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Abstract We study a dynamic mechanism to pas-
sively suppress the thermal noise of a micromechanical
resonator through an intrinsic self-feedback that is gen-
uinely non-Markovian. We use two coupled resonators,
one as the target resonator and the other as an ancillary
resonator, to illustrate the mechanism and its noise re-
duction effect. The intrinsic feedback is realized throughff
the dynamics of coupling between the two resonators:
the motions of the target resonator and the ancillary res-
onator mutually influence each other in a cyclic fashion.
Specifically, the states that the target resonator has at-
tained earlier will affect the state it attains later due to
the presence of the ancillary resonator. We show that the
feedback mechanism will bring forth the effect of noise
suppression in the spectrum of displacement, but not in
the spectrum of momentum.
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Recently, interest has been generated on cooling tech-
niques for mechanical systems at nano- and micron-scales
[1]. Among them, the typically employed is the feed-
back cooling technique where an external feedback cir-
cuit is responsible for detecting the motion of the target
and feeding a counteracting force against this motion;
through a general decrease of magnitude in the density
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noise spectrum, it was shown that the feedback can ef-
fectively reduce the fluctuation of the target and provide
a cooling mechanism [3, 4]. Some experiments based on
the models that contain the feedback loops have been
carried out in the past few years. A few are directed to-
wards the cooling of micron- to nanometer-size mechan-
ical resonators, aiming to reach a macroscopic quantum
mechanical ground state and serving as a powerful mani-
festation of quantum mechanical effects [5−8]. Other ex-
periments succeed in slowing down the motion of micron-
size mirrors through the radiation pressure of an optical
field in a Fabry-Perot (FP) cavity, aiming to reach a noise´
level and equivalently an effective temperature that are
pertinent to the employment of high-precision detection
of gravity waves [9−12].

The aforementioned implementations of feedback cool-
ing through reduction of noise fluctuations invariably
rely on an electrical circuitry external to the target sys-
tem to be cooled. The controller here is usually fixed and
attracts or repels the resonator through either electro-
static Coulomb force or Lorentzian force. If such an ex-
ternal detection-control unit could be eliminated in favor
of a mechanism with self-detection of and self-adjustment
to the target’s thermal motion, we call the mechanism
“self-cooling” [15, 16]. Devices implementing this self-
cooling use less components and are free from the re-
liance on an external circuitry and hence prone to less
noise sources.

In one case [13], an augmented cavity along with an
extra optical cavity field is established on the other side
of the mirror, in addition to the regular FP cavity, so
as to counteract the radiation pressure from the origi-
nal cavity field. This extra field cushions the motion of
the pressure mirror and plays the role of feedback. In an-
other case [14−16], a set of Josephson junctions behaving
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as a qubit, serially connected to a mechanical resonating
beam, serves delayed supercurrent into the circuit ac-
cording to the magnetic flux through the circuit loop.
The magnetic flux is controlled by the vibrating motion
of the beam, which in turn is controlled by the magnetic
field generated by the current feed. Such a mutual de-
pendence furnishes a self-feedback mechanism. It should
be pointed out that both of the self-feedback setups re-
quire delayed feedback, which assumed a priori a non-
Markovian approximation that explicitly depends on the
history of the target’s motion. In these phenomenolog-
ical treatments, the cooling target either couples itself
to a static controller and makes itself prone to the noise
stemmed from the feedback, or couples to a mechanically
static detection construct and receives manually delayed
feedback.

Hereby, we present a dynamic model based on an in-
trinsic mechanism with non-Markovian feedback, which
is obviously free from an external feedback loop and does
not rely on a presupposition of historical dependence.
This mechanism is illustrated by a simple mechanical sys-
tem in which the target is modeled by a harmonic oscilla-
tor and attached to a dynamic controller, which is a rela-
tively heavier resonator, through a spring. The target is
controlled by an intrinsic feedback through the dynamics
of coupling: earlier positions and velocities of the target
affects the motion of the controller and this influence is
subsequently fed back to the target. Consequently, the
accumulation of earlier states of the target will affect the
state of itself later. With proper parameter setup, the
target essentially experiences a resistance and decelerates
its motion; its displacement variance is shrunk, noise sup-
pressed and effective temperature cooled down. The lack
of a specific detection device for the motion of the target
resonator and an external feedback circuit characterizes
the intrinsic nature of the mechanical feedback. Our nu-
merical analysis shows the existence of a noise suppres-
sion capability of our scheme, e.g. the variance of dis-
placement can be reduced to 0.04× 10−21m2, and there-
with a cooling capability under a practical setting acces-
sible in current experiments. We note that the scheme is
theoretically illustrative through its simple model setup
yet widely applicable because the general oscillator sys-
tems can be extended to quantum bosonic systems and
other cases. In fact, a similar model and mechanism has
been proposed to actively cool down the torsional vibra-
tion of a nanomechanical resonator through spin-orbit
interactions [17].

The model will be explained in Section 2 and its delay
function then derived a posteriori to examine its non-
Markovian dependence. The complete solution of the
system dynamics is given in Section 3, with which we

will derive the density noise spectrum and calculate the
theoretical noise suppression rate. The associated nu-
merical results will be presented in Section 4, given var-
ious parameter setups. The analysis is extended to the
domain of momentum noise in Section 5.

2.1 The model

Our model setup (see Fig. 1) comprises two masses and
three springs. The two masses are denoted by m and
M , respectively. The mass m is the target and typi-
cally lighter whereas the mass M serves as an ancillary
controller and is relatively heavier. The three springs
are denoted by their Hooke’s constants k, g and K, re-
spectively. The spring of constant k attaches the lighter
mass m to the fixed wall on the left and the spring of
constant K attaches the heavier mass M to the fixed
wall on the right. The spring of constant g strings the
two masses together. Such a setup, intuitively, grants
the heavier mass M the function of a suspension system
and a medium for the feedback. The symbol G(t) rep-
resents an external driving force which is necessary for
the discussion of cooling but can be deemed zero for the
present.

Fig. 1 The diagrammatic figure shows the arrangement of the
three springs and the two masses. From left to right, they are: the
spring of constant k, the target mass m, the spring of constant g,
the ancillary mass M , and the spring of constant K. G(t) is the
harmonic driving force.

The connected springs will give rise to mechanical vi-
brations of the masses. We let ω̄ =

√
(k + g)/m de-

note the effective mechanical resonance frequency for
the mass m, assuming the other mass M is fixed, and
Ω̄ =

√
(K + g)/M the equivalent for the mass M , as-

suming the mass m is fixed. Besides these mechanical
vibrations, we assume each of the masses experience a
frictional damping and we let γ denote the damping co-
efficient for the mass m and Γ that for mass M .

Then according to the setup above, the coordinates
of the two masses obey a coupled system of classical


