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We propose the simulation for an effective scheme to realize a spin network with tunable

long-range couplings in the coupled cavity array with external multi-driving lasers. Via this

scheme, the linear photon-like dispersion relation is achievable, which could be employed to

perform a perfect quantum state transfer. Numerical results show that when applying two

lasers in each cavity, the fidelity is higher than the highest fidelity of a classical transfer even for

the transfer distance l increases up to 100 sites. In the simulation, as the number of lasers

increases, the fidelity will be evidently enhanced for a wide range of l.
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1. Introduction

Inmany protocols of quantum information processing, it is highly desirable to perform

a high-fidelity quantum state transfer (QST).1�3 It was recognized that quantum spin

lattices could be used as a data bus to transfer states without the need of conversion

between different types of qubits.1 In this data bus, the flying qubit is the photon-

like4�6, the magnon, which is an elementary excitation corresponding to the spin

wave.7Themainobstacle to performahigh-fidelityQST inquantumspinmodels is the

spreading of the spin wave, which is due to the nonlinear dispersion relation. Some

previous studies have shown that either the nonuniform nearest neighbor (NN)

couplings2,3,8,9 or the non-trivial long-range couplings10,11 could be used to achieve the

linear dispersion relation and perform a high-fidelity QST. Although with these

developments, it is difficult to control the coupling distribution in quantum devices.

As recent developments, coupled cavity arrays have been intensively investi-

gated in relation to their ability to realize and simulate quantum many body
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phenomena.12�19 In fact, the extremely high tunability, the individual addressa-

bility and the flexibility in their geometric design, make the coupled cavity arrays

strong candidates for the realization of communication networks.

In this paper, using coupled cavity arrays with each cavity containing one three-

level atom,12 we realize spin models with tunable long-range couplings. For the

coupled cavity systems, the photonic tunnelings induced long-range couplings

between atoms could be optically tuned by external lasers. When tuning the

couplings to achieve a linear photon-like dispersion relation, a perfect QST with high

fidelity, long distance, and short time is achieved. Numerical results show that when

applying two external lasers in each cavity, the fidelity is higher than the highest

fidelity of a classical transfer even for the transfer distance increases up to 100 sites.

As the number of lasers increases, the fidelity will be evidently enhanced for a wide

range of the transfer distance. When the distance increases up to 500 sites, the

fidelity could be always higher than 0.9 for 10 lasers and is almost close to unit and

decays slightly for 14 lasers.

2. Model Setup

The considered model is a coupled cavity array with N cavities. Each cavity con-

taining a �-level atom is driven by nL external lasers (see Fig. 1(a)). The total

Hamiltonian is

H ¼ Ha þHc þHac þHaL; ð1Þ
where Ha describes �-level structure atoms, Hc describes photons in coupled cav-

ities, Hac represents the coupling between the cavity mode and atoms, and HaL

describes the coupling between atoms and nL driving lasers.
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Fig. 1. (Color online.) Schematic diagram of �-type three-level atoms in coupled cavities. Each atom

interacts with a single mode cavity and several external driving lasers. Levels jai, jbi, and jei have the

energy values 0, !ab, and !e, respectively. The transition jai ! jei is driven by photons with the fre-

quency !c and interaction strength g. As a schematic diagram, we randomly choose and label only two

possible driving lasers !n and !m with Rabi frequencies �n and �m. When cavities are coupled with each

other, the degenerate cavity level !c becomes an energy band with bandwidth 2T . Then the coupled cavity

array is equivalent to a multi-mode cavity with frequencies !k. �
k
n and �k

m equal to �k ��n and �k ��m,

respectively.
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Such a system can be translational invariant, rather than that proposed

in Refs. 2 and 3. So the operations in each cavity could be the same. The level

structure of the atom trapped in each cavity is shown in Fig. 1(b), where the atom

contains two long-lived states jai and jbi and an excited state jei. For Ha, it can

be written as

Ha ¼
XN
j¼1

ð!ejeijhej þ !abjbij hbjÞ; ð2Þ

where the levels jai, jbi, and jei have the energy values 0, !ab, and !e, respect-

ively. Hc describes photons as

Hc ¼
XN
j¼1

½!ca
†
jaj � T ða†

jajþ1 þ h:c:Þ�; ð3Þ

where !c is the photonic frequency, T is the tunneling rate of photons between two

neighboring cavities, and aj (a
†
j ) annihilates (creates) a photon in cavity j. Here

aNþ1 ¼ a1 satisfies the periodic boundary condition. The transition between levels

jai and jei is coupled to the cavity mode !c with the coupling g as

Hac ¼
XN
j¼1

ðgjeijhajaj þ h:c:Þ; ð4Þ

and the transition between jbi and jei is driven by nL lasers f!ng with the Rabi

frequency f�ng as

HaL ¼ 1

2

XN
j¼1

XnL

n¼1

ð�ne
�i!ntjeijhbj þ h:c:Þ: ð5Þ

As a schematic diagram, in Fig. 1(b), we randomly choose and label only two

possible driving lasers !n and !m with Rabi frequencies �n and �m. The difference

!n � !m is labeled as !nm, and the detunings are �n ¼ !e � !ab � !n and

�m ¼ !e � !ab � !m.

When considering the coupled cavity array as an even N site ring and taking the

Fourier transformation

~a †
k ¼

1ffiffiffiffiffi
N

p
XN
j¼1

eikja†
j ; ð6Þ

the Hamiltonian Hc is diagonalized as

Hc ¼
X
k

!k ~a
†
k~ak ¼

X
k

ð!c � 2T cos kÞ~a †
k~ak; ð7Þ

where the momentum k ¼ 2j�=N, j ¼ 0; 1; . . . ;N � 1. As shown in Fig. 1(b), two

parameters are defined as �k ¼ !e � !c þ 2T cos k and �k
n (�k

m) ¼ �k ��n (�m),

where n (m) denotes the schematic driving laser with frequency !n (!m). Due to the
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tunneling of photons between neighboring cavities, the degenerate cavity level !c

becomes an energy band with bandwidth 2T . The transformation indicates that the

coupled cavity array is equivalent to a multi-mode cavity with frequencies !k, which

makes it possible to realize effective long-range couplings between two atoms placed

in distant cavities.

3. Adiabatic Elimination of Atomic and Photonic Excited States

Consider the case that each driving laser contributes to the effective Hamiltonian

independently. To adiabatically eliminate the atomic excited states jei and photonic

states, the photon excitations should be strongly suppressed and the virtual photon

emitted by the atom should be always absorbed by other atoms. It requires that for

any k 2 ½0; 2�Þ and any n 2 ½1;nL�,
j�kj; j�nj � jgj; j�mj; j�k 0

mj; j!lmj ð8Þ
and

j�k
nj; j!nmj �

g�l

�l

����
����; �2

l

�l

����
���� ð9Þ

for any k 0 2 ½0; 2�Þ and any m; l 2 ½1;nL�. The first condition in Eq. (8) suppresses

the excitation of the atomic excited states jei, while the second condition in Eq. (9)

suppresses the photonic excitations and guarantees that each driving laser is

independent.

Now turn to the interaction picture with

H0 ¼ Ha þHc ð10Þ
and

H1 ¼ eiH0tðHac þHaLÞe�iH0t

¼
XN
j¼1

jeijhaj
X
k

gffiffiffiffiffi
N

p eiðkjþ�ktÞ~ak þ
1

2

XnL

n¼1

�ne
i�ntjeij hbj þ h:c: ð11Þ

Through adiabatically eliminating the atomic excited state and ignoring the high-

frequency terms, the effective Hamiltonian of H1 becomes

H2 ¼ �iH1ðtÞ
Z t

�1
dt 0H1ðt 0Þ

¼ �
X
j;k

½Gjðk; tÞ� ðjÞ
þ ~ak þ h:c:�; ð12Þ

where the pseudo spin operators are

� ðjÞ
z ¼ jbijhbj � jaijhaj;

�
ðjÞ
þ ¼ jbijhaj; ð13Þ

M.-X. Huo et al.
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and the coefficient

Gjðk; tÞ ¼
gffiffiffiffiffi
N

p
X
n

��
n

2�n

eiðkjþ� k
ntÞ: ð14Þ

Note that the Hamiltonian (12) is equivalent to the Jaynes Cummings model which

describes the interaction of a single, quasi-resonant optical cavity field with a two-

level atom.20

Eliminating the photonic degree of freedom and considering that for the studied

state ha†
kak 0 i � 1 and hakak 0 i ¼ 0, we have

H3 ¼ �iH2ðtÞ
Z t

�1
dt 0H2ðt 0Þ

¼ �
X
j;j 0

XnL

n¼1

g�n

2�n

����
����2S ½n�

j;j 0�
ðjÞ
þ �

ðj 0Þ
� ; ð15Þ

where

S
½n�
j;j 0 ¼

1

N

X
k

eikðj�j 0Þ

Dn � 2T cos k
ð16Þ

and

Dn ¼ !c � !ab � !n: ð17Þ
For each item of S

½n�
j;j 0 in (16), the imaginary part with k is opposite to that with

kþ �. Then after the sum of k from 0 to 2�, all of the imaginary parts are eliminated.

Therefore, S
½n�
j;j 0 is always real. Combining H0, the effective Hamiltonian of atoms is

obtained as

Heff ¼ �
X
j;j 0

Jj;j 0

2
�
ðjÞ
þ �

ðj 0Þ
� þ h:c:

� �
þ
XN
j¼1

!ab

2
� ðjÞ
z ; ð18Þ

where

Jj;j 0 ¼
XnL

n¼1

g�n

2�n

����
����2S ½n�

j;j 0 : ð19Þ

It is a standard XY model with tunable long-range couplings and Jj;j 0 ¼
Jj 0;j ¼ Jðjj� j 0jÞ.

In the following two limits, Eq. (16) could be simplified. First, in the narrow band

limit jDnj � j2T j, Eq. (16) becomes

S
½n�
j;j 0 ’ �j;j 0

1

Dn

þ �jj�j 0 j; 1
T

D 2
n

; ð20Þ

which is reduced to the result of the spin model with NN couplings obtained in

Ref. 12. In this model, the dispersion relation is cosinusoidal, which is quadratic for
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small momenta and linear around k ¼ ��=2.6,21 In the other limit N ! 1, it

becomes

S
½n�
j;j 0 ¼ �j�j 0þ1

n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n � 4T 2
p exp � jj� j 0j

�n

� �
; ð21Þ

where �n ¼ sign ðDn=T Þ and �n is the characteristic length of the effective long-range

couplings with

��1
n ¼ � ln

Dn

2T

����
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn

2T

� �
2

� 1

s2
64

3
75: ð22Þ

Here, the Stark effect and an irrelevant constant have been dropped. In fact, the

order of magnitude of the Stark effect is about �2=�, which is much less than �

under the considered condition in Eq. (9). According to Eq. (16), its contribution to

the final result should be much less than the effective coupling J.

4. The High Efficiency QST

For a standard XY model, the Hamiltonian is

HXY ¼ �
X
j;l

JðlÞ
2

�
ðjÞ
þ �

ðjþlÞ
� þ h:c:

� �
; ð23Þ

where the coupling constants JðlÞ ¼ Jð�lÞ. The eigenstates in the subspace with a

single spin flipped on a ferromagnetic background are defined as

jki ¼ 1=
ffiffiffiffiffi
N

p XN
j¼1

eikjjji; ð24Þ

where

jji ¼ �
ðjÞ
þ

YN
j 0¼1

j#ij 0 : ð25Þ

The spin-down state j#i represents the ground state of the pseudo spin.

The dispersion relation for a single magnon is

Ek ¼ �Jð0Þ �
X
l>0

2JðlÞ cos kl; ð26Þ

and for the linear dispersion relation Ek ¼ jkj, the corresponding Fourier

expansion is

Ek ¼
�

2
� 2

�

X1
l¼1

1� ð�1Þ l
l2

cos lk; ð27Þ

M.-X. Huo et al.
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which requires

Jð0Þ ¼ � �

2
; Jðl 6¼ 0Þ ¼ 1� ð�1Þ l

�l2
: ð28Þ

There are two characters in the coupling constant distribution: the odd-modulation

by factor 1� ð�1Þ l and inverse-square decay. In fact, to achieve the odd-modulation

coupling distribution, one can group the driving lasers into nL=2 pairs with each

pair obeying

�2m�1

�2m�1

����
���� ¼ �2m

�2m

����
���� ¼ G2m;

D2m�1 ¼ �D2m;2 ½1;nL=2�; ð29Þ
which leads to the coupling distribution

Jj;j 0 ¼
g2

4

XnL=2

m¼1

G2
2m S

½2m�
j;j 0

��� ���½1� ð�1Þj�j 0 �: ð30Þ

On the other hand, the inverse-square decay is realizable via choosingDn andGn.

For systems with nL ¼ 2; 4; . . . ; and 14, numerical calculations are performed to

search optimal parameters Dn and Gn (n 2 ½1;nL�) to get the precise inverse-square

decay of the coupling distribution. The optimal parameters are listed in Table 1.

Correspondingly, the distribution of coupling strengths JðlÞ is displayed in Table 2

in unit Jð1Þ. With nL lasers, the first nL=2þ 1 coupling strengths can always be

Table 1. Parameters Dn in unit T , and Gn in unit G2 (n 2 ½1;nL�)
obtained from numerical simulations for the optimal setups with nL ¼
2; 4; . . . ; and 14. Based on these parameters, the corresponding dis-

persion relations (Fig. 2), coupling constant distributions (Table 2),

and fidelities of the QST (Fig. 3) are obtained.

nL n ¼ 2 4 6 8 10 12 14

2 3.333

4 5.200 2.121

6 10.100 7.212 2.226
Dn

T
8 10.100 7.212 3.633 2.090

10 10.100 7.212 5.947 2.395 2.027

12 10.100 7.212 5.947 4.044 2.333 2.023

14 10.100 7.212 5.947 4.327 2.565 2.085 2.006

2 1

4 1 0.044

6 1 0.351 0.084
Gn

G2

8 1 1.096 0.548 0.085

10 1 0.535 0.926 0.177 0.030

12 1 1.013 0.333 0.359 0.155 0.026

14 1 0.429 0.234 0.218 0.138 0.037 0.006
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modulated to the corresponding ideal distribution, and the rest JðlÞ (l > nL=2þ 1)

are smaller than the ideal ones, i.e. JðlÞ=Jð1Þ < 1=l2.

It seems that infinite lasers may be required to get a precise distribution as shown

in (28). However, because the contribution of JðlÞ to Ek reduces fast as l increases

due to its inverse-square decay, the linear dispersion relation is achievable

approximately with several lasers. To demonstrate this, we study the systems with

nL ¼ 2 and 4. The corresponding dispersion curves and group velocities are plotted

in Fig. 2 and compared to those of the ideal case. The obtained results indicate that

the linear dispersion relation is achievable approximately with nL ¼ 2 and 4.

Table 2. The coupling constant distributions JðlÞ=Jð1Þ obtained from

optimal parameters for nL ¼ 2; 4; . . . ; and 14 in Table 1 and compared to

the ideal distributions (28). It is found that for a given nL, the first

nL=2þ 1 coupling strengths are always equal to those of the ideal dis-

tribution. For l > nL=2þ 1, couplings JðlÞ=Jð1Þ are always less than

the ideal ones, 1=l2. It is indicated that the truncated ideal coupling

distribution can be achievable by applying optimal nL lasers.

l nL ¼ 2 4 6 8 10 12 14 ideal

1 1
12

1
12

1
12

1
12

1
12

1
12

1
12

1
12

3 1
3:02

1
3:02

1
32

1
32

1
32

1
32

1
32

1
32

5 1
9:02

1
5:02

1
52

1
52

1
52

1
52

1
52

1
52

7 1
27:02

1
8:42

1
8:02

1
72

1
72

1
72

1
72

1
72

9 1
80:72

1
13:92

1
12:82

1
9:52

1
92

1
92

1
92

1
92

11 1
234:52

1
23:22

1
20:62

1
12:82

1
11:02

1
112

1
112

1
112

13 1
565:12

1
38:72

1
32:92

1
17:32

1
13:22

1
13:12

1
132

1
132

15 1
827:92

1
64:52

1
52:72

1
23:32

1
15:72

1
15:42

1
15:02

1
152

17 1
886:22

1
107:42

1
84:42

1
31:42

1
18:62

1
18:02

1
17:02

1
172

19 1
893:52

1
179:12

1
135:22

1
42:42

1
21:92

1
20:92

1
18:92

1
192

-1.0 -0.5 0.0 0.5 1.0
-2

-1

0

1

2

3

Ek

k(π)

-1 0
-2

0

2

k(π)

dk

dE
k

1

Fig. 2. (Color online.) Dispersion curves of single magnon in systems with different coupling distri-

butions for nL ¼ 2 (empty circle), nL ¼ 4 (solid circle), and the ideal case Ek ¼ jkj (solid line), as given in

Table 2. The dash line corresponds to the one with uniform nearest-neighbor couplings. The inset shows

the derivatives (group velocities) of dispersion curves. It is indicated that the photon-like dispersion

relation is achievable approximately via the application of external lasers.
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Next we apply the analysis to the QST in a N-site ring. The quantum state to be

transferred at an arbitrary site N0 has the form1

j ðN0Þi ¼ cos
�

2
þ ei’ sin

�

2
�
ðN0Þþ

� �YN
j 0¼1

j#ij 0 : ð31Þ

In a coupled cavity system, j ðjÞi denotes that the atomic state in the jth cavity is

cosð�=2Þjai þ ei’ sinð�=2Þjbi, while all the atoms in other cavities are in the state jai.
In the ideal case, this state can be perfectly transferred to site N0 þN=2 after a

period of time � ¼ N�=2W , where W is the width of the energy band, which is

dependent on g as W / g2.

To illustrate the efficiency of our scheme, we simulate a QST in N-site systems

with optimal coupling distributions for nL ¼ 2; 4; . . . ; and 14 as listed in Table 2.

Initially, we set the quantum state to be transferred at site N0. The initial state

can be written as j ðN0Þi. In order to compare with the results obtained in a

uniform spin chain,1 we adopt the average fidelity (hereafter referred to as fidelity)

in the form

F ðtÞ ¼ jfðtÞj
3

þ jfðtÞj2
6

þ 1

2
; ð32Þ

to character the efficiency of QST, where the transition amplitude of a magnon from

site N0 to N0 þN=2 is

fðtÞ ¼ h ðN0 þN=2Þje�iHtj ðN0Þi: ð33Þ

In Fig. 3, the fidelity F ¼ maxF ðtÞ with t � � as a function of N is plotted with

parameters listed in Table 1. As an example, for nL ¼ 6, the parameters

�1 ¼ 21GHz, g ¼ 1GHz, �1 ¼ 2GHz, and D1 ¼ 1 GHz. Using these parameters,

all the parameters are obtainable via Table 1. The dash line of F ¼ 2=3 shows the

highest fidelity for a classical transfer.1,22 The fidelity obtained in our scheme with

nL ¼ 2 is higher than that of a classical transfer even for the transfer distance

increases up to N=2 ¼ 100 sites. As the number of lasers increases, the fidelity will

be evidently enhanced for a wide range of the transfer distance. When the distance

increases up to 500 sites, the fidelity could be always higher than 0.9 for 10 lasers and

is almost close to unit with slight decay for 14 lasers.

The decoherence of the system mainly results from the decay mechanisms via the

photons or the excited state of atoms. Such an environmental effect may induce

errors on the transmitted state. In our scheme, under the condition of the adiabatic

elimination, the occupation of the atomic excited state jei and the number of

photons are small. Moreover, we consider the strong coupling regime, where the

photon�atom coupling g is much larger than the spontaneous emission rate and

the cavity decay rate. To perform a high efficiency QST that sufficiently exceeds the

decay rates, atom�photon couplings should exceed cavity decay rates. Promising
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candidates for an implementation are therefore toroidal microcavities with a very

large Q factor which is larger than 108. It can be produced in large numbers,

addressing with high precision, and efficiently coupled to optical fibers as well as to

Cs atoms.16 Photonic crystals are also good candidates. The nanocavities based on

photonic crystals offer the possibility for the fabrication of large arrays of cavities in

lattices or networks.23�26 Circuit cavities interacting with a Cooper pair box would

have very low cavity decay with Q � 106 if engineered in a row.27 Also they are

suitable for an implementation. In our scheme, the fidelity is higher than that of a

classical transfer even for the transfer distance increases up to 100 sites with two

lasers. The well-known Electromagnetically Induced Transparency phenomenon

occurs in systems where three-level atoms are coupled to two lasers.28,29

To overcome the decoherence, the coefficients of the effective model should be

much larger than the effective decay rates of the photons and the atomic spon-

taneous emission. With the considered parameters in our scheme, the coupling

constant JðlÞ is equal to 1
1600 GHz. The probabilities of photonic and atomic exci-

tations are both 1
400. Therefore, our scheme requires that the decay rate of the atomic

excited states and the cavity loss rate are smaller than 5� 10�4 GHz, which is

available in experiments.12

5. Summary

In conclusion, we proposed an effective scheme to realize a spin network with tun-

able long-range couplings in the coupled cavity array with external multi-driving

lasers. For the coupled cavity systems with each cavity containing one three-level

10 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

nL=2  nL=10 

nL=4  nL=12  

nL=6  nL=14 

nL=8   classical transfer

F

N

Fig. 3. (Color online.) The fidelity as a function ofN for systems with different nL. Parameters are set as

listed in Table 1. As an example, for nL ¼ 6, the parameters are �1 ¼ 21GHz, g ¼ 1GHz, �1 ¼ 2GHz,

and D1 ¼ 1GHz. Using these parameters, all the parameters are obtainable via Table 1. The dash line of

F ¼ 2=3 denotes the highest fidelity of a classical transfer. With nL ¼ 2, the fidelity obtained in our

scheme is higher than that of a classical transfer even for the transfer distance increases up to N=2 ¼ 100

sites. Moreover, the fidelity F gets better as nL increases. When the distance increases up to 500 sites, the

fidelity is always higher than 0.9 for 10 lasers and almost close to unit with slight decay for 14 lasers.
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atom, the photonic tunnelings induced long-range couplings between atoms could be

optically tuned by external lasers. Then it is possible to pre-engineer a standard XY

spin model and achieve a linear photon-like dispersion relation for the magnon,

which could be employed to perform a high-fidelity QST. Numerical results show

that when applying two lasers in each cavity, the fidelity is higher than the highest

fidelity of a classical transfer even for the transfer distance increases up to 100 sites.

As the number of lasers increases, the fidelity is evidently enhanced for a wide range

of the transfer distance.

Acknowledgments

We acknowledge the support of the CNSF (Grant No. 10874091) and National Basic

Research Program (973 Program) of China under Grant No. 2012CB921900.

References

1. S. Bose, Phys. Rev. Lett. 91 (2003) 207901.
2. M. Christandl, N. Datta, A. Ekert and A. J. Landahl, Phys. Rev. Lett. 92 (2004) 187902.
3. M. Christandl et al., Phys. Rev. A 71 (2005) 032312.
4. J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, Phys. Rev. Lett. 78 (1997) 3221.
5. T. J. Osborne and N. Linden, Phys. Rev. A 69 (2004) 052315.
6. S. Yang, Z. Song and C. P. Sun, Phys. Rev. A 73 (2006) 022317.
7. D. P. DiVincenzo, Fortschr. Phys. 48 (2000) 9.
8. M. H. Yung and S. Bose, Phys. Rev. A 71 (2005) 032310.
9. T. Shi, Y. Li, Z. Song and C. P. Sun, Phys. Rev. A 71 (2005) 032309.
10. A. Kay, Phys. Rev. A 73 (2006) 032306.
11. M. Avellino, A. J. Fisher and S. Bose, Phys. Rev. A 74 (2006) 012321.
12. M. J. Hartmann, F. G. S. L. Brandão and M. B. Plenio, Phys. Rev. Lett. 99 (2007)

160501.
13. A. D. Greentree, C. Tahan, J. H. Cole and L. C. L. Hollenberg, Nature Phys. 2 (2006)

856.
14. M. J. Hartmann, F. G. S. L. Brandão and M. B. Plenio, Nature Phys. 2 (2006) 849.
15. M. J. Hartmann and M. B. Plenio, Phys. Rev. Lett. 99 (2007) 103601.
16. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala,Nature 421 (2003) 925.
17. T. Aoki et al., Nature 443 (2006) 671.
18. S. M. Spillane et al., Phys. Rev. A 71 (2005) 013817.
19. D. G. Angelakis, M. F. Santos and S. Bose, Phys. Rev. A 76 (2007) 031805(R).
20. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51 (1963) 89.
21. B. Chen, Z. Song and C. P. Sun, Phys. Rev. A 75 (2007) 012113.
22. M. Horodecki, P. Horodecki and R. Horodecki, Phys. Rev. A 60 (1999) 1888.
23. Y. Akahane, T. Asano, B. S. Song and S. Noda, Nature 425 (2003) 944.
24. B. S. Song, S. Noda, T. Asano and Y. Akahane, Nature Mater. 4 (2005) 207.
25. A. Badolato et al., Science 308 (2005) 1158.
26. P. E. Barclay, K. M. Fu, C. Santori and R. G. Beausoleil, Opt. Express 17 (2009) 9588.
27. A. Wallraff et al., Nature 431 (2004) 162.
28. M. Fleischhauer, A. Imamo�glu and J. P. Marangos, Rev. Mod. Phys. 77 (2005) 633.
29. M. Arikawa et al., Phys. Rev. A 81 (2010) 021605(R).

The Photon-Like Flying Qubit in the Coupled Cavity Array

1250002-11

In
t. 

J.
 Q

ua
nt

um
 I

nf
or

m
. 2

01
2.

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 0
7/

11
/1

4.
 F

or
 p

er
so

na
l u

se
 o

nl
y.


	THE PHOTON-LIKE FLYING QUBIT IN THE COUPLED CAVITY ARRAY
	1. Introduction
	2. Model Setup
	3. Adiabatic Elimination of Atomic and Photonic Excited States
	4. The High Efficiency QST
	5. Summary
	Acknowledgments
	References


