arbi-
trary k , one can easily check that it meets the our SPMC by
a straightforward calculation. Thus we can conclude that
these spin systems with a set of pre-engineered couplings
Ji

[k] can serve as the perfect quantum channels that allow the
qubit information transfer.
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C. Near-perfect state transfer

In real many-body systems, the dimension of the Hilbert
space increases exponentially with the size N . For example,
for an N-site spin-1/2 system the dimension is D�2N, and
the symmetry of the Hamiltonian cannot help so much. So it
is almost impossible to obtain a model to be exactly engi-
neered. In the above arguments we just show the possibility
to implement the perfect state transfer of any quantum state
over arbitrary long distances in a quantum spin chain. It
sheds light into the investigation of near-perfect quantum
state transfer. There is a naive way that one selects some
special states to be transported, which is a coherent superpo-
sition of commensurate part of the whole set of eigenstates.

For example, we consider a truncated Gaussian wave
packet for an anharmonic oscillator with lower eigenstates to
be harmonic. It is obvious that such system allows some
special states to transfer with high fidelity. We can imple-
ment such approximate harmonic system in a natural spin
chain without the pre-engineering of couplings but in the
presence of a modulated external field. Another way to real-
ize near perfect state transfer is to achieve the entangled
states and fast quantum states transfer of two spin qubits by
connecting two spins to a medium which possesses a spin
gap. A perturbation method, the Fröhlich transformation,
shows that the interaction between the two spins can be
mapped to the Heisenberg type coupling.

Spin ladder. We sketch our idea with the model illus-
trated in Fig. 2. The whole quantum system we consider here
consists of two qubits (A and B) and a 2�N-site two-leg
spin ladder. In practice, this system can be realized by an
engineered array of quantum dots.21 The total Hamiltonian
H�Hm�Hq contains two parts, the medium Hamiltonian

HM�J 	
�i j��

Si•Sj�J	
�i j��

Si•Sj �17�

describing the spin-1/2 Heisenberg spin ladder consisting of
two coupled chains, and the coupling Hamiltonian

Hq�J0S�•SL�J0SB•SR �18�

describing the connections between qubits A , B and the lad-
der. In the term HM , i denotes a lattice site on which one
electron sits, �i j�� denotes nearest-neighbor sites on the

FIG. 2. Two qubits A and B connect to a 2�N-site spin ladder. The ground
state of H with a-type connection �a� is singlet �triplet� when N is even
�odd�, while for the b-type connection �b�, one should have the opposite
result.
same rung, and �i j� � denotes nearest neighbors on either leg
of the ladder. In the term Hq , L and R denote the sites
connecting to the qubits A and B at the ends of the ladder.
There are two types of connection between SA (SB) and the
ladder, which are illustrated in Fig. 2. According to Lieb’s
theorem,22 the spin of the ground state of H with the con-
nection of type a is zero �one� when N is even �odd�, while
for the connection of type b , one should have the opposite
result. For the two-leg spin ladder HM , analytical analysis
and numerical results have shown that the ground state and
the first excited state of the spin ladder have spin 0 and 1,
respectively.13,14 It is also shown that there exists a finite spin
gap ��E1

M�Eg
M�J/2 between the ground state and the first

excited state �see Fig. 3�. This fact has been verified by
experiments13 and is very crucial for our present investiga-
tion.

Thus, it can be concluded that the medium can be ro-
bustly frozen to its ground state to induce the effective
Hamiltonian Heff�JeffSA•SB between the two end qubits.
With the effective coupling constant Jeff to be calculated in
the following, this Hamiltonian depicts the direct exchange
coupling between two separated qubits. As the famous Bell
states, Heff has singlet and triplet eigenstates � j ,m�AB :
�0,0��1/&(�↑�A�↓�B��↓�A�↑�B) and �1,1���↑�A�↑�B , �1,
�1���↓�A�↓�B , �1,0��1/&(�↑�A�↓�B��↓�A�↑�B), which
can be used as a channel to share entanglement for a perfect
quantum communication in a longer distance.

The above central conclusion can be proved with both
analytical and numerical methods as follows. To deduce the
above effective Hamiltonian we use ��g�M (����M) and Eg

(E�) to denote ground �excited� states of HM and the corre-
sponding eigenvalues. The zero-order eigenstates �m� can
then be written in a joint way as

� j ,m�g�� j ,m�AB � ��g�M ,

���
jm�sz���� j ,m�AB � ����M . �19�

Here we have considered that the z component Sz�SM
z

�SA
z �SB

z of the total spin is conserved with respect to the
connection Hamiltonian Hq . Since SM

z and SM
2 commute

with HM , we can label ��g�M as ��g(sM ,sM
z )�M , and then

sz�m�sM
z can characterize the non-coupling spin state

���
jm(sz)� .

FIG. 3. Schematic illustration of the energy levels of the system. When the
connections between two qubits and the medium are switched off (J0

�0), the ground states are degenerate �a�. When J0 switches on, the ground
state�s� and the first excited state�s� are either singlet or triplet. This is
approximately equivalent to that of two coupled spins �b�, �c�.
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When the connections between the two qubits and the
medium are switched off, i.e., J0�0, the degenerate ground
states of H are just � j ,m�g with the degenerate energy Eg and
spin 0, 1, respectively, which is illustrated in Fig. 3a. When
the connections between the two qubits and the medium are
switched on, the degenerate states with spin 0,1 �Ref. 23�
should split as illustrated in Fig. 3b, c. In the case with J0

�J at lower temperature kT�J/2, the medium can be frozen
to its ground state, and then we have the effective Hamil-
tonian

Heff� 	
j�,m�, j ,m ,sz

�g� j ,m�Hq�� �
j�m��sz���2

Eg�E�
� j ,m�gg� j ,m�

�Jeff .Diag.� 1

4
,
1

4
,
1

4
,�

3

4 ��
 �20�

where

Jeff�	
�

J0
2�L���R*����R���L*����

Eg�E�
,


�	
�

3J0
2� �L����2��R����2�

4�Eg�E��
. �21�

This just proves the above effective Heisenberg Hamiltonian
�5�. Here the matrix elements of interaction K(�)
�M��g�SK

z ���(1,0)�M (K�S ,L) can be calculated only for
the variables of the data bus medium. We also remark that,
because Sz and S2 are conserved for Hq , the off-diagonal
elements in the above effective Hamiltonian vanish.

To sum up so far, we have shown that at lower tempera-
ture kT�J/2, H can be mapped to the effective Hamiltonian
Heff , which seemingly depicts the direct exchange coupling
between two separated qubits. Notice that the coupling
strength has the form Jeff�g(L)J0

2/J, where g(L) is a function
of L�N�1, the distance between the two qubits concerned.
Here we take the N�2 case as an example. According to Eq.
�21� one can get Jeff��(1/4)J0

2/J and (1/3)J0
2/J when A and

B connect the plaquette diagonally and adjacently, respec-
tively. This result is in agreement with the theorem22 about
the ground state and the numerical result when J0�J . In
general cases, the behavior of g(L) versus L is very crucial
for quantum information since L/�Jeff� determines the char-
acteristic time of quantum state transfer between the two
qubits A and B . In order to investigate the profile of g(L), a
numerical calculation is performed for the systems L
�4,5,6,7,8,10, with J�10,20,40 and J0�1. The spin gap�s�
between the ground state�s� and first excited state�s� is �are�
calculated, corresponding to the magnitude of Jeff . The nu-
merical result is plotted in Fig. 4, which indicates that Jeff

�1/(LJ). It implies that the characteristic time of quantum
state transfer linearly depends on the distance and then guar-
antees the possibility of realizing the entanglement of two
separated qubits in practice.

In order to verify the validity of the effective Hamil-
tonian Heff , we need to compare the eigenstates of Heff with
those reduced states from the eigenstates of the whole sys-
tem. In general the eigenstates of H can be written formally
as
����	
jm

c jm� j ,m�AB � �� jm�M �22�

where ��� jm�M� is a set of vectors of the data bus, which is
not necessarily orthogonal. Then we have the condition
	 jm�c jm�M

2 �� jm�� jm�M�1 for normalization of ���. In this
sense the practical description of the A – B subsystem of two
quits can only be given by the reduced density matrix

�AB�TrM� ��������	
jm

�c jm�2� j ,m�AB� j ,m�

� 	
j�m�� jm

c j�m�
* c jmM�� j�m��� j ,m�M� j ,m�AB� j�,m��

�23�

where TrM means the trace over the variables of the medium.
By a straightforward calculation we have

�c11�2��c1�1�2� � ��� 1

4
�SA

z
•SB

z � �� � ,

�c00�2� � ��� 1

4
�SA•SB� �� � , �24�

�c10�2�1�2�c11�2��c00�2.

Now we need a criterion to judge how close the practical
reduced eigenstate is to the pure state for the effective two-
site coupling Heff . As we noticed, it has the singlet and trip-
let eigenstates � j ,m�AB in the subspace spanned by �0,0�AB

with Sz�SA
z �SB

z �0, we have �c11�2��c10�2��c1�1�2�0,
�c00�2�1; for the triplet eigenstate �1,0�AB we have �c11�2

��c1�1�2��c00�2�0, �c10�2�1. With the practical Hamil-
tonian H , the values of �c jm�2, i�1,2,3,4 are calculated nu-
merically for the ground state ��g� and first excited state
��1� of finite system�s� L�4,5,6,7,8,10 with J�10,20,40
(J0�1) in the Sz�0 subspace, which are listed in the Table
1a, b, c of Ref. 17. It shows that, at lower temperature, the
realistic interaction leads to results for �c jm�2 which are very
close to that described by Heff , even if J is not so large in
comparison with J0 .

FIG. 4. The spin gaps obtained by numerical method for the systems L
�4,5,6,7,8,10 with J�10,20,40 and J0�1 are plotted, corresponding to the
magnitude of Jeff . It indicates that Jeff�1/(LJ).
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We assert that the above tables reflect all the facts dis-
tinguishing the difference between the results about the en-
tanglement of two end qubits generated by Heff and H .
Though we have ignored the off-diagonal terms in the re-
duced density matrix, the calculation of the fidelity
F(� j ,m�)
M� j ,m��AB� j ,m�M��c jm�2 further confirms our
observation that the effective Heisenberg type interaction of
two end qubits can approximate the realistic Hamiltonian
very well. Then the quantum information can be transferred
between the two ends of the 2�N-site two-leg spin ladder,
that can be regarded as the channel to share entanglement
with separated Alice and Bob. Physically, this is just due to a
large spin gap existing in such a perfect medium, whose
ground state can induce a maximal entanglement of the two
end qubits. We also pointed out that our analysis is appli-
cable for other types of medium systems as data buses,
which possess a finite spin gap. Since L/�Jeff� determines the
characteristic time of quantum state transfer between the two
qubits, the dependence of Jeff upon L becomes important and
relies on the appropriate choice of the medium.

In conclusion, we have presented and studied in detail a
protocol for quantum state transfer. Numerical results show
that the isotropic antiferromagnetic spin ladder system is a
perfect medium through which the interaction between two
separated spins is very close to the Heisenberg type of cou-
pling, with a coupling constant inversely proportional to the
distance, even if the spin gap is not so large compared to the
couplings between the input and output spins and the me-
dium.

Spin chain in modulated external magnetic field. Let us
consider the Hamiltonian of a (2N�1)-site spin-1/2 ferro-
magnetic Heisenberg chain

H��J	
i�1

2N

Si•Si�1� 	
i�1

2N�1

B� i �Si
z �25�

with the uniform coupling strength �J�0, but in the para-
bolic magnetic field

B� i ��2B0� i�N�1 �2 �26�

where B0 is a constant. In single-excitation invariant sub-
space with the fixed z component of the total spin, Sz�N
�1/2, this model is equivalent to the spinless fermion hop-
ping model with the Hamiltonian

H��
J

2 	i�1

2N

�ai
†ai�1�h.c.��

1

2 	i�1

2N�1

B� i �ai
†ai �27�

where for simplicity we have neglected a constant in the
Hamiltonian. For the single-particle case with the basis set

��n���0,0,.. . ,1n�th,0,. . .� ,n�1,2,.. .�, which is just the same
as that of the Hamiltonian of a Josephson junction in the
Cooper-pair number basis24 for EJ�J , Ec�2B0 , analytical
analysis and numerical results have shown that the lower
energy spectrum is indeed quasi-harmonic in the case EJ

	Ec �Ref. 24�. Although the eigenstates of the Hamiltonian
�25� do not satisfy the SPMC precisely, especially in the
high-energy range, there must exist some Gaussian wave
packet states expanded by the lower eigenstates. This kind of
state can be transferred with high fidelity.
We consider a Gaussian wave packet at t�0, x�NA as
the initial state

���NA,0���C 	
i�1

2N�1

exp� �
1

2
�2� i�NA�1 �2� �i� �28�

where �i� denotes the state with 2N spins in the down state
and only the ith spin in the up state, and C is the normaliza-
tion factor. The coefficient �2�4 ln 2/�2 is determined by
the width � of the Gaussian wave packet. The state ��(0)�
evolves to ��(t)��exp(�iHt)��(NA,0)� at time t , and the
fidelity for the state ��(0)� transferring to the position NB is
defined as

F� t ������NB,0��exp��iHt ����NA,0���. �29�

In Fig. 5 the evolution of the state ��(0)� is illustrated sche-
matically. From the investigation of Ref. 25, we know that
for small NA��NB��x0 , where NB is the mirror counter-
part of NA , but in the large � limit, if we take B0

�8(ln 2/�2)2, F(t) has the form

F� t ��exp��
1

2
�2NA

2 � 1�cos
2t

�2� 	 �30�

which is a periodic function of t with the period T��2� and
has maximum of 1. This is in agreement with our above
analysis. However, in quantum communication, what we are
concerned with is the behavior of F(t) in the case of the
transfer distance L	� , where L�2�NA��2�NB�. For this
purpose the numerical method is performed for the case L
�500, ��2,4,6 and B0�8(ln 2�2)2�. The factor � deter-
mines the maximum fidelity, and then the optimal field dis-
tribution can be obtained numerically. In Fig. 2a, b, c of Ref.
18 the functions F(t) are plotted for different values of �. It
shows that for the given wave packets with ��2, 4, and 6
there exists a range of � within which the fidelities F(t) are
up to 0.748, 0.958, and 0.992, respectively. For finite dis-
tance, the maximum fidelity decreases as the width of Gauss-
ian wave packet increases. On the other hand, the strength of
the external field also determines the value of the optimal
fidelity for a given wave packet. There exists an optimal

FIG. 5. Schematic illustration of the time evolution of a Gaussian wave
packet. It shows that the near-perfect state transfer over a long distance is
possible in the quasi-harmonic system.
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external field to obtain maximal fidelity, while the period of
F(t) is close to T��2� . This shows a difference from the
ideal system, i.e., continuous harmonic systems, in which the
fidelity is independent of the strength of the external field.
Numerical results indicate that it is possible to realize near-
perfect quantum state transfer over a longer distance in a
practical ferromagnetic spin chain system.

In summary, we have shown that a perfect quantum
transmission can be realized through a universal quantum
channel provided by a quantum spin system with spectrum
structure, in which each eigenenergy is commensurate and
matches with the corresponding parity. According to this
SPMC for the a mirror inversion symmetry,20 we can imple-
ment the perfect quantum information transmission with sev-
eral novel pre-engineered quantum spin chains. For more
practical purpose, we prove that an approximately commen-
surate spin system can also realize near-perfect quantum
state transfer in a ferromagnetic Heisenberg chain with uni-
form coupling constant in an external field. The fidelity for
the system in a parabolic magnetic field has been studied by
a numerical method. The external field plays a crucial role in
the scheme. It induces a lower quasi-harmonic spectrum,
which can drive a Gaussian wave packet from the initial
position to its mirror counterpart. The fidelity depends on the
initial position �or distance L), the width � of the wave
packet, and the magnetic field distribution B(i) via the factor
�. Thus for given L and �, proper selection of the factor �
can achieve the optimal fidelity. Finally, we conclude that it
is possible to implement near-perfect Gaussian wave packet
transmission over a longer distance in many-body system.

IV. QUANTUM STORAGE BASED ON THE SPIN CHAIN

Recently a universal quantum storage protocol6–8 was
presented to reversibly map the electronic spin state onto the
collective spin state of the surrounding ensemble of nuclei in
a quantum well �see Fig. 6�. Because of the long decoherence
time of the nuclear spins, the information stored in them can
be robustly preserved.

When all nuclei �with spin operators Ix
(i) , Iy

(i) , Iz
(i)) of

spin I0 are coupled with a single electron spin with strength
gi , a pair of collective operators9

B�
	 i�1

N giI�
� i �

�2I0	g j
2

�31�

FIG. 6. The electronic spin state onto the collective spin state of the sur-
rounding nuclei ensemble in a quantum well.
and its conjugate B� are introduced to depict the collective
excitations in ensemble of nuclei with spin I0 from its polar-
ized initial state

�G����NI0���
i�1

N

��I0� i

which denotes the saturated ferromagnetic state of ensemble
of nuclei. There is an intuitive argument that if the gi have
different values, while the distribution is ‘‘quasi-
homogeneous,’’ B and B† can also be considered as boson
operators satisfying �B ,B��→1 approximately.

Song, Zhang, and Sun analyzed the universal applicabil-
ity of this protocol in practice.9 It was found that only under
two homogeneous conditions with low excitations does the
many-nuclei system behave approximately as a single-mode
boson and can its excitation serve as an efficient quantum
memory. The low-excitation condition requires a ground
state with all spins oriented, which can be prepared by ap-
plying a magnetic field polarizing all spins along a single
direction. With consideration of the spontaneous symmetry
breaking for all spins oriented, a protocol for a quantum
storage element was proposed utilizing a ferromagnetic
quantum spin system, instead of the free nuclear ensemble,
to serve as a robust quantum memory.

The configuration of the quantum storage element is il-
lustrated in Fig. 7. The nuclei are arranged in a circle within
a quantum to form a spin ring array. A single electron is just
localized at the center of the ring array, surrounded by the
nuclei. The interaction of the nuclear spins is assumed to
exist only between the nearest neighbors while the external
magnetic field B0 threads through the spin array. Then the
electron-nuclei system can be modeled by a Hamiltonian H
�He�Hn�Hen . It contains the electronic spin Hamiltonian
He�ge�BB0�

z, the nuclear spin Hamiltonian

Hn�gn�nB0	
l�1

N

Sl
z�J	

l�1

N

Sl•Sl�1 �32�

FIG. 7. The configuration geometry of the nuclei-electron system. The nu-
clei are arranged in a circle within a quantum to form a ring array. To turn on
the interaction one can push a single electron towards the center of the circle
along the axis perpendicular to the plane.
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with the Zeeman splitting and the ferromagnetic interaction
J�0, and the interaction between the nuclear spins and the
electronic spin

Hen�
�

2N
��	

l�1

N

Sl
��h.c. �33�

Here ge (gn) is the Lande g factor of the electron �nuclei�,
and �B (�N) is the Bohr magneton �nuclear magneton�. The
Pauli matrices Sl

� and �� represent the nuclear spin of the
lth site and the electronic spin, respectively. The denomina-
tor N in Eq. �33� originates from the envelope normalization
of the localized electron wave function.6–8 The hyperfine in-
teractions between nuclei and electron are proportional to the
envelope function of localized electron. The electronic wave
function is supposed to be cylindrically symmetric, e.g., the
s-wave component. Thus the coupling coefficient �
���(r)�2 is homogeneous for all the N nuclei in the ring
array.

To consider the low spin-wave excitations, the discrete
Fourier transformation defines the bosonic operators

bk�
1

�N
	
l�1

N

exp� i
2�kl

N � S�l, �34�

in the large N limit. Then one can approximately diagonalize
the Hamiltonian �32� as

HT�HN�	
k�1

N�1

�kbk
†bk

where HN is a Jaynes-Cummings �JC� type Hamiltonian

HN��NbN
† bN�

�

2
�z��� s

2N
���bN���bN

† �. �35�

Then we obtain the dispersion relation for the magnon or
spin-wave excitation

�k�gn�nB0�2Js�2Js cos
2�k

N
. �36�

The above results show that HT contains only the interaction
of the Nth magnon with the electronic spin, and the other
N�1 magnons decouple with it. Here the frequency of the
boson �N�gn�nB0 and the two-level spacing �
�2g*�BB0 can be modulated by the external field B0 si-
multaneously.

The process of quantum information storage can be
implemented in the invariant subspace of the electronic spin
and the Nth magnon. Now we can describe the quantum
storage protocol based on the above spin-boson model. Sup-
pose the initial state of the total system is prepared so that
there is no excitation in the N nuclei at all, while the electron
is in an arbitrary state �e(0)�	n ,m���nm�n��m�, where ���
����� denotes the electronic spin up �down� state. The initial
state of the total system can then be written as

��0 ���b�0 �� �0N��0N� ��e�0 � �37�

in terms of �b(0)���0��N�1��0��, where �n1 ,n2 ,. . . ,nN�1�

��nk��N�1 (k�1,2,.. . ,N�1) denotes the Fock state of the
other N�1 magnons. If we set B0�0, at t�T

(�/�)�N/2s , the time evolution from ��0� is just de-
scribed as a factorized state
��T ���b�0 �� wF � ������, �38�

where wF�	n ,m�0,1wnm�nN��mN� is the storing state of the
Nth magnon with

wnm��nm exp� i

2
�m�n ��	 . �39�

Here, to simplify our expression, we have denoted ���


�00 , ��
�01 , ���
�10 , ��
�11 . The difference be-
tween wF and �e(0) is only an unitary transformation inde-
pendent of the stored initial state �e(0).

So far we have discussed the ideal case with homoge-
neous coupling between the electron and the nuclei, that is,
the coupling coefficients are the same constant � for all the
nuclear spins. However, the inhomogeneous effect of cou-
pling coefficients has to be taken into account if what our
concern extends beyond the s-wave component, where the
wave function is not strictly cylindrically symmetric. In this
case, the quantum decoherence induced by the so-called
quantum leakage has been extensively investigated for the
atomic ensemble based quantum memory.26 We now discuss
the similar problems for the magnon-based quantum
memory.

In the general case the � l���(rl)�2, where �(rl) is the
envelope function of the electron at site rl , vary with the
positions of the nuclear spins. In this case, the Hamiltonian
contains terms other than the interaction between the spin
and Nth mode boson, that is, the inhomogeneity induced
interaction

V��� s

2N � ��	
k�1

N�1

 kbk�h.c.� �40�

should be added in our model Hamiltonian HT , where

 k�	
l�1

N
� l

�N
exp� i2�kl/N �.

For a Gaussian distribution of � l , e.g., � l�(�/�2��)exp
�(�(l�1)2/(2�2)) with width � and �1�� , the correspond-
ing inhomogeneous coupling is described by

 k�
1

N 	
l�1�0

N�1
1

�2��
exp� �� l�1 �2

2�2 �i
2�kl

N � . �41�

Figure 8 shows the magnitude of  k for different Gauss-
ian distributions of � l with different widths �. It indicates
that the modes near 1 and N�1 have a stronger coupling
with the electron. When the interaction gets more homog-
enous �with larger �� the coupling coefficients  k for all the
modes from 1 to N�1 become smaller. When the distribu-
tion is completely homogeneous, all the couplings with the
N�1 magnon modes vanish, and then we obtain the Hamil-
tonian HT .

In the following we will adopt a rather direct method to
analyze the decoherence problem of our protocol resulting
from dissipation. If N is so large that the spectrum of the
quantum memory is quasicontinuous, this model is similar to
the ‘‘standard model’’ of quantum dissipation for the vacuum
induced spontaneous emission.27 The N�1 magnons will in-
duce the quantum dissipation of the electronic spin with a
decay rate
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!�2�	
k�1

N
�2s� k�2

2N
���k�2�� s

2N � . �42�

Let ��� be the ideal evolution governed by the expected
Hamiltonian HT without dissipation and ���� be the realistic
evolution governed by the Hamiltonian with dissipation.
Supposeing that the initial state of the electron is (�����
��)/& , we can analytically calculate the fidelity

F� t ����������

�
1

2 �1�exp� �
!

2
t � 	sec"�cos gt cos��1�t�"�

�sin gt sin�1�t �, �43�

where

"�arcsin �2N!
2 /�2s , g���s/2N and �1���g2�!2.

Figure 8 shows the curve of the fidelity F(t) changing
with time t . We can see that the fidelity exhibits a exponen-
tial decay behavior with a sinusoidal oscillation. At the in-
stance when we have just implemented the quantum storage
process, the fidelity is about 1��!/8. Therefore, the devia-
tion from the ideal case with homogeneous couplings is very
small for !/g�1. Since the ring-shape spin array with inho-
mogeneous coupling is just equivalent to an arbitrary
Heisenberg spin chain in the large N limit, the above argu-
ments means that an arbitrary Heisenberg chain can be used
for quantum storage following the same strategy addressed
above if !/g is small, i.e., the inhomogeneous effect is not
very strong.

On the other hand, if N is small, the spectrum of the
quantum memory is discrete enough to guarantee the adia-
batic elimination of the N�1 magnon modes, i.e.,
��s/2N k /��k��1 for the N�1 magnon modes. As a con-
sequence of this adiabatic elimination, quantum decoherence

FIG. 8. The fidelity F(t) in the large N limit. The vertical line indicates the
instant �/2g at which the quantum storage is just implemented. Here !/g
�1/50. The inset shows the decaying oscillation with details of F(t) in a
small region near the instant �/2g .
or dephasing can result from the mixing of different magnon
modes.
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