
Frontiers of Physics
https://doi.org/10.1007/s11467-019-0944-x

Front. Phys.
15(2), 21602 (2020)

Research article

Directional quantum random walk induced by coherence

Jin-Fu Chen1,2, Yu-Han Ma1,2,†, Chang-Pu Sun1,2,‡

1Beijing Computational Science Research Center, Beijing 100193, China
2Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road,

Haidian District, Beijing 100193, China
Corresponding authors. E-mail: †yhma@csrc.ac.cn, ‡cpsun@csrc.ac.cn

Received November 8, 2019; accepted December 1, 2019

Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk
(CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential
unitary evolution engenders correlation between different steps in QW and leads to a non-binomial
position distribution. In this paper, we propose an alternative quantum extension of CRW from the
ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated
coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker’s
position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard
matrix. In one-dimensional case, the walker’s position is the asymmetric binomial distribution. We
further demonstrate that in QRW, coherence leads the walker to perform directional movement. For
an initially decoherenced coin state, the walker’s position distribution is exactly the same as that of
CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the
walker’s position distribution.
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1 Introduction

In the classical random walk (CRW), the walker is usu-
ally assumed to have one single coin. At each step, he
flips the coin and decides the moving direction accord-
ing to the flipping result [1]. The coin is either heads or
tails after flipping, and then the walker moves right or left
accordingly in one-dimensional case. This is the single-
coin interpretation for CRW. Since the flipping process of
CRW eliminates the correlation between the coin and the
walker, no correlation exists between different steps. In
other words, the coins can be considered as independent
coins for different steps. This indicates that we can under-
stand CRW with the ensemble interpretation, where the
walker possesses many independent coins, and flips each
coin at each step.

It is conventionally understood that the quantum coun-
terpart of CRW is the quantum walk (QW) [2–5] (named
as quantum random walk in early studies), the concept
of which was first proposed by Aharonov [2]. Different
from CRW, the walker’s position distribution of QW is
found to be non-binomial [5–8]. QW has been extensively
studied to utilize its advantage in quantum computation
[9–11], quantum simulation [12, 13], or to give a proto-
type to understand the quantum phase transition and
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the topological phases [14–16]. Various types of QW have
been invented in the theoretical studies, e.g., multiple-coin
QW [17], QW in higher dimensions [18], and QW with a
step-dependent coin [19, 20]. Recently, QW has been real-
ized in experiment with different physical systems, such as
trapped atoms or ions [21–24], optical systems [19, 25–27],
and superconducting qubit [28]. Previous studies provide
the transition from QW to CRW in different fashions, with
decoherence [8, 29–32] and random phase approaches [33],
with aperiodic QW [34], or with multiple-coin QW [17].
In this paper, we find that QW is one possible quantum
extension of CRW from the single-coin interpretation. In
the current version of QW, the state of the walker and the
coin is described by the quantum state in the correspond-
ing Hilbert space while the flipping process is considered
as a unitary transform on the coin [5, 7]. The unitary
transform engenders strong correlation between different
steps. While in CRW, the flipping process eliminates the
correlation between the walker and the coin, and every
step is independent.

Inspired by the ensemble interpretation of CRW, we re-
define quantum random walk (QRW) in this paper, where
random means each step is uncorrelated. QRW can be re-
garded as an alternative quantum extension of CRW from
the ensemble interpretation, while QW is the quantum
extension of CRW from the single-coin interpretation. In
QRW, the walker possesses many quantum coins, modeled
as two-level systems prepared in the same initial state.
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The mathematical form of QRW is similar to the par-
ticular multiple-coin QW defined in Ref. [17], where the
walker flips each coin at each step with a unitary coin op-
erator, and moves according to the corresponding flipping
result at each step. Similar to QW [5], the coin opera-
tor is chosen as Hadamard matrix. The walker’s position
distribution in QRW/CRW is binomial due to the zero
correlation between different steps, and that in QW is
non-binomial due to the strong correlation. Especially, we
study the walker’s position distribution in QRW with dif-
ferent coin’s initial states. For an initially decoherenced
coin state, the walker’s position distribution recovers the
result of CRW. For an initial coin state with coherence,
the walker’s position is shown to follow the asymmetric
binomial distribution, where the orientation of the walker
is determined by the real part of the non-diagonal term of
the initial coin state.

This paper is organized as follows. In Section 2, we re-
visit CRW in the language of the density matrix and give
the two interpretation for CRW, the single-coin interpre-
tation and the ensemble interpretation. In Section 3, we
propose QRW as the quantum extension of CRW from
the ensemble interpretation, and discuss the walker’s po-
sition distribution in 1D case. In Section 4, we analyze
the correlation between different steps in CRW, QW, and
QRW. We thus clarify that it is the difference in such cor-
relation that makes the walker follows different position
distribution in those walk models. In Section 5, we extend
the framework of the new QRW to 2D lattice. Finally, the
conclusion is given in Section 6.

2 Revisit classical random walk with density
matrix approach

2.1 Single-coin interpretation

As a preparation, we first revisit CRW in the language of
the density matrix. In the beginning, the position of the
walker is set to the origin of the coordinates |0⟩w, while
the coin stays at a mixed state

ρc = p
(0)
1 |1⟩c ⟨1|+ p

(0)
−1 |−1⟩c ⟨−1| , (1)

where |1⟩c and |−1⟩c represent the heads and tails of the
coin respectively, with the corresponding probability as
p
(0)
1 and p

(0)
−1 = 1 − p

(0)
1 . The non-diagonal term of the

above density matrix is zero since the coin is completely
classical without any coherence in CRW. Such that, the
total initial state of the walker and the coin is

ρ(0) = |0⟩w ⟨0| ⊗ ρc. (2)

At each step, the walker flips the coin and moves ac-
cording to the flipping result

ρ(l + 1) = T C [ρ(l)] , (3)

where ρ(l) is the total density matrix of the walker and
coin after the l-th step. Since the density matrix is always
diagonal in CRW, we can write ρ(l) as

ρ(l) =
∞∑

x=−∞

∑
u=±1

px,u(l) |x⟩w ⟨x| ⊗ |u⟩c ⟨u| , (4)

where px,u(l) is the probability that the walker arrives at x
and the coin is at |u⟩c state after the l-th step. The flipping
process C only operates on the coin, and transforms the
density matrix to ρ̃(l) = C [ρ(l)] as

ρ̃(l) =
∞∑

x=−∞

∑
u=±1

p̃x,u(l) |x⟩w ⟨x| ⊗ |u⟩c ⟨u| , (5)

with the new distribution p̃x,u(l) =
∑

v=±1 px,v(l)p(u|v).
Here, p(u|v) denotes the conditional probability for flip-
ping the coin from |v⟩c state to |u⟩c state with v, u = ±1.
For CRW, the state of the coin before and after flipping
should be independent, which requires the conditional
probability satisfies p(u|1) = p(u| − 1). After flipping, the
new distribution becomes

p̃x,u(l) = px(l)pu, (6)

where px(l) = px,1(l) + px,−1(l) gives the position distri-
bution, and pu = p(u|1) = p(u| − 1) gives the coin dis-
tribution. It is clearly seen in Eq. (6) that the flipping
process eliminates the correlation between the walker and
the coin. Therefore, the total density matrix after flipping
becomes a product state composed of the walker and the
coin as

ρ̃(l) = [Trcρ(l)]⊗ ρ̃c, (7)

where the flipped coin state ρ̃c follows

ρ̃c = p1 |1⟩c ⟨1|+ p−1 |−1⟩c ⟨−1| , (8)

which is the same after flipping at different steps. For
CRW without bias, all the conditional probabilities are
equal to 1/2 and the flipped coin state becomes the fully
mixed state ρ̃c = 1/2 (|1⟩c ⟨1|+ |−1⟩c ⟨−1|).

After flipping, the walker moves according to the flipped
coin state ρ̃c through the transition process T [ρ̃(l)] =
T ρ̃(l)T † with the transition operator

T =
∞∑

x=−∞

∑
u=±1

|x+ u⟩w ⟨x| ⊗ |u⟩c ⟨u| , (9)

which means the walker moves right (left) when the coin
stays at |1⟩c (|−1⟩c). Thus, after the (l+1)-th step, the to-
tal density matrix ρ(l+1) = T [ρ̃(l)] is explicitly obtained
as

ρ(l + 1) =
∞∑

x=−∞

∑
u=±1

p̃x−u,u(l) |x⟩w ⟨x| ⊗ |u⟩c ⟨u| . (10)
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Together with Eq. (4), we obtain the recursion relation

px,u(l + 1) = p̃x−u,u(l), u = ±1. (11)

We remark that the transition process is a unitary evolu-

tion and remains the same in QW.
According to the recursion relations of Eqs. (6) and (11),

it follows from Eq. (3) that the total density matrix of the
walker and coin after n steps is

ρ(n) =
n∑

j=0

|2j − n⟩w ⟨2j − n| ⊗ pj1p
n−j
−1

[(
n− 1
j − 1

)
|1⟩c ⟨1|+

(
n− 1
j

)
|−1⟩c ⟨−1|

]
, (12)

By tracing over the coin’s degree of freedom in ρ(n),
we obtain the probability for the walker arriving at the
position 2j − n after n steps as

P2j−n(n) =

(
n
j

)
pj1p

n−j
−1 . (13)

This probability distribution, known as the binomial dis-
tribution, describes the walker’s position distribution in
the CRW. The expectation and variance of the walker’s
position [1] are given by

⟨x⟩ = n(p1 − p−1), (14)

and⟨
∆x2

⟩
=
⟨
x2
⟩
− ⟨x⟩2 = 4np1p−1, (15)

respectively. When p1 = p−1 = 1/2, the binomial distri-
bution of Eq. (13) is symmetric. In this case, the expected
position of the walker after n steps is just the origin of the
coordinates, which can be easily checked from Eq. (14).
Otherwise, for p1 ̸= p−1, the position distribution is asym-
metric, the walker will thus perform directional walking,
i.e., ⟨x⟩ ̸= 0, and the CRW is directional.

2.2 Ensemble interpretation with many coins

In the above discussion, the flipping process C eliminates
the correlation between the coin and the walker at every
step, and the flipped coin state ρ̃c does not depend on
the previous state ρ(k). The coin can be considered as
independent coins for different steps. This is the ensemble
interpretation for CRW. In the following discussion, we
will obtain the same result of the position distribution
based on the ensemble interpretation. Suppose the walker
possesses many coins, the number of which is equal to
the total step number n the walker will move. The total
Hilbert space is the product of the walker’s space and the
space for each coin

HT = Hw ⊗
n⊗

l=1

Hl,c. (16)

At the beginning, all the coins satisfy the same distribu-
tion ρc by Eq. (1). Now, the initial density matrix of the
walker and all coins reads

ρ(0) = |0⟩w ⟨0| ⊗
n⊗

l=1

ρl,c, (17)

where l distinguishes different coins. At the l-th step,
the walker flips the l-th coin and moves according to the
flipping result, namely,

ρ(l) = TlCl [ρ(l − 1)] . (18)

The flipping process Cl transforms the l-th coin’s state
from ρl,c to ρ̃l,c, where ρ̃l,c follows the same form as
Eq. (8). And the transition process

Tl (ρ) = TlρT
†
l (19)

is realized with the transition operator

Tl =
∞∑

x=−∞

∑
u=±1

|x+ u⟩w ⟨x| ⊗ |u⟩l ⟨u| ⊗
n⊗

j ̸=l

Ij . (20)

Here, Ij is the 2 × 2 identity matrix for the j-th coin.
So that, the total density matrix after n step is ρ (n) =∏n

l=1 (TlCl) [ρ(0)], which can be explicitly written as

ρ(n) =
∑
{ul}

|
∑
l

ul⟩w⟨
∑
l

ul| ⊗
n⊗

l=1

(pul
|ul⟩l ⟨ul|) . (21)

In the summation, ul = ±1 gives the direction for each
step. By tracing over the space of all the coins, the prob-
ability for the walker arriving at the position x after n
steps is obtained as

Px(n) =
∑

{ul}:
∑

l ul=x

n∏
l=1

pul
. (22)

The limitation on the path
∑n

l=1 ul = x requires (x+n)/2
right steps and (x − n)/2 left steps along n steps, and
(x ± n)/2 needs to be a positive integer otherwise the
probability is zero. Then the probability at the position x
is obtained explicitly as

Px(n) =


 n

n+ x

2

 p
n+x

2
1 p

n−x
2

−1 , n+ x is even,

0, n+ x is odd.

(23)

It is clearly seen from Eq. (23) that the walker’s posi-
tion distribution is exactly the same as that of Eq. (12)
in the one-coin case by setting j = (n + x)/2. There-
fore, the equivalence between the one-coin interpretation
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and many-coin interpretation (ensemble interpretation)
for CRW is proved. In further investigation below, we will
extend the ensemble interpretation to quantum random
walk to study the effect of the initial coherence of the
coin.

3 Quantum random walk

In this section, we will discuss the QRW in one-dimensional
space from the perspective of the ensemble interpretation
of Section 2.2. For QRW, the total initial density matrix of
the system is also described by Eq. (17), where the initial
state of the l-th coin is now assumed to be

ρl,c =

(
p
(0)
1 η

η∗ p
(0)
−1

)
, (24)

where the non-diagonal term η characterizes the coherence
in the coin state. We consider a unitary flipping process
Cl at the l-th step acting on the l-th coin

Cl (ρl,c) = Clρl,cC
†
l ≡ ρ̃l,c, (25)

where ρ̃l,c is called the flipped state of the coin. The coin
operator only acts on the l-th coin

Cl = Iw ⊗
n⊗

j ̸=l

Ij ⊗ C̃l, (26)

where C̃l is a U(2) matrix for the l-th coin, and Iw is the
identity matrix in the walker’s Hilbert space. For a general
SU(2) matrix

C̃l =

(
a b

−b∗ a∗

)
, (27)

it follows from Eqs. (25) and (26) that the coin state after
flipping becomes

ρ̃l,c =
∑
ul,vl

ρulvl
|ul⟩l ⟨vl| , (28)

where ul, vl = ±1 and

ρ1,1 = p
(0)
1 |a|2 + η∗a∗b+ ηab∗ + p

(0)
−1 |b|

2
,

ρ1,−1 = a
(
aη + bp

(0)
−1

)
− b

(
ap

(0)
1 + bη∗

)
,

ρ−1,1 = a∗
(
a∗η∗ + b∗p

(0)
2

)
− b∗

(
a∗p

(0)
1 + b∗η

)
,

ρ−1,−1 = p
(0)
−1 |a|

2 − η∗a∗b− ηab∗ + p
(0)
1 |b|2 . (29)

According to Eq. (18), the total density matrix after
n-th step is

ρ(n) =

(
n∏

l=1

TlCl

)
ρ(0)

(
n∏

l=1

TlCl

)†

. (30)

Since [Cl, Tl′ ] = 0 commutes for different steps l ̸= l′, we
first act all the coin operators on the initial state of the
coins

n∏
l=1

Clρl,cC
†
l =

n∏
l=1

ρ̃l,c. (31)

Then, Eq. (30) is rewritten as

ρ(n) =

(
n∏

l=1

Tl

)(
|0⟩w ⟨0| ⊗

n⊗
l′=1

ρ̃l′,c

)(
n∏

l=1

Tl

)†

. (32)

Substituting Eq. (20) into Eq. (32), we obtain

ρ(n) =
∑

{ul,vl}

|
n∑

l=1

ul⟩w⟨
n∑

l=1

vl| ⊗
n⊗

l=1

ρulvl
|ul⟩l ⟨vl| . (33)

The position distribution of the walker is determined by
the diagonal elements of the density matrix of the flipped
coin ρ̃l,c. The probability at the position x after n steps
Px(n) = Trc ⟨x| ρ(n) |x⟩w is obtained from Eq. (33) by
tracing over the freedom of the coins as

Px(n) =

 n
n+ x

2

 ρ
n+x

2
1,1 ρ

n−x
2

−1,−1, (34)

where the corresponding transition probabilities ρ1,1 and
ρ−1,−1 are given in Eq. (29). The walker’s position dis-
tribution by Eq. (34) for QRW is a binomial distribution
with the probabilities ρ1,1, ρ−1,−1, the same as the distri-
bution of a directional CRW. In QRW, the walker flips
different coins at different steps, hence each step is inde-
pendent. While in QW, the position distribution is shown
to be non-binomial distribution, which strongly depends
on the initial coin state [5]. The non-binomial distribution
comes from the strong correlation between different steps,
which will be specifically discussed in Section 4. To briefly
show the similarities and differences between CRW, QW
and QRW, we illustrate their typical characteristics in Ta-
ble 1.

In order to understand the origin of the bias in QRW,
we need to figure out what determines the transition prob-
abilities ρ1,1 and ρ−1,−1. For the coin operator chosen as
the Hadamard matrix

C̃l =
1√
2

(
1 1
1 −1

)
, (35)

the transition probabilities follow as ρ1,1 = 1/2+Reη, and
ρ−1,−1 = 1/2−Reη. Therefore, after n steps, the position
distribution of the walker is given by Eq. (34) as

Px(n) =

 n
n+ x

2

(1

2
+ Reη

)n+x
2
(
1

2
− Reη

)n−x
2

,

(36)

21602-4 Jin-Fu Chen, Yu-Han Ma, and Chang-Pu Sun, Front. Phys. 15(2), 21602 (2020)



Research article

Table 1 The relation between classical random walk (CRW),
quantum walk (QW) and quantum random walk (QRW) de-
fined in this paper. The explicit position distribution of the
walker in CRW and QRW is given by Eqs. (13) and (36) re-
spectively. The variance of the position

⟨
∆x2

⟩
is proportional

to the step number n for QRW by Eq. (38), and n2 for QW [6].
The non-binomial distribution of QW is shown by the green
curve with squares in Fig. 1. Detailed discussion about the
correlation between different steps is demonstrated in Section
4.

which indicates that the bias is only determined by the
real part of the non-diagonal term. When the real part of
the non-diagonal term in the coin’s density matrix is zero,
i.e., Reη = 0, the result returns back to CRW without
bias.

As a comparison, we demonstrate the position distri-
bution of QRW, QW and CRW in Fig. 1. The total step
number is n = 100, and we only plot the probability at
the even lattice since the probability at the odd lattice is
zero. In Fig. 1(a), we consider an initially decoherenced
coin state with p

(0)
1 = p

(0)
−1 = 0.5, η = 0. The position dis-

tribution of QRW (red curve with circles) returns to the
one of CRW (black dashed line) while the position distri-
bution of QW is non-binomial (green curve with squares).
In Fig. 1(b), we choose the initial state with coherence
by setting p

(0)
1 = p

(0)
−1 = 0.5, η = 0.1. The positive non-

diagonal term of the density matrix results in the right-
hand movement for the QRW, namely, the coherence of
the coin induces the asymmetry in the corresponding po-
sition distribution.

With the position distribution given by Eq. (36), we
obtain the expectation and the variance of the walker’s
position after n steps, according to Eqs. (14) and (15), as

⟨x⟩ = 2nReη, (37)

and⟨
∆x2

⟩
= n

[
1− (2Reη)2

]
, (38)

respectively. The above two relations of Eqs. (37) and (38)
are the main results of this paper, which show that the
coherence in the initial coin state results in the directional
moving of the walker.

Fig. 1 The walker’s position distribution Px(n) as the func-
tion of position x for quantum random walk (QRW, red curve
with circles), quantum walk (QW, green curve with squares),
classical random walk (CRW, black dashed line). The total
step number is chosen as n = 100, and we only plot the
probability at the even lattice since the probability at the
odd lattice is zero. The classical random walk is given as a
symmetric binomial distribution, which follows from Eq. (13)
with p

(0)
1 = p

(0)
−1 = 0.5. (a) The coin initial state is chosen

as p
(0)
1 = p

(0)
−1 = 0.5, η = 0. The walker’s position distribu-

tion of the quantum random walk returns to the one of the
classical random walk. (b) The coin’s initial state is chosen
as p

(0)
1 = p

(0)
−1 = 0.5, η = 0.1. The initial coherence of the

coin leads to asymmetric binomial distribution for the quan-
tum random walk.

4 The correlation in quantum walk

In Sections 2 and 3, we have discussed the position distri-
bution in CRW and QRW, and demonstrated that no cor-
relation exists in CRW and QRW between different steps.
In this section, we will show that the correlation indeed
exists between different steps in QW, which is qualified
through the covariance of the coin state between the ini-
tial time and final time.

In QW, the walker has only one coin, and the one-step
evolution is described by Eq. (3) with the same transi-
tion process as in CRW. Different from CRW, the flip-
ping process in QW is substituted by a unitary evolution
C (ρ) = CρC† with the Hadamard matrix

C =
1√
2

(
1 1

1 −1

)
(39)
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operating on the coin state.
The density matrix of the walker and coin after n steps

follows from Eq. (3) as

ρ(n) = (TC)nρ(0)(TC)†n. (40)

The transition operator T is defined in Eq. (9), and the
initial state ρ(0) is given as Eq. (2). To describe the coin’s
distribution after n steps, we perform a measurement of
the Pauli operator σz on the coin, as σz |±1⟩c = ± |±1⟩c.

The expectation of σz after n steps is

⟨σz(n)⟩ = Tr [σzρc(n)] , (41)

where ρc(n) is the reduced density matrix of the coin after
n steps.

To figure out the correlation between the initial time
and final time, we perform a joint measurement of σz
at the initial time. and after n steps, the expectation
⟨σz(n)σz(0)⟩ follows

⟨σz(n)σz(0)⟩ =
∑

ν1,ν2=±1

ν1ν2Tr
[
Eν2

U(n)Eν1
ρ(0)Eν1

U†(n)Eν2

]
, (42)

where ν1(ν2) gives the measurement result at the initial
time (after n steps), and Eνα

= |να⟩c ⟨να| , α = 1, 2 is the
projection operator. Note that the non-diagonal term of
ρ(0) vanishes in the initial measurement, i.e.,

Eν1
ρ(0)Eν1

= |0⟩w ⟨0| ⊗ p(0)ν1
|ν1⟩c ⟨ν1| . (43)

Hence, we only need to consider for the diagonal initial
state without coherence. The correlation in the coin is
described by the covariance

⟨∆[σz(n)σz(0)]⟩ = ⟨σz(n)σz(0)⟩ − ⟨σz(n)⟩ ⟨σz(0)⟩ , (44)

which is obtained explicitly as (detailed derivation in Ap-
pendix A)

⟨∆[σz(n)σz(0)]⟩ =

[
1−

√
2

2
+
(−1)

n

2π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk
]

×
[
1−

(
p
(0)
1 − p

(0)
−1

)2]
, (45)

with ωk = arcsin
(
sin k/

√
2
)
. In the large n limit (n →

∞), the integral in Eq. (45) diminishes due to the highly
oscillated term cos (2ωkn), so that the covariance ap-
proaches a constant

lim
n→∞

⟨∆[σz(n)σz(0)]⟩ =

(
1−

√
2

2

)[
1−
(
p
(0)
1 −p(0)−1

)2]
.

(46)

The non-zero covariance suggests that the correlation is
generated through the flipping process, where the final
coin state is correlated to the initial coin state.

In Fig. 2, we illustrate the covariance ⟨∆[σz(n)σz(0)]⟩
of QW, QRW, and CRW, where the initial coin is chosen
as the maximally mixed state with p

(0)
1 = p

(0)
−1 = 0.5. It

is clearly seen in Fig. 2 that the covariance of QW (green
curve), given by Eq. (45), oscillates with the increasing of
n, and gradually converges to a non-zero constant 1−1/

√
2

(horizontal red dotted line), which is consistent with the
analytical result of Eq. (46).

The non-zero covariance implies the coin state after n
steps is correlated to the initial coin state, as shown in
Table 1, which implies that the coin will remember its ini-
tial state for no matter how many steps the walker moves.
The covariance of CRW and QRW is both zero (horizon-
tal black dashed line). In CRW, we have ⟨σz(n)σz(0)⟩ =
⟨σz(n)⟩ ⟨σz(0)⟩ which leads the corresponding covariance
to be zero, and indicates the flipping process at each step
is independent. In QRW, the flipping process for differ-
ent coins at different steps is independent, and thus the
covariance of QRW

⟨
∆
[
σn
z (n)σ

1
z(0)

]⟩
=
⟨
σn
z (n)σ

1
z(0)

⟩
−

⟨σn
z (n)⟩

⟨
σ1
z(0)

⟩
is also zero, where σ1

z(0) measures the
state for the first coin before walking, and σn

z (n) mea-
sures the state of the n-th coin after n steps. There-
fore, we state that no correlation exists between different
steps in CRW and QRW, while strong correlation exists in
QW.

Fig. 2 (a) The covariance ⟨∆[σz(n)σz(0)]⟩ varies with dif-
ferent steps. The initial coin density matrix is chosen as the
maximal mixed state, and the coin operator is chosen as the
Hadamard matrix. The green curve gives the covariance for
quantum walk by Eq. (45), while the horizontal black dashed
line gives the covariance for classical random walk and quan-
tum random walk. The horizontal red dotted line shows the
covariance approaches to the constant 1 −

√
2/2, as predicted

by Eq. (46) at large n limit.
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5 Quantum random walk in 2D lattice

With the theoretical framework of one-dimensional QRW
established in Section 3, it is convenient for us to discuss
QRW in two-dimensional lattice. Interestingly, unlike the
1D QRW, in the 2D case, the influence of the coherence
in the coin’s initial state on the position distribution of
the walker is more complicated, as demonstrated in this
section.

For QRW in 2D lattice, the Hilbert space of the
walker is expanded as {|r⟩w |r = (x, y) , x, y ∈ Z}. And
the Hilbert for each coin space is four dimension
{|u⟩1 |u = R,L,U ,D }, to determine the walker moves
right R = (1, 0), left L = (−1, 0), up U = (0, 1), and down
D = (0,−1) correspondingly. We still consider the walker
initially stays at the origin of the coordinates |(0, 0)⟩w,
and has many coins prepared in the same initial state. In
this situation, the initial density matrix for the walker and
the coins follows

ρ(0) = |(0, 0)⟩w ⟨(0, 0)| ⊗
n⊗

l=1

ρl,c, (47)

where ρl,c is the density matrix of the l-th coin, and can
be represented by a general non-negative 4 × 4 Hermite
matrix as

ρk,c =


q1 η12 η13 η14

η21 q2 η23 η24

η31 η32 q3 η34

η41 η42 η43 q4

 , (48)

The flipping process and the transition process are the
same as that described by Eq. (25) and Eq. (19). The coin
operator Cl is also given by Eq. (26), where C̃l can be
chosen as a general U(4) matrix. We consider the Grover
coin acting on the l-th coin [9, 35], i.e.,

C̃l =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 . (49)

Analogous to Eq. (20) in the 1D case, the position of the
walker changes according to the state of the l-th coin |u⟩l
with u = R,L,U,D. So that, the transition operator for
the 2D case reads

Tl =
∑
u

∑
r

|r + u⟩w ⟨r| ⊗ |u⟩l ⟨u| ⊗
n⊗

j≠l

Ij , (50)

Similar to the 1D QRW, the position distribution is unique
determined by the diagonal elements for the flipped coin
ρ̃l,c = Cl (ρl,c), as noted by ρuu = ⟨u| ρ̃l,c |u⟩l. The prob-
abilities {ρuu} can be further expressed as


ρRR

ρLL

ρUU

ρDD

 =
1

4


1 −2 −2 −2

1 −2 2 2

1 2 −2 2

1 2 2 −2




1

ζ1

ζ2

ζ3

 (51)

with

ζ1 = Re (η12)− Re (η34) , (52)
ζ2 = Re (η13)− Re (η24) , (53)
ζ3 = Re (η14)− Re (η23) . (54)

Here, {ζi|i = 1, 2, 3} is named the effective coherence, and
is determined by the difference of the real part of the non-
diagonal terms for the coin density matrix in Eq. (48).

In this case, the final position distribution of the walker
follows (see Appendix B for detailed derivation)

P(x,y)(n) =
∑
j

Υj (x, y, n) ρ
j+x
2

RR ρ
j−x
2

LL ρ
n−j+y

2

UU ρ
n−j−y

2

DD ,

(55)

where

Υj (x, y, n) =

(
n
j

) j

l + x

2

 n− j

n− l + y

2

 . (56)

This is a quadrinomial distribution. Note that the sum-
mation here has a restriction on l, that is, l + x and
n− l+y must be even. For those points (x, y) not satisfied
this restriction, the probability is zero. The non-negative
condition for the density matrix requires that ρuu are all
non-negative. Thus, there exists a limitation for the non-
diagonal terms or the effective coherence {ζi}. The allowed
values for {ζi} is limited in a regular tetrahedron, as illus-
trated in Fig. 3.

Fig. 3 The limitation on ζi, where the space is expanded by
ζ1, ζ2, and ζ3. The allowed region for {ζi} is surrounded by
the orange regular tetrahedrons obtained from the inequalities
ρRR ≥ 0, ρLL ≥ 0, ρUU ≥ 0, ρDD ≥ 0 with Eq. (51).
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For ζi = 0, i = 1, 2, 3, the position distribution of
the walker for QRW in 2D lattice is symmetric with
ρuu = 0.25, u = R,L,U,D, as shown in Figs. 4(a) and
(b). We also illustrate the walker’s position distribution
with different {ηij} in Fig. 4, where the various patterns
show the diverse behaviors of the QRW in 2D lattice. In
the simulation, the total step number is set as n = 40, the
diagonal terms in the coin’s initial density matrix are cho-
sen as q1 = q2 = q3 = q4 = 0.25, the non-diagonal terms
ηij are set as different values in the eight sub-figures.

Then we focus on the expectation and the variance
of the walker’s position. Since each step is independent
for the quadrinomial distribution, the expectation of the
walker’s position follows from Eq. (55) as (detailed deriva-
tion in Appendix B)

⟨r⟩ = n(−ζ2 − ζ3,−ζ2 + ζ3), (57)

The variances of the walker’s position along the x and y
direction are⟨

∆x2
⟩
= n

[
1

2
− ζ1 − (ζ2 + ζ3)

2

]
, (58)

⟨
∆y2

⟩
= n

[
1

2
+ ζ1 − (ζ2 − ζ3)

2

]
, (59)

respectively. The total variance for r is⟨
∆r2

⟩
= n

(
1− 2ζ22 − 2ζ23

)
. (60)

These relations are checked by the exact numerical results
illustrated in Fig. 4. Eq. (57) shows that only ζ2 and ζ3
determine the orientation at x or y, while ζ1 does not. Ac-
cording to Eq. (51), px = pLL + pRR = 1/2−ζ1, namely,
ζ1 only determines the probability that the walker moves
along x or y direction. Different from 1D case, where the
non-zero η leads to the orientation of the walker, in 2D
case, the effect of the coherence might cancel with each
other for some suitable ηij leading to zero effective coher-
ence ζi = 0, as shown in Eqs. (52)–(54). This prediction
is verified with the numerical example shown in Fig. 4(b),
where the walker’s position follows symmetric distribution
with non-zero ηij . The above discovery reveals a fascinat-
ing feature of QRW in 2D lattice: even the coherence ex-
ists in the coin’s initial state, the walker may not perform
directional walking.

Fig. 4 The walker’s position distribution P(x,y)(n) as the function of space location in quantum random walk in 2D lattice.
Here, the total step number is set as n = 40, and the diagonal terms in the coin’s initial density matrix are chosen as
q1 = q2 = q3 = q4 = 0.25. The subfigures are divided into four groups, {(a),(b)}, {(c),(d)}, {(e),(f)}, and {(g),(h)}. In each
group, the two sub-figures share the same plot-bar. (a) All ηij are equal to zero (ζ1 = ζ2 = ζ3 = 0). (b) All ηij = 0.25, and
the effect coherence diminishes (ζ1 = ζ2 = ζ3 = 0). (c) Only η12 = η21 = −η34 = −η43 = −0.25, the other ηij are equal to zero
(ζ1 = −0.5, ζ2 = ζ3 = 0). (d) η12 = η21 = −η34 = −η43 = 0.25, the other ηij are equal to zero (ζ1 = 0.5, ζ2 = ζ3 = 0). (e)
η12 = η21 = −η34 = −η43 = −0.2, the other ηij are equal to zero (ζ1 = −0.4, ζ2 = ζ3 = 0). (f) η12 = η21 = −η34 = −η43 = 0.2,
the other ηij are equal to zero (ζ1 = 0.4, ζ2 = ζ3 = 0). (g) η14 = η41 = −η23 = −η32 = −0.1, the other ηij are equal to
zero (ζ3 = −0.2, ζ1 = ζ2 = 0). (h) η12 = η21 = −η34 = −η43 = −0.1, and η23 = η32 = 0.2, the other ηij are equal to zero
(ζ1 = −0.2, ζ2 = 0, ζ3 = −0.2). The expectation and variance of the walker’s position shown in these sub-figures are consistent
with the theoretical predictions given by Eqs. (57)–(59).
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For the probabilities ρUU = ρDD = 0 (ρLL = ρRR = 0),
the walker moves only along the x (y) direction, in which
situation the coherence satisfies ζ1 = −1/2, ζ2 = ζ3 (ζ1 =
1/2, ζ2 = −ζ3). The orientation is then only determined by
the effective coherence ζ3, and thus the QRW in 2D lattice
in this case returns to the 1D QRW, as demonstrated in
Fig. 4(c) [Fig. 4(d)].

6 Conclusion and discussion

In this paper, we extend classical random walk (CRW)
to quantum random walk (QRW) via the ensemble inter-
pretation, and clarify the relation between CRW, QRW,
and QW (see Table 1). QRW is the quantum extension
of CRW from the ensemble interpretation, while QW
is the quantum extension of CRW from the single-coin
interpretation.

Observed the difference of the position distribution for
CRW/QRW (binomial) and QW (non-binomial), we in-
terpret the different position distribution from the corre-
lation aspect. In CRW, the flipping process in each step is
independent, and thus no correlation exists between dif-
ferent steps. In QRW, the walker flips different coins at
different steps. Still no correlation exists, and we retain
the binomial distribution. In QW, the sequential unitary
evolution engenders strong correlation between different
steps. To qualify the correlation between different steps,
we calculate the covariance between the initial coin state
and final coin state in those walks. The result shows that
the covariance is non-zero for QW while zero for CRW/
QRW.

It is found that in QRW the walker performs directional
walking once the coherence exists in the coin’s initial state.
We further prove that, in such case, the stronger the co-
herence is, the more obvious the directional movement is,
and the smaller the fluctuation of the walker’s position
distribution is. Besides, QRW in 2D lattice is also stud-
ied, where the influence of coin state’s coherence on the
walker’s position distribution is found to be more com-
plicated (than that in the 1D case). Different from the
one-dimensional case, even if there exists coherence in the
coin’s initial state, the walker may not perform directional
walking. This is because, under some special conditions,
the influence of different non-diagonal terms in the coin’s
density matrix on the position distribution of the walker
may cancel each other out.

Generally, the main difference of QRW and QW can
be understood by the following statement. In QRW, the
quantum property refers to the initial coherence of the
coin state, which results in a directional walk for the
walker. While in QW, the sequential unitary operation
on the single coin engenders strong correlation between
different steps. This strong correlation results in the non-
binomial distribution for the walker’s position.
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Appendix A The covariance for quantum
walk

In this section, we derive the coin’s reduced density matrix
and the covariance for QW [7]. We assume the total system
is initially prepared in a pure state

|ψ±(0)⟩ = |0⟩w ⊗ |±1⟩c , (A1)

where |±1⟩c describes the initial coin state as |1⟩c =(
1 0

)T, and |−1⟩c =
(
0 1

)T. The state after n steps
follows

|ψ±(n)⟩ = (TC)n |ψ±(0)⟩ , (A2)

where T and C is given by Eq. (9) and Eq. (39), respec-
tively. To obtain the reduced density matrix of the coin
after n steps, we first represent the initial state in the
momentum space as

|ψ±(0)⟩ =
1√
2π

∫ π

−π

dk |k⟩ ⊗ |±1⟩c , (A3)

where

|k⟩ = 1√
2π

∞∑
x=−∞

eikx |x⟩w . (A4)

In the momentum space, the transition operator of Eq. (9)
is rewritten as

T = e−ik ⊗ |1⟩c ⟨1|+ eik ⊗ |−1⟩c ⟨−1| , (A5)

and the evolution operator of one step follows

TC =
1√
2

(
e−ik e−ik

eik −eik

)
. (A6)

Combining Eqs. (A2), (A3), and (A6), we obtain the state
after n steps

|ψ±(n)⟩ =
1√
2π

∫
dk |k⟩ ⊗

α
(±)
k (n)

β
(±)
k (n)

 , (A7)
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where

α
(+)
k (n) =

1

2

κ(+)
k (n) +

cos k√
1+(cos k)2

κ
(−)
k (n)

 , (A8)

α
(−)
k (n) =

e−ik

2

√
1 + (cos k)2

κ
(−)
k (n), (A9)

β
(+)
k (n) =

eik

2

√
1 + (cos k)2

κ
(−)
k (n), (A10)

β
(−)
k (n) =

1

2

κ(+)
k (n)− cos k√

1+(cos k)2
κ
(−)
k (n)

 , (A11)

and

κ
(±)
k (n) = e−inωk ± (−1)

n einωk , (A12)

with ωk = arcsin
(
sin k/

√
2
)
. Then, the reduced density

matrix of the coin after n steps can be obtained by tracing
over the freedom of the walker as

ρ(±)
c (n) = Trw (|ψ±(n)⟩ ⟨ψ±(n)|)

=

 ρ
(±)
1,1 (n) ρ

(±)
1,−1(n)

ρ
(±)
−1,1(n) ρ

(±)
−1,−1(n)

 , (A13)

which is further written as

ρ(±)
c (n) =


1

2π

∫ π

−π

∣∣∣α(±)
k (n)

∣∣∣2 dk 1

2π

∫ π

−π

α
(±)
k (n)

(
β
(±)
k (n)

)∗
dk

1

2π

∫ π

−π

β
(±)
k (n)

(
α
(±)
k (n)

)∗
dk 1− 1

2π

∫ π

−π

∣∣∣α(±)
k (n)

∣∣∣2 dk

 . (A14)

Combining Eqs. (A8–A12), we obtain the explicit result for the elements of the reduced matrix as

ρ
(+)
1,1 (n) = 1−

√
2

4
+

(−1)
n

4π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk, (A15)

ρ
(+)
1,−1(n) =

2−
√
2

4
+

(−1)
n

4π

∫ π

−π

e−ik

 i sin(2ωkn)√
1 + (cos k)2

− cos k cos (2ωkn)

1 + (cos k)2

dk, (A16)

ρ
(+)
−1,1(n) =

2−
√
2

4
+

(−1)
n

4π

∫ π

−π

eik

 −i sin(2ωkn)√
1 + (cos k)2

− cos k cos (2ωkn)

1 + (cos k)2

dk, (A17)

ρ
(+)
−1,−1(n) =

√
2

4
− (−1)

n

4π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk, (A18)

and

ρ
(−)
1,1 (n) =

√
2

4
− (−1)

n

4π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk, (A19)

ρ
(−)
1,−1(n) = −2−

√
2

4
+

(−1)
n

4π

∫ π

−π

e−ik

− i sin(2nωk)√
1 + (cos k)2

+
cos k cos (2ωkn)

1 + (cos k)2

dk, (A20)

ρ
(−)
−1,1(n) = −2−

√
2

4
+

(−1)
n

4π

∫ π

−π

eik

 i sin(2nωk)√
1 + (cos k)2

+
cos k cos (2ωkn)

1 + (cos k)2

dk, (A21)

ρ
(−)
−1,−1(n) = 1−

√
2

4
+

(−1)
n

4π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk. (A22)

Then, the expectation by Eq. (42) is obtained from the reduced density matrix as

⟨σz(n)σz(0)⟩ = p1ρ
(+)
1,1 (n) + p−1ρ

(−)
−1,−1(n)− p1ρ

(+)
−1,−1(n)− p−1ρ

(−)
1,1 (n), (A23)
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which is explicitly written as

⟨σz(n)σz(0)⟩ = 1−
√
2

2
+

(−1)
n

2π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk. (A24)

The expectations for σz at the initial time and after n steps are ⟨σz(0)⟩ = p1 − p−1 and

⟨σz(n)⟩ = (p1 − p−1)

[
1−

√
2

2
+

(−1)
n

2π

∫ π

−π

cos (2ωkn)

1 + (cos k)2
dk
]
, (A25)

respectively. Therefore we obtain the covariance of
Eq. (45) in the main text. Specially, in the large n limit,
the integral in Eqs. (A15–A22) diminishes due to the
highly oscillated term cos (2ωkn) or sin (2ωkn). Therefore,
the reduced density matrix of the coin approaches to a
constant as

lim
n→∞

ρ(+)
c (n) =

1

4

(
4−

√
2 2−

√
2

2−
√
2

√
2

)
,

lim
n→∞

ρ(−)
c (n) =

1

4

( √
2 −2 +

√
2

−2 +
√
2 4−

√
2

)
. (A26)

This indicates that ⟨σz(n)σz(0)⟩ of Eq. (A23) is a constant
in the large n limit, which explain why the covariance
converges to a constant for n→ ∞, as shown by Eq. (46)
in the main text.

To convince that the variance approaches to the con-
stant 1 −

√
2/2 at long time limit, we show the absolute

difference
∣∣⟨∆[σz(n)σz(0)]⟩ − 1 +

√
2/2
∣∣ in Fig. A1. The

green line clearly shows that the absolute difference ap-
proaches to zero for long time limit with large n. By fit-
ting the exact result of the absolute difference, we obtain
the asymptotic result (the red dotted line)∣∣∣⟨∆[σz(n)σz(0)]⟩ − 1 +

√
2/2
∣∣∣ ≈ 2

5
√
n
, (A27)

which matches well for large n.

Fig. A1 The log-log plot of the absolute difference of the
covariance ⟨∆[σz(n)σz(0)]⟩ and the constant 1 −

√
2/2. The

red dotted line clearly shows the absolute difference diminishes
inverse proportional to

√
n for large n.

Appendix B Quantum random walk in 2D
lattice

In this section, we give the detailed derivation of the
walker’s position distribution and the corresponding ex-
pectation and variance for QRW in 2D lattice. Similar to
Eq. (33), by acting all the coin operator first, we obtain
the density matrix after n step as

ρ(n) =
∑

{ul,vl}

|
n∑

l=1

ul⟩w⟨
n∑

l=1

vl| ⊗
n⊗

l=1

ρulvl
|ul⟩l ⟨vl| ,

(B1)

where ul(vl)∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} determines
the corresponding direction R,L,U,D. Tracing over the
coin Hilbert space, we obtain the probability of a given
path {ul|, l = 1, 2, . . . , n} as P{ul} =

∏n
l=1 ρulul

. The prob-
ability for the walker arriving at the position (x, y) after
n steps is calculated with the limitation on the path

P(x,y)(n) =
∑

{ul}:
∑

l ul=(x,y)

n∏
l=1

ρulul
. (B2)

If the direction ul = (1, 0), (−1, 0), (0, 1), and (0,−1) is
chosen for j, l− j, m, and n− l−m times respectively, the
final position of the walker is (2j − l, 2m − n + l). The
probability for this event is quadrinomial distributed as

P[j,l−j,m,n−l−m](n)

=

(
n
l

)(
l
j

)(
n− l
m

)
ρjRRρ

l−j
LL ρ

m
UUρ

n−l−m
DD . (B3)

The product of the combination number n!/[j!(l −
j)!m!(n− l −m)!] gives the number to divide n into four
group as j, l−j, m, and n− l−m. By setting the final po-
sition of the walker as (2j− l, 2m−n+ l) = (x, y), we can
re-express j and m as j = (x+ l)/2 and m = (y+n− l)/2
respectively. Here j and m need to be positive integers,
which requires the same parity for the x and y + n. Then
one can obtain the walker’s position distribution of QRW
in 2D lattice as given by Eq. (55). The summation comes
from the multiple choice of l leading to the same position
(x, y).
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Next, we derive the expected position given in Eq. (57)
and the variance of the position given in Eq. (60). For
the quadrinomial distribution, we can divide the final po-
sition shift into each step for the independence of each
step, and this results in a classical probability for a sum-
mation of independent random variable R(n) =

∑n
l=1 Rl.

Here, Rl = (Xl, Yl) is a two-component random variable
which follows the independent identical distribution and
takes the value (1, 0), (−1, 0), (0, 1), and (0,−1) with the
probability ρRR, ρLL, ρUU , and ρDD respectively. Then,
the expectation for Rl is calculated as

⟨Rl⟩ = ρRR(1, 0) + ρLL(−1, 0) + ρUU (0, 1) + ρDD(0,−1)

= (ρRR − ρLL, ρUU − ρDD), (B4)

and the variances for the components Xl and Yl are ob-
tained as⟨

∆X2
l

⟩
= ρRR + ρLL − (ρRR − ρLL)

2,⟨
∆Y 2

l

⟩
= ρUU + ρDD − (ρUU − ρDD)2. (B5)

respectively. Thus, the variance for Rl follows as⟨
∆R2

l

⟩
=
⟨
∆X2

l

⟩
+
⟨
∆Y 2

l

⟩
= 1− (ρRR − ρLL)

2 − (ρUU − ρDD)2. (B6)

These results can be further simplified, with the help of
Eq. (51), as

⟨
∆X2

l

⟩
=

1

2
−ζ1−(ζ2+ζ3)

2,
⟨
∆Y 2

l

⟩
=

1

2
+ζ1−(ζ2−ζ3)2,

(B7)

and

⟨Rl⟩ = (−ζ2−ζ3,−ζ2+ζ3),
⟨
∆R2

l

⟩
= 1−2ζ22−2ζ23 . (B8)

The expectation and variance for the walker’s position af-
ter n steps are thus ⟨r⟩ = n ⟨Rl⟩ ,

⟨
∆x2

⟩
= n

⟨
∆X2

l

⟩
,⟨

∆y2
⟩
= n

⟨
∆Y 2

l

⟩
and

⟨
∆r2

⟩
= n

⟨
∆R2

l

⟩
, which are given

explicitly as Eqs. (57) and (60) in the main text.
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