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Through a general g-boson realization of quantum algebra sl,(2) and its universal R matrix an
operator R matrix with many parameters is obtained in terms of g-boson operators. Building
finite-dimensional representations of g-boson algebra, we construct various colored R matrices
associated with nongeneric representations of sl (2) with dimension-independent parameters. The
‘‘nonstandard’’ R matrices obtained by Lee-Couture and Murakami are their special examples.
We also study the factorizable structure of some R matrices for the indecomposable representa-
tions used in its construction.

1. Introduction

According to Drinfeld, Jimbo and Reshetikhin,!~> solutions to the spectral parameter-
free Yang—Baxter equation (YBE) can be constructed in terms of quantum universal
enveloping algebras U,(L) (quantum algebras) of a simple Lie algebra L. Sometimes,
those solutions are called R matrices. As an associative algebra over complex number
field C, U, (L) can be endowed with a quasi-triangular Hopf algebraic structure
leading to the relations between YBE and U,(L).

Let {e,} be a basis for a certain Borel subalgebra U,(b™) in U,(L) and {e*} the
basis for its dual, Uq(b+)°. The quantum double theory defines the so-called universal
R matrix

R=e,®e €Uy L) ® Uy L) .
If p*: Uy(L) > End (V?) is the representations of U;(L) on space V* and

RYM = phi(e)® phe’) ® I,

* This work is supported in part by NSF, of China.
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REM = pM(e)® 1% @ phi(ef) ,

RN =3 1M ® phe,) @ ph(e), € End (VM ® VR ® V),

)

the quasi-triangular Hopf structure ensures that the R matrix

R™ = pr ® pM(@R) = 2 prey) ® p*(e) (1.1)

satisfies the YBE
RYMRYMREYS = REORBMRY™M (1.2)

So far a lot of R matrices have been derived according to the above-mentioned
standard approach, and they are associated with generic irreducible representations of
U,(L) when ¢ is not a root of {mity. These R matrices can be expressed in terms of
q-CG coefficients of Uq(L)3'4 and are called standard R matrices.

On the other hand, associated with representations of SU(2) having certain spins and
the fundamental representations of other classical Lie algebras, a number of new R
matrices for the YBE have been obtained®~® by using the extended Kauffman’s
diagram.®''® These R matrices are called nonstandard R matrices, because they Ppossess
quite different properties in comparison to the standard ones. Notice that some of them
are also related to quantum superalgebras.!' In order to understand the nonstandard R
matrices, the present authors tried to construct them from the standard one by taking
into account the concept of weight conservation.!? More recently, we succeeded in
constructing them in connection with nongeneric representations of quantum algebras
at g, a root of unity;'*'¢ the so-called g (deformed) boson realization theory was
used. !’ 1°

The purposes of this paper are to generalize the studies in Refs. 17-19 in a quite
general framework and construct the completely new R matrices, such as the colored R
matrices, by studying the representations of g-boson operators and the quantum algebra
sl,(2) in the nongeneric case where ¢ is a root of unity. Notice that the representations
of quantum algebras in this case are very useful in physics?®~%* and have been studied
by many authors.?*~3! In Refs. 24 and 25, the new R matrices are considered for the
generalized Potts model, but the nonstandard ones are not discussed. In this paper, we
first build a general parameter-dependent g-boson realization of sl,(2). It leads to a
two-parameter-dependent g-boson realization of the universal R matrix for sl,(2) and
defines finite-dimensional representations with the dimension-independent parameters
in the nongeneric case for sl,(2). Associated with two such representations with
different parameters, the general expression for new R matrices is obtained. If the two
representations used here have the same dimension but the different parameters, the
obtained R matrices are the colored R matrices, and the two parameters labeling the
two representations are called colors of the R matrices. This is because their
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four-dimensional case directly results in the colored R matrix used by Murakami in
constructing new Alexander polynomials.>> When two colors become the same, the
colored R matrices given by us not only lead to the nonstandard R matrices obtained
before®® in the lower-dimensional case, but also define higher-dimensional nonstan-
dard R matrices as completely new results. Notice that some of the representations of
sl,(2) obtained in this paper can also be given from a generally mathematical point of
view, but our g-boson realization method not orily leads to these results very
conveniently, but also emphasizes the finite-dimensional indecomposable (reducible,
but not completely reducible) representations of sl,(2). The latter cause the factoriz-
able structures in the obtained colored R matrices.

It should be pointed out that the basic ideas and method in this paper can be almost
directly applied to the case of quantum algebra sl,(N) for N = 3.

2. The g-Boson Realizations of sl ;(2) with Many Parameters

The g-boson operators were introduced by different authors to realize quantum algebra
sl,(2) and sl,(N). Up to now, they have been named by the terminology33-38
as the so-called g-boson algebra %,,.

Definition 2.1. The g¢-boson algebra is an associative algebra over C generated by
g-boson operator a, a~ = a and N satisfying

ata=[N], aa*=[N+1], [N, a*]= *a* 2.1)

where g € C and

¢ —q’
=5

is defined for any operator or number f. Its n-multiple tensor algebra is called
n-g-boson algebra and is denoted by % ,(n).

Definition 2.2. The image B(U,(L)) of a quantum algebra U (L) under an algebra
homomorphism B : U, (L) — B ,(n) is called the g-boson realization of U,(L).

In fact, the mapping B embeds U (L) into B,(n) as a subalgebra. With the help of
a direct calculation, we prove the following proposition.

Proposition 2.1. If functions a(N) and B(N) of N satisfy
aN =1 -BAN)=[A+1~-N], AreC, (2.2)
then mapping B : s1,(2) —» &,
Jy—>Js=BJy) =a"-al),
JosJ_=BJ)y=a BN, (2.3)

Jo—Jo=B(Jo) =2N — A,
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defines a g-boson realization of sl (2) with generators Ji and Jy , satisfying
Us,J1=1Jol, o, Tel = 2. . (2.4)
A solution,
aMy=1, BAE)=[A+1-AN],
to Eq. (2.2) leads to a particular g-boson realization of sl (2) ,
Je=a*, J_=a-[A+1-N, Jy=2N-2A. 2.5)
On the g Fock space F,,
{{n) =a*"|0) |alO)=NlO)=0, nez+=1{0,1,2,...}},
the g-boson realization (2.5) defines a Verma representation,
Jilmy =|n+ 1),
Jolny=[nllA+1—-nlln—-1), (2.6)
Joln) = 2n = A)|n) ,

of sl;(2), which has been obtained in Refs. 27 and 30.

As the generators of sl,(2) can be expressed in terms of g-boson operators, it is
natural to expect that a representation of sl (2) can be constructed from a representa-
tion of R ,(n). The following proposition provides us with a scheme for this purpose.

Propesition 2.2. If pr: B,(n) > End(V) is a representation of %B,(n) on space V
and B: U, (L) — %B,(n) defines a g-boson realization of quantum algebra U, (L), then
the following commutative diagram,

defines a representation p : U,(L) — End(V).
In fact, we can explicitly write down p = pg+ B through

p(g)-x=pp(B(g):-x, VgeU,(L), VxeV. 2.7

Since the manipulation obtaining representations of U,(L) can be transformed into the
discussion of representation for %&B,(n), it is necessary to study the representation
theory of A,

3. Finite-Dimensional Representation of 3, and Its Realized Representation
of sl,(2) at ¢, a Root of Unity

To construct the new R matrices of sl,(2) from its universal R matrix,
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oo

=gy
R = q-’0®fo/2 . Z {(q-’o/z -Jy ® q—-’o/z . J_)q%"("_ Y — , @3.1

n=0 [n]'
we must use the finite-dimensional representation (FDR) of sl,(2) and thus first study
the FDR of g-boson algebra %, in general. Notice that some FDR’s of %, have been

obtained when g is a root of unity.’® Now, we study the general aspects of
construction for the FDR of %&,.

Proposition 3.1. If 3B, has an FDR, then ¢ must be a root of unity.

Proof. Let V be the space of the FDR and dim V < . Since C is algebraically
closed, there exists u € V such that

ﬁu(, = Aug , AeC.
Because ug, a*ug, at?ug, . .., a ™uy, . . . are eigenvectors of N with different
eigenvalues A, A+ 1, A+2,..., A+ m, ..., they are linearly independent.
Owing to dim V < o, there must be / € Z* such that

@Huy =0, (@)Y tug+0.
Define fo = (a*) " 'uo. Similarly, there is I’ € Z* such that
@'fo=0, (@ 'fo#0.
Then we have
0=a*a"fo=[Nla"""fo=[A+1—I'N(a""'fo),

O=a-a 'uy = [1\7 + 1a*" " lug = [A + Nat' " Tug) ,
i.e.

[A+I=0U]=0=[A+1].
Thus ¢ = 1 that is to say, q is a root of unity. The proposition is proved.

Define vy = a’ ~'fy. The above proof also leads to the following proposition.

Proposition 3.2. In an FDR of %B,, there exist a ‘‘vacuum state’’ v such that
Nvo =0 Mod(p), a-vo=0.
According to Proposition 1, to study the problems related to the FDR of B, we

need only to focus on the nongeneric case where g is a root of unity. According to
Propostition 2, we define
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{F(m) = a*™vo|lm e Z*)

as a space for representation space V of an FDR. Since dim V < o, there must be d
(< ®©) € Z* succh that F(d) = 0. Then, the equation

0=aa*F(d—1)=[d]IF(d - 1)

gives [d] = 0, i.e.
1
d = ap (for ap = odd) or 2P (for ap = even) , aeZ"t.

Without affecting construction of R matrices, we take kK Mod(p) to be k simply for
k € Z*; we obtain an FDR of

atF(m) =0(d—1— m)F(m + 1),
a-F(m)={mlF(m - 1), 3.2)
N-F(m) =m F(m) ,
where 0(x) = 1 for x = 0 and 6(x) = 0 for x < 0. Denote V by Q, as follows.
From this FDR of %, and g-boson realization (2.3), we immediately construct an
FDR of sl,(2):
JyF(m) = 6d— 1 — m)a(m)F(m + 1),
J_F(m) = [m] - B(m) - F(m — 1), (3.3)
JoF(m) = 2m — MF(m) ,
where a(m) = a(m, A) and B(m) = B(m, A) satisfy
am—1)-B(m)=[A+1-m]. 3.4)

It can be proved that the FDR’s (3.2) and (3.3) of %, and sl,(2) are indecomposable
when « = 2 and irreducible for & = 1 (the proof is similar to that in Ref. 38).

4, General Formula of New R Matrices

In terms of the g-boson realization (2.3) of sl,(2) the universal R matrix is rewritten as the
g-boson operator form—g-boson realized R matrix:
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oo

~ n — g 2" 3
RIM ) = gCN= A ®@N-1)/2 2 ul 2nn—1)
n=0 [n]!

x (V= MDg* N, A) ® g N+ M/DagN, AN}, (@.1)
where a(N, A;) and B(N, A;) satisfy

alN — 1, A\pB(N, A) =[r; + 1 — N].

In (4.1) we have introduced two parameters, A, and A,, which are called the colors of the
R matrix and whose meaning will be discussed.

In order to write out the R matrix of R‘*:42) on certain representation spaces in a
well-defined matrix form, we define a new basis,

{\I’J(m)=F(J+m)|7 m=jvj_17“'v_j}y

for the space Q,(=V) of the representation (3.3) of sl,(2) or the representation (3.2)
of B,, where

ap — 1
7

j=
On this basis, the FDR p/® of sl,(2) is rewritten as
J¥im) = 6(j — 1 — m)a(j + m)¥;(m + 1),
J Wim) = [j+ mlB(j+ m¥m—1), 4.2)
Jo¥(m) = (2 + 2m — N)V¥;(m) ,
and the FDR (3.2) of B, with j = (ap — 1)/2 is rewritten as
atWim) =0 — 1 —m¥(m+ 1),
a¥,(m) = [j + ml¥;(m — 1), 4.3)
N (m) = (j + my¥(m + 1) .

Using the universal R matrix (3.1) combined with the representation p/» of sl,(2), or
the boson realized R matrix R** combined with the representation p/ of B,, we
obtain the general R matrix
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le(/\l)jI(AZ) — pjl()‘l) ® pjz('\z)(k)
or = (pjl ® p.iz)(RM/\z) 4.4)

with the matrix elements

(A mimy . . ) . "
(Rf'( )jz(llf))m:mi — q2(/1+ml A/2)(atmy— uf2) { 62:622

L (=g (=1/2yn(n= 1)+ n(jy = o+ mi = my— M2+ p/2)
Y2 T e “9
= !

n
X H &+ 1= 1A By my— 1+ 1 (W2 +ma — 1+ 1]5,'::+,,3:§_,. ] )

where k£ = min(2j,, 2j2) and a;.,,(A) = a(j + m, A), Bjm(A) = B(j + m, A).

Although ¢ is only a cyclic parameter due to ¢* = 1, the continuous parameters A
and u are still contained in the obtained R matrices, and the continuous parameters
fn = ¢'® may be taken in those R matrices, which play the role of ¢ in the standard
R matrix. Introduction of these parameters A and_u is the key to our studies.

Notice that there exist two different representations, p/* and p/‘* of sl (2) for
A # u with the same dimension, 2j + 1. This feature appears only for the nongeneric
case and can be regarded as a ‘‘purely quantum’’ phenomenon.

Definition 4.1. In the representation p/¥[(4.2)] of s1,(2) the continuous parameter A
which is independent of the dimension 2j + 1 of p/» is called the color of the
representation.

5. Colored R Matrices and Quantum Group Construction of the
Obtained Nonstandard R Matrices

Now, we apply the general formula (4.5) to write some typical R matrices, including
the nonstandard R matrices obtained before and the completely new ones.

(1) In the case with g2 = —1, we have a 2 X 2 R matrix,
1 ¢— 1!

1 ’
-1

Rl/21/2 — Rl/2(/\)l/2(A) — (51)

where t = —g~* = —¢"™% j5 a continuous parameter, which can also be taken to

be real, and j, = j, = 1/2. In fact, R'/21/2 is just the unique 2 X 2 nonstandard R
matrix given in Ref. 5.
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(2) In the case with ¢°> = 1 and j, = j, = 1, we have a 9 X 9 R matrix with the
block diagonal structure

A

R = RIUMIWM = A, , (5.2)

where

om0 (1 - g7 )
Az = g 't gt™' Q> ,
’—l

01 = (g — g Pa,;0(A)B1,0(A), Q2= —(g — ¢ Na;, (MBI,

and the continuous parameter in R'! is ¢+ = g' ~*. The particular case of (5.2) with
0, = @, is just the 9 X 9 nonstandard R matrix in Ref. 5.

In general, other nonstandard R matrices of sl ,(2) in Ref. 5 can also be obtained by
using the general formula (4.5) and letting j, = j, = 1, 3/2, 2, 5/2 and defining
t= (=1)¥g¥-1-A

Before we introduce the concept of the colored R matrix, we consider the simplest
case, with ¢> = —1 and j; = j, = 1/2 = j. In this case, by associating with two
different nongeneric representations of sl (2) with the same dimension (2j + 1 = 2)
and different colors (A and w), the 2 X 2 R matrix R'/2M1/2(# op the tensor space of
PN @ p'/2(w s obtained from (4.5):

—I\l,
' WA, p)

RV2N12Gm = RI2() ) =
',

(5.3)
it
where t; = g~ V/D ¢ = A, w) and

WA, w) = 531.2(q — g Darya,—172(MB 12,1 2(1) -

When ¢ = if}/?, ain,—12(A) = 17! and Bij2,1/2() = tu,
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o Liz! Y-
RV2(N1/2(w) = (tAt,L)'/Z “ B ) 5.9

51
Iy

is just the R matrix used by Murakami®? in constructing a new Alexander link
polynomial where the parameters A and u (or f, and ¢,,) are regarded as the colors of
the link.

Definition 5.1. The R matrix R/(}/(®_ defined on the product p/» ® p’t* for two
different representations, p/‘* and p/(¥ (A # u), with the same dimension (2j + 1)
is called the colored R matrix and (A, u) are called its colors.

In fact, the general formula also results in a high rank colored R matrix, such as the
9 X 9 R matrix R''(A, w) for ¢> = 1:

B,
‘B,
R”(A, “) = Rl(A)l(p.) — B3 ,
B;
B

By =1t,, Bi=qi'y", (5.5)

(g%, WA, ) ;e wow
Bz = 2 ’ BZ - —1 >

| 0 g 0 qty

(a1, Xi(A, p) Wo(A, p)
By = 1 Xo(A, w) |,

i qtAt;!

where t), = g~

, t, = q * and

Wik, p) = (1 = 1?42 a0(MBr ()

WoA, ) = q(1 = ¢®a;, 1 (Ma;,0A)B1o()Br (1) ,
W_oi(A, p) = (1 = g 20 e, -1 (M) Bro(p)
X, w) =1 — @t 2, o(N)B1Lo(R)

Xo(A, ) = —(1 — 4)t;l/2t:¢/2a1,—l(A)ﬂl,l(l»") .

Notice that the colors A and  in the colored R matrix R/M/'(W) = RJ'(A, u) appear
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as if they were the dynamic spectral parameter because of the Yang-—Baxter equation
(RI7(A, p) ® DU ® R(y, )RS (y, M) ® 1)
= (I ® R(y, DR (y, &) ® DU ® R (A, p)), (5.6)

which is formally satisfied by R¥ (A, w).

6. The Factorization Structure and Other Properties of New R Matrices

In constructing the new R matrices, we use the nongeneric condition ¢ = 1 so that
some zeros, [ap] = 0, appear in the denominator of the universal R matrix R. Now,
we must find out for which kind of representation the universal R matrix still makes
sense in the nongeneric case. With the sl,(2) case as an example, we first decompose
the universal R matrix (3.1) into two parts,

R=R()+R,,,

where

— = 2\n
Ry = q-’ox-’o/2 E Q_ﬁ’_) (q(l/2)-’0J+ ® q—(l/Z)JoJ_)n . q—(l/2)n(n—1/2) , (6.1)
n#kp [n]'

Rp — q.IoXJO/Z E - q——2)kpq—(l/2)kp(kp-I)q(l/2)kaOJ/ff.® q4(1/2)kp.l(,(L_)k ,
k=0

L= (J_)/Ip]! being the Lusztig operator. Then, we conclude that if I:L(or I:+) is
well defined for a representation p, that universal R matrix makes sense. For the
representation (3.3), L_is obviously well defined and we can use the universal matrix R
freely. In fact, the practical calculations obtaining new R matrices in the last subsection
also show the validity of R.

Since some nongeneric representations we used are indecomposable, we need to
consider the factorization structure in terms of them. In fact, If p, (o = a, b) are
indecomposable representations of U ,(L) on the space V,,, V- are the invariant subspaces

in V, and pL/< are the corresponding subrepresentation on V7, i.e.

_ | ek A
Po = 0 B, s

where A’ and B’ are certain matrices, the universal R matrix R =2 ¢y ®
e®e Uy L) ® U, (L) will define an R matrix,

R™ = p, ® p,(R) = ; Pales) ® pyle®),
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with the factorization structure

Rab_ Rjujb A
| o B}’

where

R’ = pl’ @ pl"(R) € End(Vi: ® V)

is the R matrix associated with p,!’+) and p,!’#). Let us take an example to illustrate the
above conclusion.

Where g?>=—1 and a =2, we obtain on @, ®Q, an R matrix
R3/2N3/2(w) = R3/2() ) with j, = j, = 3/2, which possesses the factorization
structure

0 X_ip2(A, p)
0 0
R¥2WN3/2(w) = [ RI21/2() 1) | - : 0j, (6.2)
0 0
0 | M

where R'/21/2(x, u) = RV2V1/2W 5 the 4 X 4 colored R matrix given in (5.3) and

M = Block diag(M, ,M,,M3,M,) ,

o= | W w]

1 i t;l[i y
(et XA, p) XA, p) WoA, p)

Y B, 0 X&(A, w)

2 N XP0, wl
L o'
[—131, WA, p) Xip(A, )

M3= "‘t,\tz_ 0 ’
L B

. = | Rt Wi w

4 i A -ne |’
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where we have defined
W_i/2(A, p) = 4q7 'tat, 32, —3/2(A)es 2, —172(A) B3s2,172()B3s2, - 12(1)
Wia(A, p) = =4tithasn —12(M)ass2,172(0) B3y2,372( ) B2, 1/2(1)
WA, p) = —didthas 120 Bas,32(0)
X_12A, ) = —2tﬁaa/z,—1/2(A)B3/z.—1/2(#) ,
X, w) = =297 ' Rassn —32(0)Bss2.3/2(1)
XA, p)y = —4qiit,asm, —3(0) sz, —12(A)Basa,3/2(w)B3s2.12(4)
XSO\, p) = Agnatyassy, 12Nz 172(0) By 1 j2()B3yz, —1/2(p)
XA, w) =297 has 0 12(0) By, —12(1)
Xi2(A, p) = =282 a3/2 —172(A)B3s2,3/2(R) -

Notice that if the representation p used in constructing the R matrix is completely
reducible, i.e. p = p’ ® p’, then the obtained R matrix R, = p ® p(R) possesses the
completely factorizable structure

R = 6.3)

where R = p/ ® p#(R) (f, g = L, J) are the R matrices defined by the subrepre-
sentations p; and p;, which still satisfy the YBE.
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