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Abstract. By generalizing De Concini and Kac's cyclic representation theory of quantum groups at roots 
of unity, the cyclic representations of the quantum superalgebra Uqosp(2, 1) are constructed in three 
classes: irreducible representations with single multiplicities, irreducible representations with the multi- 
plicities larger than one, and indecomposable representations. 
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1. Introduct ion 

The quantum group, quantum universal enveloping algebra (quantum algebra) and 
their representation theories are deeply rooted in integrable nonlinear physics 
models associated with the Yang-Baxter  equation (YBE) [1-4]. Recently, much 
attention has been given to the representations of quantum algebras in the 
nongeneric case where q is a root of unity [5-9]. Especially, the cyclic representa- 
tions of quantum algebras have been built by De Concini and Kac [10] within a 
general framework and the explicit constructions for Uq sl(n + l) and Uq A ~2) have 
been given and associated with the Potts model by Date et al. [ 11, 12]. We have also 
obtained the concrete cyclic representations of slq(2) [13] by generalizing the 
q-deformed boson realization method [14-17]. 

In this Letter, taking the principal ideas of De Concini and Kac's work into 
account, we construct and study the cyclic representations of the quantum superal- 
gebra [18-20] with Uqosp(2, l) as an explicit example. We obtain the following 
cyclic representations of A = Uq osp(2, l): 

(1) A class of irreducible cyclic representations with single multiplicities; 
(2) some irreducible representations with multiplicities larger than one, which are 

labeled by two integers and are also cyclic. 
(3) some indecomposable representations with two labels, one of which is cyclic. 

* This work is supported in part by the National Science Foundation in China. 
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If we use the lattice points to represent the basis vectors, we will find the basis for 
the above representations possess certain 'topologies'. 

2. The Algebra A = Ur 1) and its Regular Representation 

The quantum superlagebra A =Uqosp(2,  1) is an associative algebra over the 
complex number field C generated by the elements V+, V_ and Q• =q• 
satisfying the algebraic relations 

V+ V_ + V_ V+ = -�88 [H, V• = _+�89 (2.1) 

where [ f ]  = (qY-  q-1)/(q _ q -  i) for any operator or numberfi By introducing the 
appropriate coproduct, antipode, and co-unit, A can be defined as a Hopf algebra 
and the corresponding universal R-matrix for the YBE can be obtained from the 
quantum double [ 17, 19]. Let 

e• = 2 V •  h = 2H, K • _~q• (2.2) 

Then, it follows from the induction and Equations (2.1) that 

K+e• = q • 1 7 7  +, K - e •  = q ~ e •  
(2.3) 

e+e~ +~ = ( - 1 )  m+~ e-,_+ le+ + ( -  1)m+~e ~ - �9 Cm(K• 

where 

C2m(K • = ([m + 1] - [m]) K+q--m _ _  K - q ' ,  
q _ q - i  

(2.4) 
C2m+t(K • =[m + 1] ( K + q - ~ - K - q "  K+q-"-I--K-qm+l) 

~, q__q- I  q__q-~ " 

From Equations (2.3) and (2.4), it is easy to observe that the elements e~  and 
(K+) p belong to the center Zp of the algebra A. According to the Schur lemma, the 
central element e~  and (K• p are a constant multiple of the unit matrix in an 
irreducible representation with finite dimension. This fact is the key to the construc- 
tion of cyclic representations of A. 

Regarding the algebra A itself as an A-left module, we write down the regular 
representation of A 

e+ X( 2m, n, s) 

=X(2m,  n + 1, s) + [m](q _ q - l ) - !  • 

x {qn- m(q _ 1)X(2m - 1, n, s + 1) + 

+ q-n+m(l --q-~)X(2m -- 1,n,s + 1)}, 

e+ X(2m + 1, n, s) 

= - X ( 2 m  + 1, n + 1, s) - ( [ m  + 1] - [ m ] ) ( q - - q - ' ) - ~  x 

x {qn-mX(2m, n, s + 1) - q-n+mX(2m, n, s - 1)}, (2.5) 
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e_ X(m, n, s) = X(m + 1, n, s), 

K • X(m, n, s) = q • " • nX(m, n, s +_ 1). 

f rom Equat ion  (2.3) on the basis 

{X(m,n ,s )  =e~_e"+KSlm, n � 9  + = { 0 ,  1 ,2 . . . .  }; s � 9  4-I ,  + 2  . . . . .  }} 

Let I(K +-) be a left ideal generated by K • _ q •  (2 �9 C). Representat ion (2.5) 
defines a quotient  representation 

e+ X(2m, n) = X(2m, n + 1) + [m] {[n - m + 1 + 2] - 

-- [n - m + 2]}X(2m -- 1, n), 

e+X(2m + 1, n) = - X ( 2 m  + 1, n + 1) - ([m + 1] - [m])[n - m + 2]X(2m, n), 

e_X(m, n) = .,Y(m + l, n), (2.6) 

K • X(m, n) = q ~m•177 XX(m, n), 

on the quotient  space V(2) = A/ I (K  • with the basis 

{X(m, n) = X(m, n, 0) M o d  I(K • I m, n �9 2~+}. 

This representat ion is the starting point  o f  all the discussions in this Letter. 

3. Cylinder Type Representations 

Since e ~  is a central element o f  A, the left ideal J(~) generated by e ~  - �9 (~ �9 C) 

is a two-sided ideal. Fo r  the quotient  space Wa(e) = V(X)/J(e) spanned by 

{~?(m, n) - o~-t(")X(m, n) M o d  J(e) [ X(m, n) �9 V(2), m = 2p �9 l(m) + ~,  0 <<. 

~< 2p - 1; l(m) �9 Z+},  

we have a cyclic condi t ion 

X ( m + k p ,  n ) = X ( m , n ) ,  m , n � 9 1 4 9  +. (3.1) 

Choos ing  a basis {)((m, n) I m = 0, 1, 2 . . . .  , 2p  - 1; n �9 Z + } for Wa(e), we obtain 

an infinite-dimensional representation o f  A induced by Equat ion  (3.6) as follows 

e+X(2m, n) = )((2m, n + 1) + [m]{[n - m  + t + 2 ]  - 

- [n - m + 2] })((2m - 1, n), 

e_.~(2m + 1, n) = - X ( 2 m  + l , n  + 1) - {[m + 1] - 

- [ml}[n - m + 2])C(2m, n), 

e_ J((m, n) = .~(m + 1, n), m # 2p - 1, (3.2) 

e_ J?(2p - 1, n) = c~J~(0, n), 

K • X(m, n) = q -V-m • n + X~(m ' n). 
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Fig. I. The diagram of the lattice for the representations. 

~ ' ~ "  111, 

Now, we formally describe the basis for representation (3.2) using a simple 
topological terminology. As illustrated in Figure 1, we let the basis vectors X(m, n) 
be represented by the lattice points (m, n) on rectangle domain O A B ' C  on the 
plane R 2. Due to the cyclic condition (3.1), we identify all the points (2p, y) 
(0 ~< y( ~ R) ~< oo) on AB" with the corresponding points (0, y) on OC' so that the 
two-dimensional domain O A B C  forms a cylinder. The actions of the representation 
on the basis X(m, n) can be described by the displacement of the points (m, n) on 
the cylinder in this sense. 

In order to obtain finite-dimensional representations, which are useful in the 
construction of solutions for the YBE, we consider an invariant subspace chain 

w ~ ( ~ )  = w ~ ( ~ ) ~  ~ W~(~)~ ~ W ~ ( ~ ) 2 -  --  ~ W~(~)N ~ - - -  , 

where the invariant subspace 

W,~(o~)N:{.,~(m, n + N )  I n ~ Z +, 0 <~ m <~ 2p -- 1} 
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for a given N e 7/+ results from the fact that the label n never decreases under the 
action of  representation (3.2). On a quotient space Wx(at)~ = W~(~t)N/w~(~) t~+ U 

(M 6 Z+, M # 0 ) :  

{,~(m, n) = .~(m, n) Mod W~(at)N+ M I 0~<m ~ 2 p  -- l, N ~ n  < . . N + M - -  1} 

with the dimension 2pM, representation (3.2) induces a new representation 

e+.Y(2m, n) = ,Y(Em, n + 1) + [m]{n - m  + 1 +2]  - [ n  - m  +2]}  x 

x X ( 2 m - l , n ) ,  N < ~ n < < . N + M - 2 ,  

e+ .Y(2m, M + N - 1) = [m]([N' - m + 1 + 2] - [N' - m + 2]) • 

x ~ ' ( 2 m - l , M + N - l ) ,  N ' = N + M - 2 ,  

e+.Y(2m + l ,n )  = - .Y(2m + l , n  + 1) - {[m + 1] - [m]}[n - m  +2]  x 

x .~(2m, n), N < ~ n < ~ M + N - 2 ,  (3.3) 

e+)7(2m + 1, M + N -  1) = - { [m  + 1] - [ m ] } [ N + n -  1 - m  +2]  x 

x X(2m, M + N -  I), 

e _ , ( ( m , n ) = . Y ( m  + l ,n),  0 ~ < m ~ < 2 p - 2 ,  e _ ~ ( 2 p -  l ,n)=~,~(O,n)  

K + X(m, n) = q ~-'n + n • ~.~(m, n). 

When M = 1, representation (3.3) is irreducible; when M/> 2, there exist invariant 

subspaces W~(0t, t)~t: 

{.~(m,n) e W a ( ~ ) ~ I N + t < < . n < < . M + N - 1  }, I <<.t<<.N-1, 

namely, representation (3.3) is reducible. However, it can be easily proved that 
there is no complementary invariant subspace to W~(~t, t)~t and so representation 
(3.3) is not completely reducible. Thus, Equation (3.3) defines an indecomposable 
representation of  A when M/>  2. For  example, when p = 3 and M = 1, we explicitly 
write down a six-dimensional representation 

e+ = - [ 2  + N]EI2 + ([N + 2] - [2 + N - 1])E23 + 2[2 + N - 1]E34 + 

+ ([2 + N - 2] - [2 + N - 1])E45 - [2 + N - 2]E56, 

e = E21 + E32 + E43 + E54 + ~EI6 , (3.4) 

K • = q•177 I + q• 1E22 + q•177 + q+2• 

+ q+a• N:~ IE55 + q•177 N:r 2E66, 

where E,j is a 6 x 6 matrix with elements (Eo.)k t = 6u, fjt. Using this concrete result, 
we easily check e ~  = ~ and other algebraic relations for A. 

It is worth noticing that the representation given by (3.3) for M = 1 is irre- 
ducible, but it possesses weights with multiplicities larger than one. This fact shows 
a completely 'quantum' picture caused by the q-deformation with qP = 1 because 
this situation does not appear for the classical Lie algebras or Lie superalgebras 
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with rank one. We also point out that a similar discussion associated with another 
left ideal generated by e ~ -  fl (fl ~ C) can be proceeded in a parallel way. 

4. The Torus-Type Representations 

Now, we can discuss a representation of A on a basis with another 'topology - 
torus. Let L(~• be a left ideal generated by central elements e ~ - ~ •  (~• 6 C). 
The quotient space Q(~• = V(2) /L(~•  is spanned by 

{;((m, n) = ~ +t~s)~l~_")X(m, n)Mod L(~• ) [ m = 2l(m)p + r~, n = 2l(n)p + ~, 

l(m), l(n) ~ 7/+, 0 ~< r~, r~ ~< 2p - 1}, 

where 

~ ( m  + kp, n + jp )  = X(m,  n), m, n e Z+, k, j e 2Z +. 

are the cyclic conditions. These conditions determine the basis for Q(~• as 

{~(m,n) ] O <<. m, n <<.2 , -1} .  

Then, the representation induced by Equation (2.6) on Q(~• reads 

e+X(2m,  n) = .Y(2m, n + 1) + [m]{[n - m  + 1 +2]  - 

- [ n  - m  + 21}:((2m - l ,n),  

e+ )((2m + 1, n) = -,Y(Zm + 1, n + 1) - {[m + 1] - 

- [m]}[n - m + 2 ] : ? ( 2 m ,  n),  n ~ 2p  - 1, 

e+ )((2m, 2p - 1) = ~+)((2m, 0) + [m]{n -- m + 1 + 4] -- 

- I n  - -m + 2]}a~ - 1,2p - 1), 

e+ )((2m + 1, 2p - 1) = -~+X(Zm + 1, 0) - {[m + 1] - 

- [ml}[n - m + 21~(2m, 2p - 1), 

e_ s n) = ~'(m + 1, n), e_ .Y(Zp - 1, n) = ~_ )((0, n), 

K • n) = q ~:m • u + X ~(rn ' n). (4.1) 

This is a 4p2-dimensional irreducible representation without highest and lowest 
weights. 

Now, we discuss the properties of representation (4.1). It is observed from (4.1) 
that all the basis vectors ,Y(n, n + k) (0 ~< n ~< - k  + 2p - 1) correspond to a same 
weight (n + k ) -  n + 2 = 2 + k, namely, the multiplicity of the weight 2 + k is 
larger than one. Like representation (3.3), such a finite-dimensional representation 
(4.1) only appears in the completely 'quantum' cases resulting from the q-deforma- 
tion for qP = 1. Moreover, the cyclic conditions 

.Y(2p, n) = ~>(0, n) , X(m, 2p) = .~(m, 0) (4.2) 
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enable us to represent the basis vector ,~(m, n) by a lattice point (m, n) on a torus 
S 1 x S~{(x, y) I (x + 2p, y + 2p) = (x, y)}, which is formed by identifying the points 
(x, 2p) with (x, 0) and (2p, y) with (0,y), respectively, for the square domain 
OABCD in Figure 1. In this sense, we say the representation (4.1) possesses the 
'topology' of a torus. 

5. Circle-Type Representations 

In this section, we try to construct the representations of A, whose basis is labeled 
only by one index and is represented by the lattice points on a circle. To this end, 
we return to Equation (2.6) and consider the left ideal H(ct) generated by 
e+ - 0te~- 1 (~t e C). On the quotient space U = V(2)/H(ot): 

{X(m) = X(m, 0) Mod H(~t) I m ~ 7/+ } 

the representation (2.6) induces an infinite-dimensional representation 

e+ X(2m) = otX(2m + 2p - 1) + [m]([2 + 1 - m] - [2 - m])X(2m - 1), 

e+ X(2m + 1) = -o tX(2m + 2p) - ([m + 1] - [m])12 - m]X(2m), (5.1) 

e+ X(m) = X(m + 1), 

K +- X(m) = q +- ~ ~: "X(m). 

By direct calculation, we easily check that representation (5.1) indeed satisfies the 
basic relation (2.1). 

Now, we consider the finite-dimensional representation. Let Sp be a left ideal 
generated by e~  - fl ( f le  C). Then 

{.~(m) = X(m) Mod St~ I 0 ~< m ~< 2p - 1} 

the basis for the quotient space F = U/S. A 2p-dimensional representation on F 
immediately follows from Equation (5.1): 

e+ JT(2m) = ([m]([2 + 1 - m] - [2 - m]) + ~tfl)X(2rn - 1), m # 0, 

e+,((2m + 1) = - ( [2  - m]([m + 1] - [m]) + ~fl)J((2m), 

e_ . , ( ' (m)=, ( ( rn+l ) ,  0~<m ~<2p-2 ,  (5.2) 

e_ )((2p -- 1) - fl)?(O), 

e+ X(O) = ~g(2p - 1). 

When ~, fl # O, this representation has neither the lowest nor the highest weights; 
when ~ = 0 (fl = 0), it only has a highest weight (lowest weight). We point out that 
the lowest weight representation (5.2) for fl --0 can also be obtained on the cyclic 
Verma module ~ :  

{F(m) = e~12> I 0, x• =qZ"~,O<~m <~2p -- 1} 
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with the lowest weights - 2 .  As an example, we write down a six-dimensional 
representation (p = 3): 

e+ = -([A] + ~)E,2 + ([2] -- [A - l] + ~/~)E23 + (2[A -- l] - ~)E34 + 

+ ([~ - 2] - [~ - 1] + ~ ) E ~  - ([~ - 2] + ~ /~ )E~  + ~E~ , ,  

e = E~, + E~ + E~ + E~, + E~ +/~E,6, 

K+ = q• + E~)  + q+(~- I)(E22 + Ess) + q +O- 2)(E33 + E66). 

6. Short Discussion 

Up to now, we have obtained various representations of the quantum superalge- 
bra A--Uqosp(2,  1) where the last one (5.2) can be understood as the super 
analogue of the cyclic representation of Slq(2) (see the remark 4.2-(b) in ref. [9]). 
We hope the main ideas in this Letter can be applied to other quantum superalge- 
bras. Since recent studies, show that the new representations of quantum algebra 
slq(2) resulted in some new solutions for the YBE [21-23], we can obtain new 
solutions of the YBE from the representations of the quantum superalgebra in this 
Letter. We have done this, in fact, for the parameters ~, ] /=  0 and detailed results 
are being prepared for publication. For the general cases with arbitrary parame- 
ters �9 , ]/ and ~+, we may possibly generalize the scheme built by Jimbo et al. 
[10, 111. 

Among all the representations presented in this Letter, (5.1) and (5.2) are 
obviously inequivalent because they have completely different properties in their 
dimensions. Representations (3.2) and (4.1) with different 'topologies' are also 
mutually unequivalent. In fact, there are only the equivalent representations 
defined by (3.3) for different N. 
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