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Abstract 

The systematical studies on the dynamical approach of wavefunction collapse in quantum measurement 
arc report in this paper based on the Hepp-Coleman’s model and its generalizations. Under certain 
physically reasonable conditions, which are easily satisficd by the practical problems, it is shown that 
the off-diagonal elements of the reduced density matrix for the measured system vanish in quantum 
mechanical evolution process of the universe formed by the measured system plus the measuring 
instrument-detector at  the macroscopic limit with a very large particle number N .  Various examples 
with detector made up of oscillators of different spectrum distribution are used to illustrate this 
observations. With the two-level system as an explicit illustration, the quantum information entropy 
is cxactly obtained to quantitatively describe the degree of decoherence for the so-called partial 
coherence causcd by detector. The entropy for thc case with many levels is computed bascd on 
perturbation method in the limits with very largc and very small N .  As an application of this general 
approach for quantum measurement, a dynamical realization of the quantum Zeno effect are present 
to analyse its recent testing experiment in connection with a description of transition in quantum 
information entropy. Finally, the Cini’s model for the correlation between the states of the measured 
system and the detector is generalized for the case with many energy-level. It is shown that this 
generalization can also be invoked to givc the dynamical realization of wavefunction collapse. 

1. Introduction 

Though quantum mechanics has been experimentally proved to be a quite successful 
theory, its interpretation is still an important problem that physicists should face [l -41. 
To interpret the physical meaning of its mathematical formalism, one has to invoke the 
wave packet collapse (WPC) (or wavefunction collapse) postulate as an extra assumption 
added to the closed system of laws in quantum mechanics. This postulate is also called 
von Neumann’s projection rule or wavefunction reduction process. Let us now describe it 
briefly. It is well known in quantum physics that, if measured quantum system S_is in a 
state 14) that is a linear superposition of the eigenstates Jk) of the operator A of an 
observable A just before a measurement, ie., 

I$} =c cklk) ,  fc;s are complex numbers) 
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then a result of the measurement of A is one uk of the eigenvalues of Â  corresponding to 
I k )  with the probability I C ~ ~ ~ .  The von Neumann’s postulate tell us that, once a 
well-determined result u, about A has been obtained, the state of S is no longer 14) and 
it must collapses into In). This is because a immediately-successive measurement of A 
after the first one should repeats the same result. In terms of the density matrix 
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for the state Iq5), the above WPC process can be mathematically expressed as a projection 
or reduction 

Because the off-diagonal elements represent coherence, through which the density matrix 
describes a non-classical probability, the WPC characterized by vanishing of off-diagonal 
elements means the loss of quantum coherence or called quantum decoherence [5]. 

The recent studies on the quantum decoherence in an open system S surrounded by an 
environment E was mainly motivated by the interests in the macroscopically-quantum 
effects such as dissipation in the quantum tunnelling and the semiclassical gravity theory 
for particle creation in quantum cosmology [6-101. In quantum dissipation theory, an 
important treatment for quantum decoherence is invoking quantum Brownian motion 
through its master equation to describe the vanishing of the off-diagonal elements of 
reduced density matrix of S [l]. The recent investibations in this context were carried out 
with the Feynman-Vernons integral method for the Ohmic, sub-ohmic or super-ohmic 
environment (e. g., see ref. [S]). Without the use of path-integral [9, lo], an exactly-solvable 
dynamical model of quantum dissipation was presented by Yu and this author to deal 
with the similar phenomenon. Notice that ZUREK and his collaborators especially emphasized 
the role of environment surrounding the open system, which monitors the observables of 
the system so that their eigenstates continuously decohere and then approach classical 
states 14, 81. 

It should be noticed that there exists another dynamical theory based on HEPP-COLEMEN’S 
(HCs) investigation to dynamically realize quantum decoherence characterized by the 
WPC [ I l ,  121. This theory and its generalization [13-151 were proceeded in a 
purely-quantum mechanical framework. In conventional theory of quantum mechanics, to 
realize the WPC, the external classical measuring apparatus detector must be used to 
detect the result. Then, someone thinks the WPC postulate to be not quite satisfactory 
since quantum mechanics is expected to be an  universal theory valid for whole “universe”, 
but the detector, as a part of the universe, behaves classically in the von Neumann’s 
postulate. A reasonable description of the detector should be quantum essentially and it 
exhibits the classical or macroscopic features in certain limits. If one deal with the detector 
as a subsystem of the closed system - the universe C formed by the measured system S 
plus the detector D, it is possible that the quantum dynamics of the universe can result in 
the WPC through the interactions between S and D. Up to now, some exactly-solvable 
models along this line mentioned above have been presentd to analyse this problem. 
Among them, the Happ-Coleman (HC) model is very famous one and has been extensively 
studied in last twenty years [13-191. In order to describe studies in this paper clearly, we 
need to see some details of this model. 

In the original HC model, an  ultrarelativistic particle with spin-1/2 is referred to the 
measured system S while a one-dimensional array of scatterers with spin-1/2 to the 
detector D. The interaction between S and D is represented by an coupling 
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N 1  
- V (X - a,) CY) (1 + US’)) 
2 H ,  = 

n =  1 

where OF) is the first component of Pauli matrix; an is the position of the scatterer assigned 
to the n’th site in the array; the index 0 referes to S. The Hamiltonian for D is 

H,=cP (1.5) 

where c, and x are the light speed, the momentum and coordinate operators respectively 
for S. This model is quite simple, but it can be exactly solved to produce a deep insight on 
the dynamical description of the quantum measurement process. Starting with the initial state 

(1.6) 

where I D )  is pure state of D (it is usually taken to be ground state), the evolution state 
[vJ(t)) for the universe C = S + D is defined by the exact solution to this model. Then, the 
reduced density matrix 

Iw(o))=c ck l k )  @ I D >  

e&) = Tr,(lY(t)) ( W ( t ) O  (1.7) 

of the measured system is obtained by taking the trace of the density matrix 

e( t )= Ivft)) (Y(t)l (1.8) 

of the universe to the variables of D. Obviously, e,(t) depends on the particle number N 
of D. When N -+ so, i.e., in the macroscopic limit, ~ , $ ( t )  -+ 4 after long enough time t. 
Namely, the Schrodinger evolution of the universe C leads to the WPC for the measured 
system. More recently, the original C H  model was improved to describe the energy 
exchange between S and D by adding a free energy Hamiltonian 

and correspondingly improving the interaction slightly. Notice that the improved model 
remains exactly-solvable [ 131. 

Because the spin quantum number is fixed to be 1/2 in the original H C  model or its 
improved versions, they can not describe the classical characters of the measurement. 
Usually, the classical feature of a quantum object is determined by taking certain value for 
some internal quantum numbers of the detector D or h = 0 .  In the case of the angular 
momentum, this classical limit corresponds to infinite spin. The generalized dynamical 
approach, which can work effectively for both the classical and macroscopic limits, was 
successfully built by this author in 1993 [14, 151. The first step of this approach is to 
establish such a generalization of the HC model manifesting the WPC as the dynamical 
process in the classical limit as well as in the the macroscopic limit simultaneously. Then, 
the essence for this model substantially resulting in the realization of the WPC as well as 
for those well-established was found to be the factorization of the evolution matrix of the 
universe in the interaction picture with help of a detailed study on the dynamics of the 
generalized HC model in both the exactly-solvable case and the non-solvable case. For the 
latter, the high-order adiabatic approximation (HOAA) method [20-231 is applied to its 
special case that the coupling parameter depends on the position of the measured 
ultrarelativistic particle quite slightly. Finally, we point out that this possible essence in 
the dynamical realization of the WPC, is largely independent of the concrete forms of 
model Hamiltonians. Notice, that in the dynamical models of the WPC for quantum 
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measurement, both the macroscopic and classical measuring apparatus can be regarded as 
the environment in the certain model of the quantum decoherence for quantum dissipation 
[4,8]. This is because both they act as the classical or macroscopic monitors seeing the 
system. 

However, because all of the previous dynamical models of decoherence for quantum 
measurement depend on the specific forms of Hamiltonians of D and S ,  it is necessary to 
present a model-independent dynamical approach for decoherence in quantum measurement 
process based on the HC model. It is expected that such an approach does not depend on the 
detailed structures of the Hamiltonians of S and D as fully as possible, but can be invoked to 
deal with the practical problems of quantum measurement such as quantum Zen0 effect 
(QZE). This universal approach should also be used to describe the role of environment in 
decoherence for quantum dissipation. It is shown in present study that, through a suitable 
choice of the interaction between S and D, the Schrodinger evolution of the universe C formed 
may result in the phenomenon of decoherence in the reduced density matrix 4 of S at the 
macroscopic limit of D with very large N .  Mathematically, the mechanism of this 
phenomenon is that the accompanying factors in the off-diagonal elements of reduced density 
matrix 6 ,  caused by the dynamical evolution of C will vanish as N approaches infinity. It even 
was described in concrete examples [14,15]. Notice again that in the previous models for the 
quantum measurement and decoherence, the considered systems S usually are specified as an 
ultrarelativistic particle or a two-level system while the detector D as a spin array. Here, what 
we require is only that the system is of the non-degenerate discrete spectrum and the 
interaction between D and S is chosen to result in a factorizable evolution matrix. However, D 
is required to satisfy a condition that any row or column of each factor corresponding to the 
factorizable evolution matrix at least has one non-vanishing off-diagonal element. This means 
that the back action of the measured system can effectively act on the detector so that the 
microscopic states can be read out from the macroscopic counting numbers contributed by all 
particles in detector. This condition is physically reasonable and can be satisfied in widespread 
circumstances. Some examples are invoked to illustrate that this condition can be realized by 
choosing suitable spectrum distributions of oscillators making up the detector. 

To quantitatively describe the intermediate state of decoherence between the pure state 
and the most-largely mixed state, we need to calculate the entropy of S 

for two cases: (I) For the two-level system and any finite N ,  an exact solution for s is 
obtained as the functional of 0. (11) For the limits with very large and very small N ,  the 
approximate solutions of s by certain perturbation methods. These calculations show that 
the entropies indeed decrease as N increases and they will take the maximum values at the 
infinite N.  This means that an ideal macroscopic detector or environment must cause the 
increment of entropy of the its monitored system to maximum extent. 

The above general approach is used to built an exactly-solvable dynamical model for 
the quantum Zen0 effect [25,26] in connection with the recent experiment by ITANO et al. 
[26] about the inhibition of quantum transition between the atomic energy levels. The 
present investigation compromises the different points of view about this experiment 
testing quantum Zen0 effect [27-371. In thos model the detector is simplified as a system 
of N oscillators with a suitable interaction with the measured system - a two-level atom, 
we show that, due to gradually-vanishing of the off-diagonal elements in es, the two-level 
system will be frozen in its initial level as the times of measurement in a given time interval 
becomes infinite. This is just the quantum dynamical realization of the QZE through a 
dynamical approach of the WPC. The information entropy for the process of quantum 
Zen0 effect of two-level system is calculated to manifest an interesting behavior of 
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transition from random to regularity: for a given time interval, when the times L of 
measurement is less than a critical value L,, the entropy changes at quite random as L 
changes; when L is larger than L,, the entropy decreases monotonically as L becomes larger. 

Finally, it has to be pointed out that the correlation between the states of the measured 
system and that of the detector has not been emphasized well in the original HC model 
and its generalization. But this problem was well analysed by CINI in his beautiful model 
[39]. The present investigation is also to emphasize on both the wavefunction collapse 
and the state correlation in the Cini model. In fact, the correlation between the states of 
measured system and the detector is crucial for a realistic process of measurement, which 
enjoys a scheme using the macroscopic counting number of the measuring instrument-detector 
to manifest the microscopic state of the measured system. The original Cini model for the 
system S and the measuring instrument-detector D is build only for a two-level system 
interacting with the detector D,  which consists of N indistinguishable particle with two 
possible modes wo and ul. For the two states u+ and u _  of S, the detector has different 
strengths of interaction with them. Then, the large number N of “ionized” particle in the 
ionized state o1 transiting from the un-ionized state Q,, shows this correlations. In this 
paper, we wish to generalize the Cini’s model for the M-level system. 

2. Dynamical Description of the General Model 

In this section we wish to describe a general dynamical model for quantum decoherence 
caused by a suitable interaction between the measured system S and a measuring 
instrument-detector (or an environment) D, which sometimes can be regarded as a 
reservoir at temperature T. The considered system is only required to be of the 
non-degenerate discrete spectrum. Let In) (n  = 1,2, . . . Ad) be the discrete eigenstates of S 
corresponding to N energy levels En (n  = 1,2, . . . M ) .  Therefore, the Hamiltonian is 
formally expressed as 

D is made up of N particles with the single particle Hamiltonian fik(x,) for dynamical 
variables x k  (such as canonical coordinate, momentum and spin) of the k‘th particle. Its 
Hamiltonian 

can be written in terms of fik(x,) or its eigenstates In,). Here, it has been assumed that 
there are not mutual interactions among detector’s particles. 

Physically, the interaction between S and D can be chosen to have the different 
strengths for the different states of S. This is because so-called measurement is just a schem 
to read out the states of S from the counting number of D,  and different counting numbers 
should correspond to different states of S. Thus, one can write the interacting Hamiltonian as 

where g(t) (= 1 for 0 5 ~ 5  7 ;  = O  for t < O  or t > z )  is a switching function; V,+ V ,  
for m + n characterizing the time of measurement. Besides the above-mentioned basic 
requirements, their is only a few of constrains on the model and one even need not to 
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know the specific forms of both the interaction and the Hamiltonian. Therefore, it is 
reasonable to say our model is quite universal in comparison with the previous models for 
quantum measurement. 

The system S plus the detector D forms a composite system C, the “universe”. In this 
sense, C is closed and thus its evolution can be described by an unitary operator U ( t )  
governed by the total Hamiltonian 

H = H,  + H ,  + HI Ho + H,. 

By changing it into the interaction picture and then backing to the original Schrodinger 
picture, a direct calculation gives the evolution operator 

where 

n =  I k = l  

Notice that 9 is the time-order operator and 

is the representative of the variables xk of D in the interaction picture. 
It should be pointed out that the above mentioned evolution operator U,(t)  in the 

interaction picture just possesses the factorizable structure found in ref. [14, 151 by one 
(CPS) of the authors, which is the key to result in von Neumann’s wave packet collapse in 
the quantum measurement. 

3. Quantum Decoherence at Macroscopic Limit 

If the system S were closed, the Schrodinger time evolution should not lead to the 
phenomenon of decoherence - the WPC defined by eq. (l.l), that is to say, a pure state as 
a coherent superposition of some eigenstates of an observable of S can not evolve into a 
mixed state. This is because the unitary time evolution operator U ( t )  preserves the rank of 
density matrix for S ,  which, however, has rank 1 for a pure state and has rank larger than 
1 for a mixed state. We can also describe this impossibility in terms of the definition of 
quantum entropy in section 5. 

However, in our present model, S is considered as an open system interacting with D. 
Though the unitary evolution of the universe C formed by S plus D cannot change C to a 
mixed state from a pure state, its induced effective evolution of S given by removing the 
variables of D may be non-unitary and thus the rank of the reduced density matrix can be 
changed in the evolution. In this sense, it is possible to realize the decoherence for 
quantum measurement in a quantum dynamical process. 
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Assume that D is initially in a mixed state, e.g., an thermal equilibrium state at  
temperature T, when the interaction between S and D switches on. This initial state of D 
is denoted by the density matrix 

N 

eD(')= n @ 1 'nk Ink> (3.1) 
k = l  nk 

where Pnk is the classical probability of k'th particle of D in the basis states Ink) 

c pnk = 1 
nk 

Let the initial state of S is a pure state, which is a coherent superposition 

N 

14) = 1 c, In> 
n =  1 

of the energy eigenstates of S without the interaction with D. Then, we 
density operator of the initial state for the universe C = S + D: 

e(0) = 14) (41 0 @,(O) = c CFnc: Im> (4 0 Q D ( 0 ) .  
m ,  n 

Solving the von Neumann equation 

(? 
ifi 5 e ( t )  = Ce(t), A1 

(3.2) 

write down the 

(3.3) 

(3.4) 

we can obtain the density operator of C at time t as 

e ( t )  = U(t )+  e(0) U ( t ) .  

Taking the partial trace of e ( t )  over the variables of D,  we have the reduced density matrix 

M M 

e,(t)=Tr,(e(t))= c K"I2 In> (El + c (c,c?F",.,(N, t )  In) (n'l + h .  c) (3.5) 
n = l  n > n '  

where the off-diagonal terms are accompanied by factors 
- i ( E , - E , * ) t  

F,,.,(N, t )  = e ^ T - -  Tr(U,.cp(t) Un(t) ~ ~ ( 0 ) )  

(3.6) 
k =  1 

In the above expression, Tr, means taking partial trace over the k'th variable of D. Now, 
we are trying to find a central condition, under which as the particle number N of D 
approaches infinity, F,, ( N ,  T, t )  approaches zero for m + n, i. e., 
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Eq. (3.7) determines the vanishing of the off-diagonal elements of e,(t), that is to say, it will 
approximate the classical behavior of the open system S in the macroscopic limit with 
very large N .  
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To this end, we rewrite the accompanying factor Fn,n, (N,  t )  = F. Then, 

I(nkIU:k'+(t) u:l(t))n,))2= 1 - c I(m,Iu:I+(t) UF( t ) l rnk ) )25  1,  (3.9) 
mk*nk 

for an unitary operator U?" ( t )  U,!,"(t) and n' =k n. In terms of the non-zero positive real number 

d; '" ' ( t )  = -In IFf]n.(t)l (3.10) 

the norm of accompanying factor F,,, n ,  (N,  t )  is expressed as 

Due to eq. (3.8), Or," 5 0; In general, under a resonable condition that there is at least one 
non-vanishing off-diagonal element in a given row or column of each factor U:;lt ( t )  UF1( t ) ,  
d~"'(t) 's  do not approach zero as k + m at t =z according to eq. (3.9). In this sense, c,"_, d: '" ( t )  is a diverging series with the limit of infinity. In next section, some examples 
are present to obey the above mentioned condition explicitly. 

The above discussion shows the possibility of realizing quantum decoherence in a 
quantum dynamical process at the macroscopic limit with very large N .  The above 
discussion does not depend on the specific forms of both the single particle Hamiltonian 
H,(x,) and the interaction V,,(xk). It can be invoked to find a vast class of quite general 
dynamical models for quantum measurement to describe quantum decoherence - the 
WPC as the result of the dynamical evolution at macroscopic limit! 

4. 

In this section, we will use a typical model to explicitly illustrate how the above approach 
works effectively for the dynamically-vanishing of the off-diagonal elements of the evolving 
density matrix, concretely speaking, under what kind of circumstance, the series 
SR = c,"1 d y ( t )  in the exponential accompanying factor diverges into infinity. Let D be 
made up of N oscillators with Hamiltonian 

Concrete Examples with D Made up of Oscillators 

N 

H =  c ~ ( O , U : U ,  
i =  1 

and the interaction between D and S be 
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where the requirement p m + p n  (for m + n )  means that the coupling of D with S has 
different strengths for the different states In) of S. 

In this sense, according to WEI-NORMAN'S algebraic method [38], a factor Uyl(t j  of the 
evolution matrix can be assumed as 

(4.3) up1 ( t )  = ef: ( t )  &;: ( 1 )  4 eB; ( t )  ak 

Here, the coefficients f t ( t ) ,  A;(t), and Bz(t) to be determined satisfy a system of equations 

, f i ( t)  = Bt*(t)  &t).  (4.4) 

It leads to 

and the real part of ,f:(t) 

is negative for wk + nn / t .  

The corresponding density matrix is ~ ~ ( 0 )  = 10) (01 where the ground state of D 
To master the kernel of the problem, we consider an simple case with zero temperature. 

10) = 10,) 0 102) 0 ... 0 10,) 

is a direct product of the vacuum states 10,) (i = 1, 2, ..., N )  of N oscillators. In this sense, 

lF:;(l)/ = I(0l U y ( t ) +  U$](t) 10) I =e-dp:" ( t '  (4.7) 

where 

In the following discussion, we will detail the analysis about diverging of the series c, A?" for various spectrum distributions of D. The most simple case is that D has a 
constant discrete spectrum, i.e., ok = w =constant, g k  = g =constant. In this case 

(4.9) 

approaches zero as N --t co except for the period points (i, t = 2 k x  ( k  = 0,1,2 . . .). Generally, 
the series S R  = ck A?' can be reexpressed in terms of a unspecific spectrum distribution 
@("k) as 

(4.10) 
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Figure 1: The norm l , f (N ,  t)l of coherence factor as the function of time t for the case with 
spectral distribution wk = 0). Figures I-a, I-b, and 1-c correspond to the times of measurement 
equal to 5, 10 and 500 respectively. Here, wk = w = 0.1, r:k)~ = 0.00001. For larger N (e. g. 
N = 500), the coherence enjoyed by I.f(N, t)l almost disappear for 6 < t < G+ However, at 
the common period points t ,  = %, ( k  = 1,2, . . . , N )  the Coherence is resumed in a very 
short time. 

In fact, in the case of discrete spectrum, the spectrum distribution means a degeneracy that  
there are ~(o,) oscillators possessing the same frequency w,. So long as the term 

does not  approach zero as k-+ co, the  above series S R  must diverge into infinity. F o r  
example, if w, = ko, (w,) K kq+2/gi ,  (3 > 0), then this series must diverge into infinity for 
each term nc k” sin2 $‘< > 0 except for the period points w t = 2 k n  ( k  = 0, l .  2 . . .). 
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Figure 2: The normal of coherence factor for the spectral distribution, the wk is random with 
a cut-off frequence w, = 500. The time for resuming the coherence is t , ( k )  = 5. 

Notice that f ( N ,  t )  = F,,.(N, t )  = 1 and 0 means the complete coherence and the 
complete decoherence respectively. Because of the cut-off of frequency, the q k ( t )  do not 
approach zero except for the period points t = qkl)? as k ---f a. Also due to qk > 0, the 
series c,"= q k ( t )  must diverge into infinity, that is to say, f ( N ,  t )  -+ 0 according to eq. 
(3.4). Therefore, when the detector is in the macroscopic limit ( N  -+ m), the off-diagonal 
elements in es( t )  vanishes and the WPC appears as the result of the dynamical evolution. 
It is recognized from eq. (4.8) that, to realized the WPC, we must constrict the interaction 
for each time of the measurement only to take place in a time interval T less than the 
oscillation period z, = ;:. Otherwise, the coherence terms suppressed by the factor 
f k ( t ) = F i , , ( t )  will be resumed at  the common period points t = t c  at which q k ( t c ) = O  and 
I f k ( t ) (  = 1. The figure 1 with a constant spectrum mk = o shows how the decoherence 
appears in accompany with: I f ( N ,  t)I ---f 0 as N increases for t =+ t , ,  and how the coherence 
is resumed at t=t, .  Figure 2 displays the same problems for the random spectrum 
distribution that the frequencies ok take random value with a cut-off. According the above 
analysis, one should let the interaction switch off before the coherence restores in the 
wavefunction collapse quantum dynamically. For this reason, the random spectral distribution 
and the constant spectral distribution are much appreciated as the most simple case for 
our present study for the QZE. 

For the case with continuous spectrum, some interesting circumstances can result from 
the concrete spectrum distributions. In the first example with 

2 

the series is convergence to a positive number proportional to time t 

(4.11) 

This shows that the norm of the accompanying factor Frn,.(c0, t )  is an exponential 
decaying factor, i. e., 
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( f lm -Pn)* 

(4.12) 

This quite interesting result is much similar to that in the quantum dissipation [7,9, lo]. 
As t + co the off-diagonal elements of density matrix vanish simultaneously ! 

In another example for continuous spectrum, the spectrum distribution is Ohmic type 
(e.g., see ref. [7,9, lo]), i.e., 

Its alternative reformulation is 

and then 

(4.13) 

(4.14) 

(4.15) 

In summary, so long as we choose a suitable spectrum distribution of oscillators in the 
detector, the series 1, d r n  can diverge into infinity, that is to say, the dynamical evolution 
of S plus D can result in the WPC or quantum decoherence in the reduced density matrix 
of S, though the discussion in this section was proceeded with the oscillator detector, any 
detector (or environment) weakly coupling to system may be equivalent to a system of 
oscillators according to the proof given by CALDEIRA and LEGGETT [4]. Therefore, the 
discussion in this section d o  not lose the generality of the problem. 

5. Entropy Increment in Decoherence Process 

Since quantum decoherence decreases the information available to the observation about 
the quantum open system S,  the quantum entropy 

K 
S[Q] = -- Tr(Q In e)  2 

as a functional of the density matrix Q can be used to characterize the degree of decreasing 
information quantitatively. In comparison with the statistical thermodynamics, the 
decoherence process can be understood as an  irreversible process in terms of the concept 
of entropy increment. In fact, if I;?) is the eigenstate of e with eigenvalue A, then eq. (5.1) 
is re-expressed as 

Obviously, the entropy is invariant under an unitary transformation and the time 
evolution of a closed system must not change its entropy. In our problem, the entropies of 
the initial and final states are zero and 
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respectively. This manifests that the decoherence process is certainly a process of increasing 
entropy. Notice that eq. (5.2) defines the maximum entropy of the system S for a given 
initial state (3.2) of S,  which corresponds to complete decoherence. In a well-established 
theory for quantum decoherence, it is expected that the partially- and completely-decohering 
states are also described very well. For this reason, we calculate the corresponding entropy 
of the intermediate state characterized by the reduced density matrix ~ , ( t )  for finite N .  

For the seek of simplicity, we first consider the two-state system with M = 2 physically. 
This case may be understood as spin 4 procession interacting with a reservoir. In this 
sence, the reduced density matrix with finite N is explicitly written down 

where 

In terms of its eigenvalues i1 = i(1 + x) and 1, = i(1 - x) where, 

.X = x ( N )  = 1/1 - 4(1 - IF/') I C,  1' IC,I2 

=1/1 -4(1 -ec2C:=, (C,)2 lC,I2, 

the explicit expression of entropy is 

K 
2 

s ( N )  = - - [( 1 + x) ln(1 + x) + (1 - x) In(1 - x) - 2 In 21 

(5.4) 

where 

l l C 1 l - l ~ 2 l l 5 x ~ 1 .  

Obviously, 

K (1 + X I  < o  In ~ 

- - ~ -- 
ds ( N )  

dx 2 (1-x) 

and x decrease as N increases. Then, s = s ( N )  is a monotonically-increasing function in the 
above domain of x. When N =  u3, x takes its maximum value so that there appears 
maximum entropy 

The above quantitative analysis shows us that the complete decoherence means the 
maximum value of entropy. For  the sufficiently large N ,  the average value 
A = N - '  c:= A : . ' ( t )  is roughly independents for N 

IF1 = e - 2 N d  

is approximated by exponential function of N .  
The explicit entropy functions for the partial decoherence in mesoscopic case with a 

finitely large N can not be easily solved for a general system of M ( > 2 )  energy levels. 
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However, for few cases with very large N or very small N ,  some approximation methods 
can be developed to calculate the entropy analytically. 

CHANG-PU SUN et al., Quantum Dynamical Approach 

For the case with small N.  we define 

Since the function F,,,(N, t )  = 1 and F,,,.(N, t )  approaches the unity for small N ,  the norm 
of d,,,(N) is quite small in this case. Thus, the reduced density (3.5) can be decomposed 
into the unperturbed part 

and the perturbed part 

(5.9) 

The unperturbed part Q,, denotes a pure state and then has a non-degenerate eigenstates 
1 ~ )  with eigenvalue 1. Choose Iwo)  = 1 ~ )  to be the first one of basis vectors for the 
Hilbert space. Then, the other M-1 basis vectors Iyik) = PI k )  ( k  = 1, 2, . . . , N - 1) for the 
M-1 dimensional degenerate subspace orthonormal to Iv0) may be constructed in terms 
of the complementary projection operator 

N 

P = l - l Y )  ( Y l =  c (6,,-C;C,)In) ( m i .  
m =  1 

(5.10) 

It is not difficult to prove that such N - 1 vectors are linearly-independent. It follows from 
the Schmite rule that N - 1 vectors 

Iuk )  =I Skfk I I ~ ~ , ) ,  k =  1, 2, ..., N - 1 
k' 

are built as the orthogonomal basis for the whole space corresponding to the zero 
eigenvalues of eo. Therefore, the time independent perturbation theory determines the 
approximate eigenvalues of e = eo + d e up to second order 

(5.11) 

I L ,  = I ( !PI A Q 1 U, ) I ' + ... K 6, + . . . , k = 1, 2, . . . M - 1 . 

Obviously, the normalization of density matrix still holds as c::' lk= 1 under this 
perturbation. A direct calculation from eq. (5.1 1) results in the entropy hnction in small N 
limit as 

k 
S ( N ) =  -T[ ( l -6 ) In ( l  - 6 ) + ~ 6 , 1 n ~ 6 , J  

L k k 

(5.12) 

Another case that can be handled analytically based on approximation method is that 
with large N .  In this sense, IF,,(N, t)l is so small that the off-diagonal parts of 6 (ex. (3.5)) 
can be regarded as a perturbation. The unperturbed part 
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(5.13) 

represents the mixed state with the maximum entropy and I k )  and ICk12 are just its 
eigenstates and the corresponding eigenvalues. Invoking the time-independent perturbation 
theory and regarding * 

Ae=B-eb? (5.14) 

as the perturbation, we write down the second’s corrections for the eigenvalue 

(5.15) 

for the first order solution 1;’) = IC,I2. Then, the approximate entropy is obtained up to of 
second order 

(5.16) 

6. 

The quantum Zen0 effect (QZE) was theoretically proposed by MISRA and SUDARSHAN 
1251 based on the postulate of the WPC. It is argued that an unstable particle will never 
be found to decay when it is continuously observed, more generally speaking, a frequent 
measurement inhibits the transitions between quantum states. Recently, ITANO, HEINZEN, 
BOLLINCER and WINELAND (IHBW) 1261 reported that they have observed the QZE in an 
experiment about atomic transition based on Cook’s proposal. They claimed that the 
freezing of stimulated transition probability appeared when the two-level atomic system is 
subjected to frequent measurements of the level population. Then, the QZE havs attracted 
much interest in its theoretical studies last years [27 371. 

Among these discussions, PETROSKY, TUSAKI and PRIGOGINE’S (PTPs)  work [27 --~28] 
shows that the result in IHBW’s experiment can be recovered through conventional 
quantum mechanics without invoking a repeated WPC. This is quite similar to PERES’S 
observation [37] that the a modified Hamiltonian may mimic the wavefunction collapse 
to slow down the quantum transition and then realized the QZE in a pure framework of 
quantum mechanics. It seems that the conclusion of IHBW’s experiment is challenged by 
the theoretical analysis in PTP’s work, and the same result can be obtained in term of 
either the use of the WPC by frequent measurement, or the application of the Schrodinger’s 
evolution as a pure quantum dynamical process [29, 301. Thus, It is difficult to say 
whether the IHBWs experiment has proved the existence of the QZE or not. 

To compromise the above mentioned different standpoints in a reasonable framework, 
we will reconsider the QZE and its corresponding IHBW’s experiment from a distinct 
point of view based on the dynamical approach for quantum measurement in this paper. 
Since the WPC for quantum measurement in present approach can be regarded as a 
quantum dynamical process in certain circumstance, it is natural to understand the QZE 
and IHBWs experiment as the results of a measurement monitoring the system continuously, 
but the WPC characterizing measurement can be realized here quantum dynamically. 

Application to Quantum Zen0 Effect 
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6.1. 

Now, we present a dynamical model for the QZE. Let the measured object be a two-level 
systems S with Hamiltonian 

C€IANG-hJ  SUN ct al., Quantum Dynamicdl Approach 

Model Hamiltonian for QZE and its Evolution Matrix 

where 11) and 12) are the ground and excited states respectively. Q is Rabi frequency of 
the external field coupling with atom. The continuous measurement for a given time 
interval T is imaged as a limit of the L times successive measurements at different times 
t = kT /L  (0 5 k 5 L) with L + m. For k'th measurement, the interaction of measuring 
instrument-detector D on the system turns on at time t ,  = k T / L  and then turns off at at 
time t ,  + z for k = 0,1,2, .. . . Here, the z is very short in comparison with T/L. This case is 
quite similar to the realistic experiment by ~ T A N O  et al. [26]. In their experiment involving 
three levels of 'Be' ions, a on-resonance radiation frequency field is applied to 9Be+ with 
L shot on-resonance optical pulses-measurement pulses to perform a quantum measurement. 
Each optical pulse results in the off-diagonal elements of the density matrix to zero with 
the postulate of the WPC. 

In our model, the instrument D consists of N harmonic oscillators with free Hamiltonian 

where a' and ai are creation and annihilation operators for i's mode of boson states 
respectively. To realize the WPC, some additional requirements such as the frequency 
cut-off mentioned in sections must be introduced for the spectral distribution. The 
model-interaction 

1 52 sz 
2 2 

l N  

2 i - 1  
H I = -  g ( t ) ( a j + a + )  (11) (11- 12) (21)cos-t-sin - t(12) (11 -11) (21)fl  (6.3) 

is turned-on and turned-off by a switching function 

g, if tk 5 t 5 t,  + z 

Specifying the general approach in section 3 to present model, we obtain the exact 
solution U ( t )  for the Schrodinger equation of the total system C in terms of the free 
evolution matrix U ( t )  = U,(t) U,(t):  

U,( t )  = U,(t) ' Us( t ) :  
N 

= ~ i xu: n i  wk r = ~ iu: a k  I .  

k =  1 

US ( t )  = 

and the evolution matrix in the interaction picture is 

(6.4) 



where 

.ji(t)=Bk*(t) (6.7) 

for t ,  5 t 5 t ,  + z. Here, we have used the properties of the switching function g( t ) .  If z << T, 
then the approximate function Ak(t) is 

g 
hw 

iwlT - 

(6.8) A,(t) = ~ (1 - e i W k t )  e . 

It follows from the above equations that 

Notice that real part of , fk( t )  is negative and eRe(Jk(t)) is not larger than unity. 

6.2. QZE Based on Dynamical Realization of QZE 

For  the measured system S with an initial pure state 

Iv)=c1 I l ) + c ,  12) 

and the measuring instrument D with initial mixture state described by a density matrix 

N 

eo= n e o ( 4  
k =  1 

the initial state of the composite system C formed by S plus D is a mixture state with 
density matrix 

@(')=Iv) (YI @ @ D .  

Then, the state density matrix of C at t (  < t l)  is 

e ( t )  = U,(t) cJei,(t) e(0) U,'(t) U,+ ( t ) .  

Now, we understand the process of measurement as a procedure to determine the 
reduced density matrix, which contains the total information of the measured system S. 
The first measurement results in a reduced density matrix for S 

41 Fortschr. Phys. 43 (19Y5) 7 
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Q.% = P,e(t) = US(t)(l"l l 2  I1 ) ( 1 I + I C 2 l 2  12) (21 + f ( N ,  t )  I1 ) (21 

+f(N>t)*12)(1l)U,+(t) (6.10) 

by taking the trace for the variables of the detector D where the coherence factor 

N N 

f ( N , t ) = T r D ( U e ( t ) @ D ) =  n f k ( N , t ) -  n Trk[U[kl(t) (6.1 1) 

is factorizable. This factorization is crucial for the appearance of the WPC. Similar to that 
in section 3, 

k =  1 k =  1 

I . f k ( N ,  = ITrk(Urkl(t) @ D ( k ) ) l  5 '' 
Thus, the N-multiple product of all I fk(N,  t)l's must approach zero as N+co unless 

most of I f k ( N ,  t ) l ' s  are unity simultaneously. It has been illustrated that the case that all 
or most of I f k ( N ,  t)l 's are unity can be eliminated by choosing a suitable spectrum 
distribution with cut-off of frequency. For example, we take QD(k)  to a pure state 10) (01, 
obtaining 

f (N ,  t )  = (01 Ur 0) 10) = e -1: , v , ( f )  (6.12) 

where 10) = 10,) 0 10,) 0 . I .  0 10,) is the vacuum state of the detector D consisting of 
A4 oscillators. 

(6.1 3) 

Notice that eq. (6.13) is quite similar to eq. (4.8). When the detector is macroscopic 
( N +  a), the off-diagonal elements in es( t )  vanishes and the WPC appears as the result of 
the dynamical evolution, that is 

According to the above discussion, after the first time of measurement, the density matrix is 

e, t l  = - = (c\'] 11) (1) + ck2] 12) (21 + A"] 11) (21 + A[']* 12) (11) + Otl] (i) (6.15) ( 3 
where 

(6.16) 

(6.17) 
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- m 5  I I I 1 

which vanishes as N -+ co, the first term in eq. (3.1) 

~ s ( ~ 1 ) ( I c 1 l 2 I ~ )  ( ~ 1 + l c 2 l 2 I ~ >  ( l I ) G ( t l )  

represents the mixed state with complete decoherence. Subsequently, the measurement of 
first time cancels the off-diagonal term of e,(0) = I I J )  (y( as N + GO. The measurement of 
second time will cancel the off-diagonal terms A"] 11) (21 and A[']*  12) (11 in eq. (6.15). 
Similarly, after the measurement of k'th time 

@,[k] = c:klll) (11 + c 9 2 )  (21 + A [ k l ( l )  (21 + A[k1*(2) (1, + or1 (d) 
= Us(tk)(CY-l] 11) (11 + c[,k-'] 12) (21) Us(tk)+ + oyl ($) (6.18) 

where cY1 and cy]  are determined by the recurrent relations 

2 = c2 [ k - l l a 2  + C[k-ll 1 B  2 1 1  c l k - l l a 2  + cIk-ll 2 B ?  2 (6.19) 

where 

or1 ( - h) = U ( t  r k ~ 1 )  [ A [ k -  , f ( N ,  tk) 1 ) < 21 + A[k ~ * f'(N, t,)* 12) < 1 1 1 u: ( t k  - 1) 

also disappear as N --$ co . 
It is not difficult to solve cyl and .[,"I explicitly from eq. (6.191, but we only invoke the 

computer simulation to evaluate the variations of cyl and cF1 as the measurement times L 
increase. If the system is initially in pure state Il), the initial conditions are c1 = 1 and 
c2 = 0. It is illustrated in Figure 3 that, as L ----f co, the distributions c f l+  1 while c \ L l - +  0. 
Notice that ciL1 first decrease and then increase to 1. This means that, for a macroscopic 
instrument (N-+ co), the system will be forced back to the state 11) as the successive 
measurements become continuous for L -+ a. This just the QZE! 

41 * 
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6.3. 

Now, we consider the entropy of the measured system S as a function of the times L of 
measurement, Considering that the entropy is invariant under an unitary transformation 
due to the original definition, one can obtain the entropy for the QZE after L'th measurement 

(6.20) 

"Transition" of Quantum Entropy for QZE 

K 
2 

s ( L ) = s [ ~ ~ ( L ) 1 =  - - ( ~ \ ~ l I n  ~ ~ ] + c [ Z L ~ I n c [ , ~ l ~ .  

The entropy s = s [ Q , ( L  + l)] takes its maximum value 

K 
2 

S,,,(L + 1) = - In 2 

only when 
= p 1 .  

1 2  

According to the recurrent relations eq. (6.19), the above equation leads to 

c[Ll - c".l = (a2 - p2)((c["- 11 - 11 
1 2  2 )  

= (a2 - fly (c? - c;). 

Then, it is easily observed that the above equation holds only when 

a2(L) = fl(L)' 
or 

The entropy s takes several maximum values 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

Here, [x] denotes the integer part of the real number for x 2 0, if x 5 0 then [x] = 0. 

1 = 0), and there only one point for the maximum entropy 
Let us consider some special examples for the above discussions. If w T =  n, L= 2 (for 

K 
2 

sL+ = - - (cyl In .[:I + cyl In c[,Ll). (6.25) 

Generally, if w T= kn for positives integer k ,  

L=[-'*]=2k, [:I, [F], ..., [-1 2k 
2 1 + 1  2 X + l  

(6.26) 

where X z  k- 1, that is to say, there are k points 2k, [?I, [?:I, ..., [5-:&] for the 
maximum values of entropy. 
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Figure 4: The entropy as the function of times L of measurement for w T =  3n, it represents 
a “transition” of the information entropy from the random to regularity. Figure 4-b is part 
of Figure 4-a. 
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Figure 5 :  The entropy as the function of times L of measurement for o T= lox, it represents 
a “transition” of the information entropy from the random to regularity. Figure 5-b is part 
of Figure 5-a. oT= Ion, and Figure 5-c,d with OI T =  l ox .  
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For the general case with w T= k T, the above analysis shows us that, if I, is less than 
the critical value L, = 2 k, the variation of S ( L )  is a “random function” of L, which is not 
monotonic; however, when L is larger than the critical value 2 k ,  s(L) is a monoton- 
ically-decreasing function of L. When w T is not an integer times of n, the critical point for 
L is $y2j n. Such a feature of “transition” from random to regularity for quantum entropy 
in the QZE is illustrated in Figures 4 and 5. Physically, the measurement process with the 
QZE defines a transition of the information entropy from random to regularity. 

7. 

It has to be pointed out that the correlation between the states (CBS) of the measured 
system and that of the detector has not been emphasized well in the original H C  model 
and its generalizations. This problem was alternatively analysed by CINI in his beautiful 
dynamical model [39]. The present investigation is to emphasize on both the WPC and 
CBS for a generalization of the Cini model. In fact, the correlation between the states of 
measured system and the detector is crucial for a realistic process of measurement, which 
enjoys a scheme using the macroscopic counting number of the measuring instrument-detector 
to manifest the microscopic of the measured system. The original Cini model for the 
correlation between the states of measured system S and the measuring instrument-detector 
D is only build for a two-level system interacting with the detector D, which consists of 
indistinguishable bosons with two possible modes w,, and wl. For the two states u,  and 
u _  of S, the detector has different strengths of interaction with them. Then, the large 
number N of “ionized” particle in the ionized mode w1 transiting from the un-ionized 
mode coo shows this correlations. 

Generalization of Cini’s Model for Quantum Measurement 

7.1. Generalized Cini Model 

Now, we wish to generalize the Cini’s model for the M-level system. The measured system 
S with M-levels has the model Hamiltonian 

M 

&= 1 En Pn) (Gnl 
n-= 1 

where I@,) are the eigenstates corresponding to the eigenvalues En (n  = 1, 2, 
detector D is a two-boson system with the free Hamiltonian 

E-i,=hwla:al + h w , a l u ,  

where a, and u: are the creation and annihilation operators and they satisfy 

[ai, a;]  = 6,, [ai, U j ]  = [a’, a;] = 0. 

G,(t)=C ge-qt(w,  I@,,) <@,I) (ei(w2-wl)t a: a 2 + e i ( w l - ~ 2 ) ‘  a: a,) 

In the Schrti’dingrr representation, the interaction is described by 

n 

...) 

where the non-degenerate weights w, represent the different strengths for the different 
states I@,) of the system. The exponential decay factor e - v t  ( r > O )  is here introduced to 
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turn off the interaction after suitable time so that the coherence can not restore in the 
evolution process. This point can be explicitly seen in the following discussion. The 
introduction of time-dependent factors e"("' is ' quite similar to that in ref. [13] where 
these factors are used to describe the energy exchange due to the presence of the free 
Hamiltonian H,. Notice that there was not the free Hamiltonian for detector in the 
original Hepp-Coleman model such as H ,  in our present model. Let H = Hs + H ,  + H ,  be 
the total Hamiltonian in the Schrodinger representation for the composite system C 
formed by S plus D .  

Transforming the problem into the interaction representation with the evolution operator 

one has the interaction potential 

(7.5) 

In order to diagonalize V,(t), we invoke the canonical transformation as in ref. [39] 

where the new boson operators bi and b: still satisfy the same bosonic commutation 
relation. In terms of these operators, Vr(t)  is rewritten as the diagonal form 

Then, considering that the interaction part Vr( t )  commutes with each other at different 
time, ie. 

one can express the evolution operators as 

where 

takes the real time as q + 0. Thus, t can be regarded as the y-deformation of time t. When 
t+  co, t q -+  ,. 1 
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7.2. Correlation of States from Evolution of State 

Now, we consider the evolution of the total system starting with an initial state at t = 0 
M 

I Y ( O ) ) =  ck l @ k )  @ I N , o )  (7.9) 
k =  1 

where 

(7.10) 

denotes a Fock state of two-boson system with n particles in "ionized" state and m 
particles in un-ionized state. It is hoped to manifest a correlation between the states Im, n )  
of detector and the state of the system in a dynamical evolution of the state 1 Y ( t ) )  in 
some limiting case so that one can read out the state from the manifestation of the 
state Im, n )  of the detector. Notice that the eigenstates of the operator 

6 = h: h ,  - b; b, 

are 

(7.11) 

with the eigenvalues 

c,(a)=21"- N (7.13) 

where R =0, 1,2,  ... , N for a given integer N. The original Fock state can be expended in 
terms of 12, N - A] as 

Then, one obtains the wavefunction of thew total system at time t 

IY,(l)) = U r ( t )  I'u(0)) 

namely, 

where 

(7.14) 

(7.15) 

(7.16) 

(7.17) 
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Obviously, the probability of finding n "ionized" particles in second bosonic mode is 

N !  
n !  ( N - n ) !  P, = 14,12 = cos'"(gW,t,) sin2(N-'L)(g W k v  t ) 

or 

P, = Cfp"(1 - p)"-" 
where 

(7.18) 

(7.19) 

When N is very large so that the Stirling formula is valid, it can be proved that when 
nk = ii, = N p k ( t ) ,  the probability p ,  has its maximum. 

(7.20) 

Notice that the derivation is the same as that in ref. [39], but ii, depends on the index 
k.  As proved in ref. [39], Pnk is very strongly peaked around its maximum Pzk, which 
becomes unity when N -+ co. Therefore, if the detector is very macroscopic ( N  + a), then 
Pnk(N + a) = dnkiik that leads to 

(7.21) 

When fi,(t) + i ik . ( t )  for k + k', a one-to-one correlation between the states ( Q k )  of S and the 
states of D. In this sense, if the detector is found in the state Jiik(t), N - i ik ( t ) ) ,  it can be 
concluded that the system is in this state I@,). A realistic detector must have a good fringe 
visibility, which can manifests the macroscopic differences between any two states of 
Iii,, N - i i k )  for different k. It required that there is not the considerable overlap between 
In,, N - ii,) and Ifi,,, N - ii,.) for k =+= k'. In fact, if ii, = iik,, then 

gWkt,=gWk,t,+nn, n=0,1,2,  ... 

g t ,  ( W, - Wk,) = n n . 
or 

Otherwise, if one lets the interaction between S and D decay very fast so that the limiting time 

1 71 
- 

y - 2g(wk- Wk') 

for any k + k', then fi, ( t )  =+= ii,. ( t )  for any long time evolution. 
Notice that the above mentioned problem of overlap of correlation states is a 

disadvantage in the original Cini's model, where there is not the decay factor of 
interaction. So, in the time t, = the states 16, N - i i )  and IN, 0) are completely overlap. 
Here, it is the case of two levels wlth W, = W =  &, W, = 0, thus, at t = t ,  the correlations 
vanish for the original Cini's model. Introducing the decay factor e - v t  in the interaction is 
the key point to avoid vanishing of correlation in our model. In fact, such decay of 
interaction can appear in realistic physics. For example, an atom is prepared in a 
microwave cavity loaded with an electromagnetic field which can decay at  a suitable rate. 
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In this example, the atom and the cavity are regarded as the system and the detector 
respectively. Notice that this example is quite useful for the studies of atomic cooling [40]. 

C t f A N G - h  S U N  et al., Quantum Dynamical Approach 

7.3. Wavefunction Collapse in Cini Model 

We can also use the above generalized Cini's model to describe the WPC for the M-level 
system quantum mechanically. Let the system D be initially prepared in a coherent 
superposition of M-level 

(7.22) 

and the detector be adjusted in the initial state IN, 0), then the density matrix for the 
initial state of total system is expressed as 

(7.23) 

Using the evolution operator U,(t)  in the interaction representation, one formally write 
down the density matrix for the total system at t 

Because we are only interested in the final state of the system other than that of the 
detector for the consideration of WPC, so we must take trace over the variable of detector 
in the total density matrix to obtain a reduced density matrix for S 

where we have used 

N c Ia,(t, k)l2 = 1 
n - 0  

and 
N 

1 a,(t, k) a,*(t, k')=cosN[g(Wk- Wk,)t,,] 
n = 0  

(7.25) 

(7.26) 

Notice that each off-diagonal element in the density matrix is accompanied by a 
time-dependent factor 

FN(k, k')=CosN[g(Wk- Wk.)t,,] (7.27) 

which is a N-multiple product of factors cos [g( Wk - Wkr)tq]. Recalling that due to the 
existence of the strong decay factor e - q *  so that 
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holds for any k + k ,  we observed that the deformed time t ,  changes from t, = 0 to t ,  = 
the real time changes from t = 0 to t --f co respectively. In this sense, 

as 

and then 

or 

(7.28) 

(7.29) 

This observation leads to 

F N ( k ,  k’ )  = e - N f k ( t i )  

which obviously approach zero as N + co. Therefore, when the detector is macroscopic, 
(N-.  co) the off-diagonal terms of the density matrix vanish and the wavefunction 
collapse is realized quantum dynamically. 

To end this paper, we present some comments on the above discussions. Though this 
paper provides one with an  extensive generalization and the unified description for a 
number of dynamical models (e.g., the HC model) for the quantum decoherence, we have 
to say that a disadvantage in the original model still exists in the present models. This is 
the oscillation of Ukkl(t)+ U$l(t) may enable most of the factors Fi:ln,(T, t )  in eq. (3.6) to 
become unity at a specific time t = z, and thus the whole accompanying factor can not 
approach zero at this time. To suppress such kind of oscillation so that the decoherence 
appears in dynamical evolution, a phenomenological method is to use the switching 
function g ( t )  in the interaction (2.3). However, the microscopic mechanism of this 
switching is not clear for us. We believe that the quantum dissipation caused by the 
detector or environment is a possible way to introduce such a switching mechanism 
microscopically. For the concrete example that D is made up of harmonic oscillators, the 
discussion in section 4 showed that this kind of dissipation may result from the specific 
distribution of a detector with infinite particles. How to realize the quantum decoherence 
directly through quantum dissipation is still an open question. 
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