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Abstract The objectivity is a basic requirement for the measurements in the classi-
cal world, namely, different observers must reach a consensus on their measurement
results, so that they believe that the object exists “objectively” since whoever measures
it obtains the same result. We find that this simple requirement of objectivity indeed
imposes an important constraint upon quantum measurements, i.e., if two or more
observers could reach a consensus on their quantum measurement results, their mea-
surement basis must be orthogonal vector sets. This naturally explains why quantum
measurements are based on orthogonal vector basis, which is proposed as one of the
axioms in textbooks of quantum mechanics. The role of the macroscopicality of the
observers in an objective measurement is discussed, which supports the belief that
macroscopicality is a characteristic of classicality.

Keywords Quantum measurement · Many-world interpretation · Objectivity

1 Introduction

In the classical world, the objectivity is a basic requirement for measurements, that
is, the different observers measuring the same object must reach a consensus on their
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results, so that they can be convinced that the object exists “objectively” since whoever
measures it obtains the same result independent of the observers.

But in the Copenhagen version of quantum mechanics interpretation (QMI), this
objectivity is not guaranteed since the measurement by an observer could cause a
dramatical and stochastic change in the quantum state, namely, the “wave-function
collapse” (WFC), and theWFC is inevitable in the Copenhagen interpretation, because
the measuring apparatus (or observer) is treated as a purely classical term [1].

In the Copenhagen version of QMI, the classical apparatus is indispensable in the
constitution of quantum theory as it should be, but at the same time it is not governed by
quantum law. From the logical point of view, this is clearly unsatisfactory [2–6]. To get
rid of this inconsistent point in the quantum theory, various “built-in” interpretations
have been proposed without postulating the pure classicality of measuring apparatus,
which leads to the WFC. The decoherence approach [1,7–10], the consistent history
theory [11,12], and the many-worlds interpretation (MWI) [13,14] are well known
representatives of these tentative solutions. Besides, there are more drastic solutions:
Bohm’s hidden variable approach [15,16], ’t Hooft’s deterministic and dissipative the-
ory [17–20], and Adler’s trace dynamics theory [21,22], in which quantummechanics
is interpreted as an effective theory emerging from some underlying structure.

The objectivity in quantum measurements has been discussed in the studies of
quantum Darwinism [10,23–27]. In the theory of quantum Darwinism, it is noticed
that environments consist of many subsystems, and observers acquire information
about a system by intercepting copies of its pointer states deposited in fragments of
the environment. In this sense, the objectivity of quantum measurements naturally
emerges. The number of copies of the data in the environment about pointer states is
the measure of objectivity.

In this paper, we ask a question: if we require a quantum measurement be “objec-
tive”, what constraint would be imposed by this requirement of objectivity?

Here we should first describe the “objective quantum measurement” with mathe-
matical clarity. We understand the quantum measurement as the establishment of the
one-to-one correlation between the system S and the observer D, and this is encoded
in the joint density matrix ρSD . The objectivity requires, (1) the correlation between
the system and any observer must be the same; (2) The correlation between any two
observers should be the same as that between the observer and the system.

These two conditions summarize the key requirement of the objectivity, namely,
all the observers could obtain the same measurement result and verify their result
with each other [6]. With this definition, we can treat the objectivity of quantum
measurement by comparing the bipartite reductions (ρSD , ρSD′ and ρDD′ ) of the
total density matrix ρSDD′ . It turns out that, to satisfy the above simple objectivity
conditions, any correlations obtained in the quantum measurement must be based on
orthogonal vector basis. Moreover, two observers are enough to ensure this constraint.

It has been accepted as a basic axiom in quantummechanics that the stateswe obtain
after quantum measurements are orthogonal ones. Here our study shows this could
be a natural constraint imposed by the objectivity requirement. If some observation is
not based on orthogonal basis, its objective existence cannot be confirmed.

In Refs. [23,25], it was noticed that, by considering a faithful information transfer
in the idealistic pre-measurement, namely, |u〉|A0〉 → |u〉|Au〉, |v〉|A0〉 → |v〉|Av〉,
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automatically the unitarity of the evolution guarantees that only orthogonal basis of
the system (〈u|v〉 = 0) can be well distinguished in quantum measurements. In our
study, the process how the correlations (SD, SD′ or DD′) are established is not
concerned. By checking whether the correlations in the total density matrix ρSDD′
satisfy the objectivity conditions, the orthogonality of the measurement basis is also
obtained directly.Moreover, for not only the system S but also the observers D/D′, the
measurement basis must be orthogonal basis. Namely, once the measurement result of
a quantum system is objectively obtained, it must have been measured in orthogonal
basis, and the measurement devices also must be working in orthogonal basis.

2 Quantum Measurements with Two or More Observers

In theQMIbased ondecoherence, a quantummeasurement or observation is completed
in two steps:

Step 1, the pre-measurement. A non-demolition coupling of the system S to the
apparatus (observer) D is established and unitarily leads to a quantum entanglement
between S and D.

Step 2, the decoherence. The environment E surrounding S selects the preferred
basis {|sn〉}, and a classical correlation is created from the quantum entanglement
developed in the pre-measurement [8,28,29].

Suppose that a system S initially prepared in a pure state is to be measured. The
states of D and E are denote by |dn〉 and |En〉 respectively. Then in the abovementioned
Step 1 of the quantum measurement (pre-measurement), the total system (universe)
S + D + E will evolve into a partially entangled state

|Φ1〉 =
[∑

n

cn|sn〉 ⊗ |dn〉
]

⊗ |E〉, (1)

from an initial product state |Φ0〉 = |ψS(0)〉 ⊗ |d〉 ⊗ |E〉. Here, |dn〉 = Un(D)|d〉 is
a state of D correlated to the system state |sn〉 and Un(D) is the S-state dependent
evolution matrix. In Step 2, the environment will become entangled with the system
so that the total system reaches a GHZ type state

|Φ2〉 =
∑
n

cn|sn〉 ⊗ |dn〉 ⊗ |En〉, (2)

where the environment states |En〉 = Un(E)|E〉 are orthogonal to one another, i.e.,
〈Em |En〉 = δmn . By tracing over the variables of E , one reaches then a correlation
between S and D represented by the reduced density matrix ρSD = trE |Ψ 〉〈Ψ |, that
is,

ρSD =
∑
n

|cn|2|sn,dn〉〈sn,dn|, (3)

where |sn,dn〉 = |sn〉 ⊗ |dn〉.
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The above is a sketchy description of the implementation of quantummeasurement
with the help of environment E . It is pointed out that one does not need to require the
orthogonality among the device states {|dn〉} to distinguish the system states {|sn〉}.
But an ideal quantum measurement will require the orthogonality among the device
states. We will return to this topic later.

It is noticed from Eq. (2) that when {|dn〉} and {|En〉} are both orthogonal vector
sets, from mathematical point of view, the distinction between the observer and the
environment is just nominal. Indeed, as far as the measurement of the system state
is concerned, here the state |Φ2〉 enjoys a symmetry with respect to the exchange
between |dn〉 and |En〉. Thus boundary between the observer and the environment is
not inherent in the current decoherence approach. It has been stressed by Zurek that
in the decoherence approach the environment has been recognized as a witness of the
measurement, it essentially plays the role of another measuring device or observer,
and a large environment with redundancy of degrees of freedom can be divided into
several portions, which could be regarded as observers [30].

It is thus not unnatural if we replace the environment with another observer and
consider a scheme of quantum measurement with two observers. In this scheme, the
total system ismade up of a system S and two observers D and D′. These two observers
can be also regarded as two fractions in the frame of quantum Darwinism. Let {|dn〉}
and {|d′

n〉} be two bases of the state spaces of D and D′ respectively. The quantum
measurement is then implemented through a tripartite decomposition

|Ψ 〉 =
∑
n

cn|sn〉 ⊗ |dn〉 ⊗ |d′
n〉. (4)

In this case, both the reduced density matrices ρSD = trD′ |Ψ 〉〈Ψ | and ρSD′ =
trD|Ψ 〉〈Ψ | characterize a correlation between the system S and an observer D/D′.
And ρDD′ = trS|Ψ 〉〈Ψ | gives the correlation between the two observers, whichmakes
it possible to compare their results. If |sn〉 are orthogonal states of S, the correlation

ρDD′ = trS|Ψ 〉〈Ψ | =
∑
n

|cn|2|dn,d′
n〉〈dn,d′

n| (5)

has a classical form. If |sn〉 are not orthogonal states of S, there will not be a perfect
classical correlation between the two observers as above. Instead, it reads

ρ̃DD′ = ρDD′ +
∑
m �=n

c∗
mcn|dn, d′

n〉〈dm, d′
m | · 〈sm |sn〉. (6)

Here the term ρ̃DD′ − ρDD′ will negatively influence the comparison between the
results of the two observers. This is a hint that non-orthogonal states can not be
distinguished objectively. This point will be made clear later after a definition of
measurement related objectivity is proposed mathematically.

We observe that partially tracing is omnipresent in the domain of quantum mea-
surement. Physically it should imply doing some average or coarse-graining by the
Born rule. With this remark we end this section.
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3 Objectivity of Quantum Measurement

Nowwe see that the quantummeasurement is understood as the establishment process
of the system-observer correlation, which is encoded in the bipartite density matri-
ces. With this consideration, we can discuss the objectivity requirement for quantum
measurements with mathematical clarity.

As wementioned before, the objectivity is a basic requirement for measurements in
the classical world. It at least has two basic requirements, i.e., the different observers
should obtain the same result, and they can check their result with each other. Since the
quantum measurement is understood as the establishing process of correlations, we
can verify whether this objectivity requirement is satisfied by checking the bipartite
density matrices ρSD , ρSD′ and ρDD′ . These three density matrices must have the
same form to guarantee they encode the same correlation.

Therefore, the above requirements can be summarized in to the following three
objectivity conditions:

ρSD =
∑
n

pn|sn, dn〉〈sn, dn|, (7a)

ρSD′ =
∑
n

pn|sn, d′
n〉〈sn, d′

n|, (7b)

ρDD′ =
∑
n

pn|dn, d′
n〉〈dn, d′

n|. (7c)

These three density matrices have the same form. The first two equations mean the
observers D and D′ establish the same correlation with the system S. The third equa-
tions means D and D′ compare their result and reach a consensus.

Notice that the correlations are established based on the basis {|sn〉}, {|dn〉} and
{|d′

n〉}, but here we do not require them to be orthogonal vector sets. Usually this
orthogonality of measurement basis is presumed as a basis principle in priori. Now,
through the following two propositions, we are going to show that the orthogonality
of the basis {|sn〉}, {|dn〉} and {|d′

n〉} is a natural result, if we require the quantum
measurement must satisfy the above three objectivity conditions (7a–7c).

Proposition 1 For a tripartite density matrix ρSDD′ , if its reduced matrices ρSD =
trD[ρSDD′ ] and ρSD′ = trD[ρSDD′ ] have the forms of

ρSD =
∑
n

pn|sn, dn〉〈sn, dn|, (8)

ρSD′ =
∑
n

pn|sn, d′
n〉〈sn, d′

n|, (9)

then there exists an orthonormal vector set {|Φi 〉}, such that the tripartite ρSDD′ can
be written as

ρSDD′ =
∑
i

λi |Φi 〉〈Φi |, λi > 0
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|Φi 〉 =
∑
n

C(i)
n |sn, dn, d′

n〉. (10)

Here {|sn〉}, {|dn〉} and {|d′
n〉} are complete basis sets for the Hilbert space HS, HD

and HD′ respectively, but not necessarily orthogonal ones.

We leave the proof in the appendix. Any density matrix like ρSDD′ can be diago-
nalized, but it is worth noticing that this proposition implies a strong constraint on the
eigen basis {|Φi 〉}, namely, they must have a GHZ-like form [Eq. (10)] (here {|sn〉},
{|dn〉}, {|d′

n〉} may not be orthogonal basis).
Indeed the conditions in the above Proposition1 can be replaced by any two of the

three objectivity conditions (7a–7c), and the conclusion is the same. If we consider
some more properties of quantum measurements, we will find that the constrained
form of ρSDD′ [Eq. (10)] imposed by Proposition1 can be further strengthened.

Aswementioned before, the quantummeasurement is understood as the correlation
establishing process by the unitary transformation. In the idealistic case, the initial state
of the observer D/D′ is prepared in a pure state. The initial state of the system S to be
measured is arbitrary, namely, it can be an either pure or mixed state. But the unitary
transformation to establish the pre-measurement should be the same for any initial
state of S in a specific quantum measurement process, ρt = Uρ0U †.

Therefore, for the same pre-measurement process, pure and mixed initial states
should have equal position in the constraint imposed by the objectivity requirement,
since indeed the observers have no way to tell the difference whether the initial
state is pure or mixed in this measurement process. Here we consider the initial
state of S is a pure state, the state ρSDD′ after pre-measurement should also be a
pure state, namely, the above Eq. (10) should be written as ρSDD′ = |Φ〉〈Φ|, and
|Φ〉 = ∑

n cn|sn, dn, d′
n〉.

With this in mind, now we are going to prove the following proposition:

Proposition 2 We consider that the state ρSDD′ after pre-measurement is prepared
from a pure initial state |ψS〉 ⊗ |d〉 ⊗ |d′〉 by a unitary transformation, in this case:
1. if the objectivity conditions (7a, 7b) hold, then {|dn〉} and {|d′

n〉}must be orthonor-
mal vector sets;

2. if all the three objectivity conditions (7a–7c) hold, then {|sn〉} must also be an
orthonormal vector set.

Proof As we discussed above, since ρSDD′ is prepared from a pure initial state by a
unitary transformation, it also must be a pure state. According to Proposition 1, it must
have the form of ρSDD′ = |Φ〉〈Φ|, and |Φ〉 = ∑

n cn|sn, dn, d′
n〉 (this summation

only encloses terms of cn �= 0). Thus, its reduced density matrices are

ρSD = trD′ |Φ〉〈Φ| =
∑
m,n

c∗
mcn〈d′

m |d′
n〉 · |sn,dn〉〈sm,dm |,

ρSD′ = trD|Φ〉〈Φ| =
∑
m,n

c∗
mcn〈dm |dn〉 · |sn,d′

n〉〈sm,d′
m |.
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Comparing these expressions with the objectivity conditions (7a, 7b) immediately
leads to the conclusion that c∗

mcn〈d′
m |d′

n〉 = c∗
mcn〈dm |dn〉 = 0 when m �= n. This

implies 〈dm |dn〉 = 〈d′
m |d′

n〉 = δmn , i.e., both {|dn〉} and {|d′
n〉} are orthonormal vector

sets, thanks to the fact that cn are nonzero complex numbers. The first part of the
proposition is thus proved, and the proof for the second part follows the same reason.

	


From Proposition 2 we see that if we require the two observers D/D′ could obtain
the same measurement result, namely, they establish the same correlation with the
system S [objectivity conditions (7a, 7b)], their measurement basis {|dn〉} and {|d′

n〉}
must be orthonormal vector sets. Further, if the two observers D/D′ could verify
that they obtain the same result by checking their own correlation ρDD′ [objectivity
condition (7c)], then the basis {|sn〉} of the system S, which is what they measured,
also must be an orthonormal set.

Therefore, all the basis {|sn〉}, {|dn〉} and {|d′
n〉} in the quantum measurement are

orthonormal set, and the state |Φ〉 is strictly a GHZ state. It is worth noticing that this
is a natural constraint imposed by the requirement of objectivity, and we no more need
to presume in priori as a basic principle that themeasurement basis must be orthogonal
sets. Once the measurement result of a quantum system is objectively obtained, it must
have been measured in orthogonal basis, and the measurement devices also must be
working in orthogonal basis. Otherwise, the objectivity of the quantum system cannot
be confirmed, namely, non-orthogonal basis cannot be objectively measured.

It should be clear that all the results in this section can be generalized to multi-
observer cases without difficulty. We would rather not go into the details.

4 Ideal Measurement from Macroscopicality: Central Spin Model

To achieve the above objective measurement, we need a unitary evolution satisfying
U

(|sn〉 ⊗ |d,d′〉) = |sn〉 ⊗ |dn,d′
n〉. This can be completed by a Hamiltonian of

the non-demolition type: [ĤS, ĤSD] = 0, [ĤS, ĤSD′ ] = 0 and [ĤSD, ĤSD′ ] = 0,
where ĤSD and ĤSD′ are the interaction between S and D/D′. And such a unitary
transformation could be achieved by a dedicate control of the interaction time.

Besides, there is another more natural way to realize this unitary transformation
by noticing that each macroscopic observer is usually composed of infinitely many
degrees of freedom, and the orthogonality 〈dm |dn〉 = 〈d′

m |d′
n〉 = δmn can be achieved

asymptotically in the thermodynamical limit.
Consider a composite system S+D(1) +D(2) +· · ·+D(N ), where S is meant to be

a quantum system to be measured and D(1), D(2), . . . , D(N ) stand for “elementary”
observers. Choose a non-demolition type Hamiltonian Ĥ, such that an correlated state
is prepared as

|Ψ 〉 =
∑
n

cn|sn〉
N⊗
i=1

|d(i)
n 〉. (11)
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Generally speaking, one cannot expect {|d( j)
n 〉} to be orthogonal vector sets without a

dedicate control of the interaction and the evolution time, and thus it is not easy to sat-
isfy the above objectivity requirement. But if we divide the N “elementary” observers
into two parts, i.e., by defining |Dn〉 := ⊗M

i=1 |d(i)
n 〉 and |D′

n〉 := ⊗N
i=M+1 |d(i)

n 〉, then
in the macroscopical limit M → ∞ and N → ∞ we could have

〈Dm |Dn〉 =
M∏
i=1

〈d(i)
m |d(i)

n 〉 → 0,

〈D′
m |D′

n〉 =
N∏

i=M+1

〈d(i)
m |d(i)

n 〉 → 0, (12)

for m �= n if only |〈d(i)
m |d(i)

n 〉| < 1 for m �= n, which are easy to sat-
isfy. This means that the “elementary” observers {D(1), D(2), . . . , D(M)} and
{D(M+1), D(M+2), . . . , D(N )} can be coarse-grained into two macroscopic observers
D and D′ effectively. This observation convinces us that macroscopicality may well
be regarded as a characteristic of a quantum observer.

To illustrate the above argument, let us present a concrete example [8,31,32]. In
this example, the quantum system S to be measured is a central spin with two states
|e〉 and |g〉, and the central spin is surrounded by another N spin- 12 particles, which
serve as the above mentioned “elementary” observers D(1) + D(2) + · · · + D(N ). The
Hamiltonian of the total system S + D(1) + D(2) + · · · + D(N ) reads

Ĥ = E |e〉〈e| +
N∑
i=1

(
ωi σ̂

z
i + gi σ̂

x
i

) + |e〉〈e| ·
[

N∑
i=1

ηi σ̂
z
i

]
, (13)

where σ̂ z
i = | ↑〉i 〈↑ |− | ↓〉i 〈↓ | and σ̂ x

i = | ↑〉i 〈↓ |+ | ↓〉i 〈↑ | are the Pauli matrices
for the i-th spin.

In the spirit of the preceding discussion, we coarse-grain the N “elementary”
observers into two macroscopic observers D and D′ which contains N1 and N2 spins
respectively (N1 + N2 = N ), namely, we take D = D(1) + D(2) + · · · + D(N1) and
D′ = D(N1+1) + D(N1+2) + · · · + D(N1+N2). For clarity, we rewrite the Hamiltonians
of the systems D and D′ as

ĤD =
N1∑
i=1

(
ω1,i σ̂

z
1,i + g1,i σ̂

x
1,i

)
,

ĤD′ =
N2∑
i=1

(
ω2, j σ̂

z
2, j + g2, j σ̂

x
2, j

)
. (14)
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It is then a routine work to check that

e−iĤT

(
|g〉

N⊗
i=1

| ↑〉
)

= |g〉 ⊗ |Dg〉 ⊗ |D′
g〉,

e−iĤT

(
|e〉

N⊗
i=1

| ↑〉
)

= e−iET |e〉 ⊗ |De〉 ⊗ |D′
e〉, (15)

where

|Dg〉 =
N1⊗
i=1

R(g)

1,i (T )| ↑〉, |D′
g〉 =

N2⊗
i=1

R(g)

2,i (T )| ↑〉,

|De〉 =
N1⊗
i=1

R(e)
1,i (T )| ↑〉, |D′

e〉 =
N2⊗
i=1

R(e)
2,i (T )| ↑〉, (16)

with R(α)
n,i (T ) = exp[−i H (α)

n,i T ] for α = g, e and n = 1, 2. Here H (α)
n,i are single

effective Hamiltonians defined as follows:

H (g)

n,i = ωn,i σ̂
z
n,i + gn,i σ̂

x
n,i ,

H (e)
n,i = (ωn,i + ηn,i )σ̂

z
n,i + gn,i σ̂

x
n,i . (17)

By straightforward calculation, we obtain

∣∣〈Dg|De〉
∣∣ =

N1∏
i=1

〈↑ |
[
R(g)

1,i (T )
]† · R(e)

1,i (T )| ↑〉

=
N1∏
i=1

(
1 − sin2 μ

(e)
1,i T · sin2 φ

(e)
1,i

) (
1 − sin2 μ

(g)

1,i T · sin2 φ
(g)

1,i

)
,

∣∣∣〈D′
g|D′

e〉
∣∣∣ =

N2∏
i=1

〈↑ |
[
R(g)

2,i (T )
]† · R(e)

2,i (T )| ↑〉

=
N2∏
i=1

(
1 − sin2 μ

(e)
2,i T · sin2 φ

(e)
2,i

) (
1 − sin2 μ

(g)

2,i T · sin2 φ
(g)

2,i

)
, (18)

where

μ
(e)
n,i =

[
(ωn,i + ηn,i )

2 + g2n,i

] 1
2
, sin φ

(e)
n,i = gn,i

μ
(e)
n,i

,

μ
(g)

n,i =
[
ω2
n,i + g2n,i

] 1
2
, sin φ

(g)

n,i = gn,i

μ
(g)

n,i

, (19)

123



Found Phys (2018) 48:654–667 663

Fig. 1 When the spin number
N1,2 → ∞, the Loschmidt echo

E1,2
L [Eq. (18)] approaches zero.

We set μ(g)
n,i = 1 as the energy

unit, and μ
(e)
n,i = 1.2, gn,i = 0.2
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for n = 1, 2. It is noticed that
∣∣〈Dg|De〉

∣∣ and ∣∣∣〈D′
g|D′

e〉
∣∣∣ are none other than the so

called Loschmidt echoes. Let us denote them by E1
L and E2

L respectively. From the
expressions of the Loschmidt echoes it should be clear that each product factor is a
non-negative number and smaller than 1, thus in the thermodynamic limit N1,2 → ∞,

for a generic T , we have
∣∣〈Dg|De〉

∣∣ � 0 and
∣∣∣〈D′

g|D′
e〉

∣∣∣ � 0 (see Fig. 1).

5 Conclusions

In this paper, we show that the requirement of objectivity indeed could impose an
important constraint on quantum measurements, namely, if we require the quantum
measurement to be objective, then the measurement basis must be orthogonal vector
sets. Usually this is presumed as a basic principle in priori, but here we show that this
can be a natural constraint imposed by the requirement of objectivity.

The quantummeasurement is understood as the establishing process of correlations.
And the objectivity requires that different observers could obtain the same result, and
they can verify with each other. This is a very natural requirement in our classical
world. Our result implies if the quantum measurement is not based on orthogonal
basis, its objective existence cannot be confirmed, in another word, non-orthogonal
basis cannot be objectively measured.

The emergence of classicality in quantum measurement is closely related to the
objectivity condition. This point is illustrated with the central spin model, where the
N “elementary” observers are coarse-grained into twomacroscopic observers enjoying
orthogonal pointer state sets for an ideal measurement. In this example, it is clearly
seen how classical correlations result from the macroscopical observers and a support
is provided for the belief that macroscopicality is a characteristic of classicality.
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A Proof for the Proposition 1

Proposition 1 For a tripartite density matrix ρABC , if its reduced matrices ρAB =
trC [ρABC ] and ρAC = trB[ρABC ] have the forms of

ρAB =
∑
n

pn|an, bn〉〈an, bn|, (20)

ρAC =
∑
n

pn|an, cn〉〈an, cn|, (21)

then there exists an orthonormal vector set {|Φi 〉}, such that the tripartite ρABC can
be written as

ρABC =
∑
i

λi |Φi 〉〈Φi |, λi ≥ 0

|Φi 〉 =
∑
n

C(i)
n |an, bn, cn〉. (22)

Here {|an〉}, {|bn〉} and {|cn〉} are complete basis sets for the Hilbert space HA, HB

and HC respectively, but not necessarily orthogonal ones.

For clarity, we use A, B, C here to replace the S, D, D′ in the main text. To prove
this proposition, we need the following lemma:

Lemma Let P be a positive definite matrix andC a semi-positive one. If tr[C ·P] = 0,
then C is a zero matrix.

Proof We decompose the positive matrix P in its eigen basis as P = ∑
n λn|n〉〈n|,

where all λn > 0. Then we have tr[C · P] = ∑
n λn〈n|C|n〉 = 0. To make sure

〈n|C|n〉 = 0 for all the basis {|n〉}, C must be a zero matrix. 	

With the help of the above lemma, the proof of Proposition1 lies as follows.

Proof For the tripartite density matrix ρABC , we can always write it as the eigen
spectrum decomposition ρABC = ∑

i λi |Φi 〉〈Φi |, where |Φi 〉 are orthonormal basis,
and λi > 0 are the non-zero eigenvalues respectively. But now we could only write
down |Φi 〉 in a general form

|Φi 〉 =
M∑

m=1

N∑
n=1

L∑
l=1

C(i)
mnl |am, bn, cl〉, (23)

where C(i)
nml are complex numbers. It then follows that

ρABC =
∑
mnl
m′n′l ′


mnl,m′n′l ′ |am,bn, cl〉〈am′ ,bn′ , cl ′ |,
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mnl,m′n′l ′ :=
∑
i

λi · C(i)
mnlC

(i)
m′n′l ′ , (24)

and the reduced density matrix ρAB becomes

ρAB = TrC [ρABC ] =
∑
m,n
m′,n′

( ∑
l,l ′


mnl,m′n′l ′ 〈cl ′ |cl〉
)
|am,bn〉〈am′ ,bn′ |. (25)

Comparing this with the required form of ρAB [Eq. (20)], we come to the following
equation

∑
l,l ′


mnl,m′n′l ′ 〈cl ′ |cl〉 = δmm′δnn′ · δmn pn . (26)

Now we introduce two L × L matrices C(mn;m′n′) and P, which are defined by

[C(mn;m′n′)]l,l ′ = 
mnl,m′n′l ′ , Pl ′,l = 〈cl ′ |cl〉. (27)

With their help, Eq. (26) can be written in a compact form

tr[C(mn;m′n′) · P] = δmm′δnn′ · δmn pn . (28)

One notices that when m = m′, n = n′, m �= n, we have

tr[C(mn;mn) · P] = 0. (29)

It is easy to verify thatC(mn;mn) is a semi-positive matrix,1 and P is positive definite.2

Therefore, according to above lemma, we know that C(mn;mn) is a zero matrix when
m �= n. Thus we obtain

[C(mn;mn)]l,l = 
mnl,mnl =
∑
i

λi · |C(i)
mnl |2 = 0. (30)

Since all the λi > 0 in the above summation, that leads to

C(i)
mnl = 0, ∀ i, l, m �= n. (31)

In the same way, by comparing with ρAC [Eq. (21)], we can prove

C(i)
mnl = 0, ∀ i, n, m �= l. (32)

1 Obviously, the coefficient matrix 
mnl,m′n′l′ of the density operator ρABC is semi-positive. Notice that

[
mnl,m′n′l′ ] can be regarded as a block matrix, and [C(mn;mn)]l,l′ = 
mnl,mnl ′ is one of its principal

blocks, thus C(mn;mn) is semi-positive.
2 For any non-zero vector v := (v1, v2, . . . , vL )T , we have v† · P · v = ∑

l,l′ v∗
l′ 〈cl′ |cl 〉vl = 〈ψ̃ |ψ̃〉 > 0,

where |ψ̃〉 := ∑
l vl |cl 〉
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Therefore, the only possible non-zero coefficientsC(i)
mnl are those satisfyingm = n = l,

thus, we write the coefficients asC(i)
mnl = δmnδml ·C(i)

n , then we obtain the expression

|Φi 〉 =
∑
n

C(i)
n |an, bn, cn〉 (33)

and complete the proof. 	


References

1. Joos, E. et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer,
New York (2003). http://www.springer.com/physics/quantum+physics/book/978-3-540-00390-8

2. Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.)
Complexity, Entropy, and the Physics of Information. Addison-Wesley, Reading (1990)

3. Gell-Mann,M.,Hartle, J.B.: Classical equations for quantum systems. Phys. Rev.D 47(8), 3345 (1993).
https://doi.org/10.1103/PhysRevD.47.3345

4. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2012)
5. Weinberg, S.: Quantum mechanics without state vectors. Phys. Rev. A 90(4), 042102 (2014). https://

doi.org/10.1103/PhysRevA.90.042102
6. Tipler, E.J.: Quantum nonlocality does not exist. Proc. Nat. Acad. Sci. USA 111(31), 11281 (2014).

https://doi.org/10.1073/pnas.1324238111
7. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1(1), 69 (1970).

https://doi.org/10.1007/BF00708656
8. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse?

Phys. Rev. D 24(6), 1516 (1981). https://doi.org/10.1103/PhysRevD.24.1516
9. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment.

Zeit. Phys. B 59(2), 223 (1985). https://doi.org/10.1007/BF01725541
10. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.

75(3), 715 (2003). https://doi.org/10.1103/RevModPhys.75.715
11. Griffiths, R.B.: Consistent histories and the interpretation of quantummechanics. J. Stat. Phys. 36(1–2),

219 (1984). https://doi.org/10.1007/BF01015734
12. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)
13. Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957).

https://doi.org/10.1103/RevModPhys.29.454
14. DeWitt, B.,Graham,N.: TheMany-Worlds Interpretation ofQuantumMechanics. PrincetonUniversity

Press, Princeton (1973)
15. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys.

Rev. 85(2), 166 (1952). https://doi.org/10.1103/PhysRev.85.166
16. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys.

Rev. 85(2), 180 (1952). https://doi.org/10.1103/PhysRev.85.180
17. ’t Hooft, G.: Quantummechanical behaviour in a deterministic model. arXiv:quant-ph/9612018 (1996)
18. ’t Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quant. Grav. 16(10), 3263

(1999). https://doi.org/10.1088/0264-9381/16/10/316
19. Sun, C., Liu, X., Yu, S.: Algebraic construction of ’t Hooft’s quantum equivalence classes. Mod. Phys.

Lett. A 16(02), 75 (2001)
20. Liu, X.F., Sun, C.P.: Consequences of ’t Hooft’s equivalence class theory and symmetry by coarse

graining. J. Math. Phys. 42(8), 3665 (2001). https://doi.org/10.1063/1.1380250
21. Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge

(2004)
22. Adler, S.L.: Generalized quantum dynamics. Nucl. Phys. B 415(1), 195 (1994). https://doi.org/10.

1016/0550-3213(94)90072-8
23. Zurek,W.H.: Quantum origin of quantum jumps: breaking of unitary symmetry induced by information

transfer in the transition from quantum to classical. Phys. Rev. A 76(5), 052110 (2007). https://doi.
org/10.1103/PhysRevA.76.052110

123

http://www.springer.com/physics/quantum+physics/book/978-3-540-00390-8
https://doi.org/10.1103/PhysRevD.47.3345
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1073/pnas.1324238111
https://doi.org/10.1007/BF00708656
https://doi.org/10.1103/PhysRevD.24.1516
https://doi.org/10.1007/BF01725541
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1007/BF01015734
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1103/PhysRev.85.180
http://arxiv.org/abs/quant-ph/9612018
https://doi.org/10.1088/0264-9381/16/10/316
https://doi.org/10.1063/1.1380250
https://doi.org/10.1016/0550-3213(94)90072-8
https://doi.org/10.1016/0550-3213(94)90072-8
https://doi.org/10.1103/PhysRevA.76.052110
https://doi.org/10.1103/PhysRevA.76.052110


Found Phys (2018) 48:654–667 667

24. Zurek, W.H.: Quantum Darwinism. Nature Phys 5(3), 181 (2009). https://doi.org/10.1038/nphys1202
25. Zurek, W.H.: Wave-packet collapse and the core quantum postulates: discreteness of quantum jumps

from unitarity, repeatability, and actionable information. Phys. Rev. A 87(5), 052111 (2013). https://
doi.org/10.1103/PhysRevA.87.052111

26. Zurek, W.H.: Quantum Darwinism, classical reality, and the randomness of quantum jumps. Phys.
Today 67(10), 44 (2014). https://doi.org/10.1063/PT.3.2550

27. Riedel, C.J., Zurek, W.H., Zwolak, M.: Objective past of a quantum universe: redundant records of
consistent histories. Phys. Rev. A 93(3), 032126 (2016). https://doi.org/10.1103/PhysRevA.93.032126

28. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. 2. Princeton University Press,
Princeton (1955)

29. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev.
Lett. 88(1), 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

30. Ollivier, H., Poulin, D., Zurek,W.H.: Objective properties from subjective quantum states: environment
as a witness. Phys. Rev. Lett. 93(22), 220401 (2004). https://doi.org/10.1103/PhysRevLett.93.220401

31. Sun, C.P.: Quantum dynamical model for wave-function reduction in classical and macroscopic limits.
Phys. Rev. A 48(2), 898 (1993). https://doi.org/10.1103/PhysRevA.48.898

32. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum
criticality. Phys. Rev. Lett. 96(14), 140604 (2006). https://doi.org/10.1103/PhysRevLett.96.140604

123

https://doi.org/10.1038/nphys1202
https://doi.org/10.1103/PhysRevA.87.052111
https://doi.org/10.1103/PhysRevA.87.052111
https://doi.org/10.1063/PT.3.2550
https://doi.org/10.1103/PhysRevA.93.032126
https://doi.org/10.1103/PhysRevLett.88.017901
https://doi.org/10.1103/PhysRevLett.93.220401
https://doi.org/10.1103/PhysRevA.48.898
https://doi.org/10.1103/PhysRevLett.96.140604

	Objectivity in Quantum Measurement
	Abstract
	1 Introduction
	2 Quantum Measurements with Two or More Observers
	3 Objectivity of Quantum Measurement
	4 Ideal Measurement from Macroscopicality: Central Spin Model
	5 Conclusions
	Acknowledgements
	A Proof for the Proposition 1
	References




