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Abstract. We propose and study a universal approach for the reconstruction of quantum
states of many body systems from symmetry analysis. The concept of minimal complete
set of quantum correlation functions (MCSQCEF) is introduced to describe the state recon-
struction. As an experimentally feasible physical object, the MCSQCF is mathematically
defined through the minimal complete subspace of observables determined by the symme-
try of quantum states under consideration. An example with broken symmetry is analyzed
in detail to illustrate the idea.
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1. Introduction

The concept of quantum state is fundamental in quantum physics. Quantum state
can provide us with a complete knowledge of the considered system to predict the
possible results of any measurement on the system [1,2]. But the puzzling property
of quantum coherence, which is intrinsic to quantum state, imposes insurmount-
able limitations on our ability to fully reconstruct quantum state of a single quan-
tum system by devising a complete set of measurements on the system [3].
Actually, we cannot make a measurement on a single quantum system without
back-action, and the non-cloning theorem [4] forbids us from producing an exact
copy of same quantum system in an unknown state. But on the other hand, if
identical copies of quantum system, or an ensemble, is initially prepared in the
same quantum state, it is possible to estimate the unknown state of the quantum
system by carrying out appropriate measurements on each copy [5]. This is just the
idea of quantum tomography, which has recently become a fashion in quantum
information physics, motivating many theoretical and experimental investigations

[6-8].
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We notice that most works on quantum tomography or other quantum state
reconstruction methods focus on continuous variable system and single qubit sys-
tem. In this letter, we will deal with the many particle case, which possesses dis-
tinguished features such as quantum entanglements [9]. It has become well known
that quantum correlation and the corresponding Green function are important
conceptual tools to probe the non-local nature of many body system. On the other
hand, in the study of quantum information, quantum entanglement turns out to
be a crucial concept and thus becomes a fundamental element in the research
about the non-locality of quantum system. Hence, it is doubtlessly important and
meaningful to probe the possible connection between quantum entanglement and
quantum correlation [10]. Along this line, some progress has been made. For
example, for the spin chain system with the symmetry of SO(2), a connection has
been revealed between the concurrence, which is a measure of quantum entan-
glement, and the correlation functions of first order and second order, which is
supposed to reflect the property of correlation [11,12]. This connection suggests a
possible connection between quantum entanglement and quantum phase transition
[13-15] and prompts us to introduce in this letter a general framework for study-
ing such connection.

Our starting point is the basic observation that complete information about
quantum state of many body system can be obtained from the expectation values
of properly chosen single body observables and their correlation functions of var-
ious orders [16]. And our idea is to reduce the number of times of measurement
needed to determine a quantum state by making full use of the symmetry that the
state is supposed to possess. The main purpose of this letter is to make clear the
mechanism of this reduction and present interesting examples to illustrate it. To
this end, we will introduce the minimal complete subspace of observables (MCSO)
associated with a symmetry group, which mathematically determines the quantum
state with this symmetry, and the minimal complete set of quantum correlation
functions (MCSQCF) associated with the MCSO, which determines the quantum
state physically in some sense.

2. State Reconstruction Based on Correlation Functions

Throughout this letter, let V =®T:1Wj AW QW ®---®@ W, be the Hilbert space
of a many spin system. Here the W; values stand for the state space W of a spin
system. For an arbitrary finite dimensional Hilbert space S, we denote by .A(S)
the set of Hermitian operators on S. It is well known that A(S) is an Euclidean
space with the inner product (,) defined as (A, B) =tr(AB), VA, B € A(S), where
tr is the trace over W.

Now let p € A(V) be a density operator and {A;} a basis of A(V). Then, p
can be written as a linear combination of A; values: p = ;c¢;A;. We notice
that the ¢; values (coefficients) are determined by the expectation values {tr(pA;)}
of the observable A; in the state p. In particular, if {A;} is an orthonormal
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basis then we have ¢; =tr(pA;). Obviously, from mathematical point of view it
is trivially true that p is completely determined by {(p, A;)}. But physically it
means the possibility of determining a quantum state by measuring some properly
chosen observables.

To be precise, let us choose a basis {O;} of A(W). The O; values can be under-
stood as observables of single particle system. Then {®]’_, 0;,} is a basis of A(V),
where each O;; belongs to {O;}. Hence we can identify the state p by the quanti-
ties

tr (,0 ®Zl:1 Olk)é(®z1:10’k>/)’ (1)

which are just correlation functions of the considered system.

For spin 1/2 system interesting things happen [7,8]. In this case, we can take
{O0;} to be {0y, 01,07,03}, where og is the identity operator and o1, 07,03 are
the Pauli operators oy, oy, 0;. Let us introduce the standard correlation functions

[ iyiy = (®}_101,)p, associated with the state p. Clearly, from both theoretical
and experimental points of view standard correlation functions are accessible phys-
ical quantities. According to the discussion above, for spin 1/2 system a state is
determined by these ideal quantities.

We are not so lucky when we consider higher spin system. The main reason is,
when the dimension of W is larger than two it is impossible to span A(W) with
just the spin operators and identity operators. This forces us to consider the cor-
relation functions not related to the spin operators in a direct way. From experi-
mental point of view such correlation functions are less physical than the standard
correlation functions. But from the theoretical point of view there is no essential
difference between them.

Now a natural question is: how many correlation functions are needed to deter-
mine a quantum state? Obviously, if we have no knowledge about the state, then
the number of correlation functions needed is exactly the dimension of A(V). But
if we are sure that the state possesses some symmetry, then it turns out that the
number might be greatly reduced. Let us elucidate this point in detail as follows.

3. Reduction to the Minimal Complete Subspace of Observables

Now,we discuss symmetry of density operator and the role symmetry can play in
the reconstruction of density operator.

The symmetry group of the density operator p € A(V) is defined to be the sub-
group U, of U(n) with the property upu' =p, VY ue U,. If U is a subgroup of
U, we will say that p possesses the symmetry of U. In practice, it is highly pos-
sible that only partial information about the symmetry of a density operator is
available. In other words, one may only be sure that some group is a subgroup
of the symmetry group of a density operator. This being the case, it is desirable
to know how to identify a density operator among a family of density operators
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whose symmetry groups contain a specific unitary group U (a subgroup of U(n)
by definition). This is the idea underlying the following discussion.

A symmetry of U determines a family Oy of observables in the following way:
A€ Oy if and only if uAu™=A, Y ueU . By definition, if A€ Oy then its sym-
metry group contains U as a subgroup and vice versa. Thus p belongs to Oy if
and only if it possesses the symmetry of U. Clearly, Oy is a subspace of A(V).
We call it the MCSO associated with U.

As A(V) is an inner product space it can be decomposed as A(V)= Oy @ O,
where OLL, is the orthonormal complement to Oy. Let {A;} be an arbitrary basis
of Oy. Then each element A of Oy is uniquely determined by the quantities
{(A, A;)}. This justifies calling Oy complete. Consequently, if p possesses the sym-
metry of U then the number of measurements needed to determine p is just the
dimension of the MCSO associated with U.

Next let us determine the structure of Oy .

PROPOSITION 1. If U is connected, then iOy is the centralizer of the Lie alge-
bra of U in u(n), the Lie algebra of U(n), where n is the dimension of V. (Here
i=+—1)

Proof. We notice that i A(V) is exactly the Lie algebra of U(n). Let i A be an
arbitrary element of the Lie algebra of U and i B an arbitrary element of i Oy.
Then we have i B=exp(it A)(i B) exp(—it A) or

iB:(Ade”A) (iB)=¢i"A(; B). )

It follows that iOy is a subset of the centralizer of the Lie algebra of U. That
they are actually identical is now a consequence of the fact that if U is connected,
then it can be generated by l-parameter subgroups. This completes the proof of
the proposition. O

When U is a 1-parameter subgroup, the structure of Oy can be given a concise
description. Let us consider this case in more detail. Suppose that U =exp (—itA)
where A € A(V), then according to Proposition 1, an element B belongs to Oy
if and only if [A, B]=0. As A is an Hermitian operator there exists an ortho-
normal basis y of V with respect to which it has the matrix representation
of block diagonal form (the meaning of notation here should be self-evident):
A=diag{A1, Az, ---, Ay}, where A;=Xx;1,;, A; being an eigenvalue of A and I, is
the unit matrix of rank n;, n; being the multiplicity of A;. From this observation,
the following proposition follows directly.

PROPOSITION 2. If U is connected then an element B lies in Oy if and only if its
matrix representation takes the form B =diag{Bi, By, ---, B,}, with respect to the
same basis y defined above, where B; is an n; X n; matrix.
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4. Symmetry of Reduced Density Operators

In this section, we consider symmetry of the so-called reduced density operator,
which is derived from the density operator after a process of taking partial trace.
We are interested in the symmetry that survives such process.

Let V=V, ®V, and p a density operator in A(V). The reduced density opera-
tor tryp is defined to be an element of A(V)) satisfying the relations (xp, (trpp)x;)
=2, (x1®yi,px2Q¥),VY x1,x2 € Vi, where {y;} is a basis of V. Note that we
have used the same notation ( , ) for the inner products in the different spaces.
It is easily checked that tryp is also a density operator. Now the following lemma
comes as a direct consequence of the definitions. We would rather omit the proof.

LEMMA 1. If p possesses the symmetry of Uy @ Uy then trap possesses the symme-
try of Uj.

Although the idea of studying how symmetry survives the reduction process
might seem trivial, there are nontrivial examples to support it. Let us consider two
models of such examples. For convenience, from now on we will use the Dirac
notation.

Suppose that A€ A(V) has the form A=A;®1+1® Aj, where A; € A(V]) and
Ay e A(V3). Let |y) be a normalized eigenvector of A. Then it is easily seen that
the density operator p = |y)(1| possesses the symmetry of the 1-parameter sub-
group exp (it A) that can be written as exp (it A) =exp (it A1) ® exp (it Ap). Thus
the reduced density operator trpp possesses the symmetry of exp (it A;) according
to Lemma 1.

In the special case that p has the symmetry of 1-parameter subgroup there is
another mechanism of passing symmetry to the reduced density operator, which
is different from the mechanism shown above. Let A be an Hermitian operator
of the form A=A ® Ay where A} € A(V}) and A, € A(V,) and |¥) a normalized
eigenvector of A. Then for the density operator p=|¥){(ys| we have the following
result.

LEMMA 2. The reduced density operator tryp possesses the symmetry of exp(it A1)
if the eigenvalue corresponding to V) is nonzero.

Proof. Let {|¢;)} be an orthonormal basis of V| consisting of the eigenvec-
tors of A; and {|g;)} an orthonormal basis of V, consisting of the eigenvec-
tors of Aj. Suppose that Ail¢;) =A;l¢;) and As|g;) = u;le;). Since |) is an
eigenvector of A there exist A; and w; such that A|Y) = Aguyly). By defi-
nition, for arbitrary two elements |¢;;) and |¢;,) of the basis {|¢;)} we have
(i tr2pliy) = 3 {0). b1, W) (W16, 07). Where |9y 07) = |¢i,) ® lgj). It follows
that (¢;, |tropl¢;,) =0, unless A;, =2X;,. On the other hand, we have

P=e"% 1) (g [ trap ). 3)

for P = (¢, | exp(it A))trapexp(—it Ay)|¢;,). This just means that
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(G [ trap | @iy), 1 Aiy =24y

P= . A

[0, otherwise. 4)

Thus we conclude that exp (it A1) trop exp (—it Aj) =tryp and complete the proof.
O

5. Minimal Complete Set of Correlation Functions

In this section, the problem of reconstruction of quantum state is reduced to the
problem of determination of a set of correlation functions.

Let {O;} be a basis of A(W). Then {®;_,0;} is a basis of A(V). We call it
the measurement basis of A(V) associated with {O;}. A subset of the measurement
basis of A(V) is called a reconstruction basis of the MCSO associated with {O;} if
each element of the MCSO can be written as a linear combination of elements in
the subset and a reconstruction basis is called minimal if it does not contain any
smaller reconstruction basis. Note that according to this definition, elements of a
reconstruction basis of the MCSO do not necessarily belong to the MCSO.

PROPOSITION 3. There exists a unigue minimal reconstruction basis of an MCSO
associated with each {O;}.

Proof. Choose an arbitrary basis 8 of the considered MCSO and define a subset
1 of the measurement basis {®;"_, 0;} as follows: an element lies in y; if and only
if it appears as a nonzero term in the expression of some element of 8 in terms of
{®)_,0;}. Clearly y; is a minimal reconstruction basis associated with {O;}. We
claim that it is in fact the unique minimal reconstruction basis of the considered
MCSO associated with {0;}.

Let y» be another minimal reconstruction basis associated with {O;}. Then each
element of B can be expressed as a linear combination of the elements of y, or as
a linear combination of the elements of y;. Thus by equating the two expressions
we conclude that y; C y,, considering the fact that both y; and y, are subsets of
the measurement basis {®]_,0;,}. That y; and y, are actually identical now fol-
lows from the minimality of y,. This completes the proof of the proposition. [

We are now in a position to introduce the concept of MCSQCF. Let Oy be
an MCSO and {®;'_;0;,} the minimal reconstruction basis of Oy associated with
{O;}. Please note the notational difference between {®;'_, 0; }and {®]_, O; }. Here
the former is used to denote a subset of the latter. With respect to {®}", 0;}, the
MCSQCF associated with Oy is defined to be the set {{(®;'0},),} of quantum
correlation functions where p stands for a density operator in Oy. The next prop-
osition shows that each p in Oy is completely determined by {{(®;'_;0},),} but not
by any proper subset of it. This is just what “complete” and “minimal” mean in
the definition of MCSQCF.
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PROPOSITION 4. A density operator p in Oy can be expressed in terms of the
MCSQCF {{®}_,0j.)p}, but cannot be expressed in terms of any proper subset of
{®4_10j)p), regardless of the basis of V on which p acts.

Proof. Let {B;} be an orthonormal basis of Oy. We then have p=>",(p, B;)Bi=
>, (trpB;) B;, where each coefficient tr pB; can be written as a linear combination
of {(®_,0j),}. Moreover, each (®;',0j), will appear in some tr pB; by the
minimality of {®}"_,0;}. Hence p can be written as

= Z (®;=10ji)pBji o> (5
Jij2eJm

where Bj, j,...;, is a linear combination of {B;}, which cannot be a zero matrix with
respect to any basis of V since {B;} is linearly independent. This proves the propo-
sition. d

6. Example with Broken Symmetry

Now let us present a concrete example to illustrate the results obtained above. We
consider the case that W is the state space of spin 1/2 particle. Let |1) and ||)
be the normalized eigenvectors of the Pauli operators o, and take V=V ® V,,
Vi=W Wy, Vo=W3®--- Q@ Wy,.

We suppose the state p to be measured possess the symmetry generated by
A= ®’" laz, namely the symmetry of exp (it A), where m is even. Then accord-
ing to Lemma 2, the reduced density operator /= tryp possesses the symmetry of
U =exp(it A]) with A] =0, ®c,. Consequently, by Proposition 2, with respect to
the basis {|11), [{4), | 11), 141}, the reduced density operator is of the 8-vertex
form

ry 21

I n
r3 22
75 74

(6)

™

where the r;’s are real numbers with the restriction > ;r; =1 and z} stands for
the complex conjugation of z;. One can check that {I®1, 1®0;, 0;,®1, 0, ®
Ox, 0y®0y, 0,0, 0x 0y, 0y ®0X} is the umque reconstruction basis of
Oy associated with {o;} and that {G{. G83, Gg’o, G‘l’l, ng, G§3, sz, Gé’l}
is the cprresponding MCSQCEF. The explicit expression of 4 in terms of the
MCSQCF is as follows: rj = (G 3—i—G'OO—kG +1)/4, r2~_(G Ggo G83+1)/4
= (G5 — G33 Gl +D/4, = (G — G5 — Gy + 1D/4 21 = (G, — Gy,
+zGlz+zG21)/4,zz—(G’f1+G§2+iG’2)1—iG’fz)/4.
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This example has a non-trivial connection with the Ising model with the
Hamiltonian

m—1 m
H:—JZUZJGZ/+1+gZaZJ,J>O. 7
j=1 j=1

When the external field g =0, this model possesses the SO (2) ® Z, symmetry where
Zyrepresents the rotations of all spins by 180° about the x axis while SO(2) rep-
resents the rotations of all spins by arbitrary degrees about the z axis. However,
this system has two degenerate ferromagnetically ordered ground states | 1)®™
and | })®", which break the discrete symmetry Z,. Obviously, as a superposition
of these two ground states, the cat state|y) =a| 1)®" + 8| |)®" possess the sym-
metry of exp (it A) mentioned above since it is the eigenvector of A:®’}’zlaz/ cor-
responding to the eigenvalue 1, and then the unknown o and g satisfying |«|? +
|B]>=1 can be determined by the above quantum state reconstruction method.
When g #0, the reduced density operator p=trp derived from the ground state
or the thermal equilibrium state (a function of hamiltonian)is of the 6-vertex form
for the existence of the total spin projection >, 0. This result has appeared in
many places, e.g., [10-12].

Based on the viewpoint of symmetry, we have proposed a quantum state
reconstruction method for density operators or reduced density operators of the
many body system. Our central idea is to utilize the MCSQCF determined by
the symmetry of quantum states rather than the symmetry of the Hamilto-
nian. The present work might be regarded as a generalization of the “particle
creation—annihilation expression” for the reduced density matrices of identical par-
ticles in [12], which reveals the essence of quantum condensation. Thus, we hope
that the results in this letter can be directly applied to explore the quantum and
classical critical phenomenon for various quantum many body systems.
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