
entropy

Article

Maximum Entropy Approach to Reliability
of Multi-Component Systems with Non-Repairable
or Repairable Components

Yi-Mu Du 1, Jin-Fu Chen 1,2 , Xuefei Guan 1,* and C. P. Sun 1,2,*

����������
�������

Citation: Du, Y.-M.; Chen, J.-F.;

Guan, X.; Sun, C.P. Maximum

Entropy Approach to Reliability of

Multi-Component Systems with

Non-Repairable or Repairable

Components. Entropy 2021, 23, 348.

https://doi.org/10.3390/e23030348

Academic Editor: Adam Glowacz

Received: 14 February 2021

Accepted: 10 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of China Academy of Engineering Physics, Beijing 100193, China;
ymdu@gscaep.ac.cn (Y.-M.D.); chenjinfu@csrc.ac.cn(J.-F.C.)

2 Beijing Computational Science Research Center, Beijing 100193, China
* Correspondence: xfguan@gscaep.ac.cn (X.G.); cpsun@csrc.ac.cn (C.P.S.)

Abstract: The degradation and recovery processes are multi-scale phenomena in many physical,
engineering, biological, and social systems, and determine the aging of the entire system. Therefore,
understanding the interplay between the two processes at the component level is the key to evaluate
the reliability of the system. Based on the principle of maximum entropy, an approach is proposed to
model and infer the processes at the component level, and is applied to repairable and non-repairable
systems. By incorporating the reliability block diagram, this approach allows for integrating the in-
formation of network connectivity and statistical moments to infer the hazard or recovery rates of the
degradation or recovery processes. The overall approach is demonstrated with numerical examples.

Keywords: statistical inference; maximum entropy principle; hazard rate function; complex network

1. Introduction

Degradation processes are ubiquitous in many physical, engineering, biological, and
social systems. Modeling the degradation is crucial for lifetime prediction and has drawn
increasing attention in the field of reliability and risk analysis [1]. Reliable and accurate
lifetime prediction remains a great challenge due to the time-varying and stochastic nature
of degradation processes.

In reliability theory, the hazard rate function characterizes the failure probability in
the degradation processes, and determines the probability distribution of the lifetime. To
estimate the hazard rate function, the lifetime distribution is usually presumed in a certain
form, and is fitted with the lifetime testing data. Alternatively, with a large number of
lifetime data, an empirical curve can be directly established by interpolation. Both methods
require sufficient samples of data to assure the accuracy and reliability of the results. For
high reliability-demanding systems or parts, the sample size is usually small. To alleviate
the difficulty, the previous study [2] proposed a method based on the maximum entropy
principle (MaxEnt) [3–5] to estimate the hazard rate function and the lifetime distribution
with limited lifetime testing data of the whole system.

However, the forecast of an on-going aging process of a multi-component system
is still challenging. For most complex multi-component systems, it is difficult to obtain
enough system-level lifetime data due to the restriction on the trial cost, the limitation of
the observation, the very low degradation rate, and so on. An alternative method is to
estimate degradation at the component level, leveraging the fact that the component-level
degradation is closely associated with the aging of the whole system. The association is
defined by the structural function [6], which can be represented by the reliability block
diagram [7]. Existing studies, including but not limited to [6,7], neglect the correlations
between the components. However, the failure of an individual component usually leads
to a load redistribution to other normal components in a complex system, influencing the

Entropy 2021, 23, 348. https://doi.org/10.3390/e23030348 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7207-969X
https://doi.org/10.3390/e23030348
https://doi.org/10.3390/e23030348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030348
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030348?type=check_update&version=2


Entropy 2021, 23, 348 2 of 14

degradation among components. Therefore, ignoring the correlation may cause unknown
risk. There are no formal rules to deal with the interaction of the degradations among
connected components [8].

The network approach is widely used to model the spreading dynamics of epidemics
and information in society [9–13], and such spreading dynamics resemble the degradation
propagation in a complex system. The network approach has demonstrated its advantage
in modeling the systems with multiple correlated components [14,15] such as, an electrical
circuit with multiple electronic components, a mechanical system involving multiple parts,
a living consisting of multiple organs [16–23], and many other.

By combining the network approach, this study develops a MaxEnt-based reliability
method for general multi-component systems. The basic idea is to represent the entropy of
the system as a function of the hazard rate functions of the participating components. The
connectivity of the components in the network can subsequently be recast to an equiva-
lent reliability block diagram of the system. In particular, non-repairable and repairable
models are focused to motivate the development of the proposed method. The former one
represents a network with multiple inter-connected components where the components
only undergo degradation process. The latter one allows for the recovery or replacement
of failed components, by which the forecast of an on-going aging-recovering process is
demonstrated. To study the degradation propagation, the failure of one component alters
the hazard rate function of neighboring components in both models. By incorporating the
reliability block diagram, the components are hierarchically organized in a parallel-series
diagram. The statistical moments are used in the macroscopic model to reduce the inherent
noise in early-stage data. Furthermore, under the assumption of a homogeneous hazard
rate, the one-shot type of data can be transformed to equivalent moment data with the
reliability block diagram.

This paper is organized as follows. In Section 2, the multi-component system is briefly
reviewed. In Section 3, the microscopic model for the non-repairable system is developed.
The MaxEnt is used to infer the (inhomogeneous and homogeneous) hazard rates of the
components with the different topologies of the network. In Section 4, the reliability block
diagram is employed as a tool to aggregate different types of information. In Section 5, the
microscopic model for repairable systems is discussed in detail. The repairable-component
model of the Watts–Strogatz small world [24] is adopted to demonstrate the proposed
method. Different limitations of accessible information, such as the local observation and
the one-shot observation, are taken into account.

2. Modeling the Degradation and the Recovery Processes

In this paper, the multi-component systems are modeled by the networks, where nodes
denote the components. Each component has two possible states, namely, the normal state
and failed state.

The propagation of degradation is driven by one or more failed components in the
system. The degradation process of a component is triggered by a failed neighboring
component with the transition rate x(t), where t is the duration that the component
connects with at least one failed component. Its remaining lifetime T is a random variable
with a probability Prob(T > t) = F(t). For a normal component connected to more than
one failed component, the transition rate is assumed to be the same. The transition rate
function is defined by:

x(t) = −d ln F(t)
dt

, (1)

which is also called the hazard rate function in reliability theory. With the degradation
process defined for an individual component, the joint distributions of all the components’
lifetimes are directly constructed by the hazard functions.
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The repairable-component model is built by adding the recovery process. Similar to
the degradation process, the recovery time T̃ is assumed to be a random variable with the
cumulative distribution Prob(T̃ > t) = R(t). The recovery rate function is defined by:

y(t) = −d ln R(t)
dt

. (2)

Recovered components are assumed to undergo further degradation.

3. The Non-Repairable System

The standard MaxEnt provides a method to construct the most probable distribution
with linear constraints, e.g., moment constraints, or convex constraints [25]. In practice,
the small number of constraints may lead to an imprecise inference. For example, for a
two-dimensional distribution, if the constraints are the first moments of the two random
variables, the standard MaxEnt only provides an uncorrelated distribution, since the
first moments do not contain information of correlations. The construction of correlated
distributions requires more constraints, which raises a higher requirement of observation.

To reduce the requirement of available information, an alternative way is proposed by
combining the MaxEnt with the degradation model, which is regarded as prior knowledge
and constrains the probability distribution. Namely, the variation is done in a physical
subset of the probability distribution functional space. In this section, the variational proba-
bility distributions rely on the network structures and the model. A standard MaxEnt with
moment constraints is equivalent to the maximum likelihood estimation, while the MaxEnt
based on degradation model here is different from the maximum likelihood estimation.

To begin with, the double-component systems as presented in Figure 1a,b, are studied
to present the inference of the components’ hazard rates via MaxEnt. The two components
are labeled by C1 and C2 with lifetimes t1 and t2. The joint probability distribution of
lifetimes p(t1, t2) is associated with the hazard rates xi with i = 1, 2. The system may
degrade in two different possible ways: C1 degrades first and C2 follows, and the opposite.
The joint distribution of the lifetimes is written as:

p(t1, t2) ≡ p12(t1, t2)θ(t2 − t1) + p21(t1, t2)θ(t1 − t2), (3)

where θ denotes the step function. p12, p21 are the functions depending on the structure of
the graph, which will be explicitly defined in different cases. The structure-dependent joint
distribution implies the physical subset in which the variation is done.

In the following, the inference of the life time distribution p(t1, t2) given a different
type of information is developed based on the MaxEnt principle. Both the degradation
sequence and the lifetimes are considered in the joint distribution (3). The Shannon
entropy [26] of the joint distribution is written as:

S[p] = −
∫ ∫

p(t1, t2) ln p(t1, t2)dt1dt2. (4)

The linear constraints are:

C[p] = −∑
k

ξk

∫ ∫
fk(t1, t2)p(t1, t2)dt1dt2, (5)

where ξks are the Lagrange multipliers corresponding to the averages of fk with k = 1, 2, · · · ,
and the averages are either the moments or the correlations of the components’ lifetimes.
These constraints are the same with that considered in the standard MaxEnt.

The most probable probability distribution is obtained through maximizing the en-
tropy with the constraints:

δ(S + C)
δp

= 0, (6)
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which also gives the most probable hazard rate.

Figure 1. The illustrations of the system networks. (a) the double-component model of indepen-
dent degradation, (b) the double-component model of correlated degradation (c) the chain-type
graph model (d) the graph model contains loop. The filled and the numbered circles represent the
degradation source and normal components, respectively.

3.1. MaxEnt for Double-Component Non-Repairable Model: Independent Degradation

Figure 1a shows independent degradations of the two components. The joint proba-
bility distribution of lifetimes p(t1, t2) = p1(t1)p2(t2) is determined by:

p(t1, t2) = p1(t1)p2(t2) ≡ x1(t1)x2(t2) exp[−X1(t1)− X2(t2)]; (7)

with the hazard rate function xi of each component and Xi(t) =
∫ t

0 xi(t′)dt′, i = 1, 2. In this
case, p12 is same with p21, i.e., p12 = p21 = x1(t1)x2(t2) exp[−X1(t1)−X2(t2)]. The hazard
rate function is directly used here, because in general a one-dimensional distribution pi(t)
(defined with t ∈ [0, ∞)) can be expressed as pi(t) = xi(t) exp[−Xi(t)].

By defining a function L(x1, X1, x2, X2, t) = −p ln p − ∑k ξk fk(t1, t2)p, Equation (6)
is rewritten as S + C =

∫
Ldt1dt2. With Euler–Lagrange equations, it follows from

Equation (6) that:

ẋi − x2
i + xi ∑

k
ξk

∫ t

0
h(k)i xī(tī) exp[−Xī(tī)]dtī = 0, (8)

where i, ī = 1, 2, i 6= ī, and h(k)i = ∂ti fk(t1, t2)|ti=t.
If taking the average lifetimes t̄1, t̄2 as the constraints, i.e., f1 = t1, f2 = t2, then the

solutions become x1 = 1/t̄1, x2 = 1/t̄2 for Equation (8).
Note that not all the correlations and the moments can be fused by Equation (8). For

example, one considers f1 = t1, f2 = t2, f3 = t1t2 and determines the Lagrange multipliers
by these observed values t̄1, t̄2, and t1t2. No solution exists for the Lagrange multipliers
ξk in Equation (8) when t̄1 t̄2 6= t1t2, because the distribution in Equation (7) implies t1 is
independent with t2 which is conflicted with the available information. To remove such
conflict, one could modify the degradation model (i.e., modify the physical subset) or
select other constraints, for example, f1 = t1, f2 = t2, f3 = (t1 − t2)

2, and the solution to
Equation (6) becomes:

p(t1, t2) =
1
Z

exp[−ξ̃1t1 − ξ̃2t2 − ξ3(t2
1 + t2

2)],
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where Z is the partition function and −∂ ln Z/∂ξ̃1 = t̄1,−∂ ln Z/∂ξ̃2 = t̄2, −∂ ln Z/∂ξ3 =

(t1 − t2)2 + t̄1 t̄2 with ξ̃1 = ξ1 − 2ξ3 t̄2, ξ̃2 = ξ2 − 2ξ3 t̄1.

3.2. MaxEnt for Double-Component Non-Repairable Model: Correlated Degradation Case

In Figure 1b, the degradation processes of the two components are correlated. The joint
probability distribution of lifetimes is p(t1, t2) = p12θ(t2− t1). Combining the degradation-
propagation rule with the network structure, C1 degrades due to connection with the
degradation source and the degradation of C2 follows. As the result, p12 becomes:

p12 =p1(t1)p2|1(t2|t1) (9)

where p1 = x1(t1) exp[−X(t1)] is marginal probability distribution, and p2|1(t2|t1) =
x2(t2 − t1) exp[−X2(t2 − t1)]θ(t2 − t1) is the conditional probability distribution. p(t1, t2)
is normalized if exp[−Xi(0)] = 1, exp[−Xi(+∞)] = 0, i = 1, 2. The time-dependent hazard
rate function implies a non-Markovian degradation process for the correlated systems.
The difference between the distribution by Equations (7) and (9) is caused by different
network structures.

Equation (6) becomes:

ẋi − x2
i + xi ∑

k
ξk

∫ t

0
g(k)i xī(t

′) exp[−Xī(t
′)]dt′ = 0, (10)

with i = 1, 2, ī 6= i and g(k)1 = ∂t fk(t, t + t′), g(k)2 = ∂t fk(t′, t′ + t).
Equation (9) implies that the random variables t1 and t2 − t1 are statistically inde-

pendent. With observing the average lifetimes t̄1, t̄2, the hazard rates are inferred as
x1 = 1/t̄1, x2 = 1/(t̄2 − t̄1). In the above two cases, the entropy functions depend on the
structure of the graphs, which leads to different dynamics of degradation processes.

4. System Hierarchy by Reliability Block Diagram

In this section, the information constraints to the MaxEnt are considered. The lifetime
of one component is the summation of the two intervals. One is the shortest lifetime of the
neighbor components. The other is the remaining lifetime of the component. The former
relates to the path information, and the single-component information for the latter. The
reliability block diagram is introduced to classify different types of information constraints.

4.1. System-Level Observation and Coarse-Grained Information

The system-level observation is defined in the following way. For an n-component
system, a failure of system occurs if more than k of n components degrade. In the reliability
theory, such a system is called the ‘k/n system’ [7]. The lifetime of the entire system is the
coarse grain of the component-level information. For the models considered in this paper,
the lifetimes of k/n systems depend on the degrading path, and the path information is
also the coarse-grain information.

Specifically, the 1/n(n/n) system is called the series (parallel) system, the reliability
block diagram of which is shown in Figure 2. In the diagrams, the blocks stand for the
components. The diagrams illustrate the relationship between the system-level data and
the component-level data.

The reliability block diagram explicitly presents the observed data. As follows, it
shows that the reliability block diagram can be reduced according to the degradation rule
and the network structure in some particular cases.
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Figure 2. The reliability block diagram of parallel system (left) and series system (right).

4.2. Tree-Type Networks

Consider a semi-infinite chain with n components, as shown in Figure 1c. From the
left side to the right side, the components are labeled by C1, C2, · · · , Cn. The filled circle
stands for a source of degradation. The degradation starts with C1 and ends with Cn. The
joint probability distribution of lifetimes is:

p(t1, t2, · · · , tn) = p1(t1)
n

∏
i=2

pi(ti − ti−1)θ(ti − ti−1). (11)

For a parallel system, the average lifetime of Cn is observed, which gives the con-
straint C =

∫
p(t1, t2, · · · , tn)max(t1, t2, · · · , tn)∏n

i=1 dti. According to MaxEnt, the most
probable distribution becomes:

p(t1, t2, · · · , tn) = ξn exp(−ξtn)
n

∏
i=2

θ(ti − ti−1), (12)

The lifetime distribution of parallel system follows:

p(t) =
ξntn−1

(n− 1)!
exp(−ξt). (13)

The gamma distribution is retained by MaxEnt with the system-level information.
In the chain-type network, the lifetime of Cn can be decomposed into the remaining

lifetime of each component as tn = (tn − tn−1) + (tn−1 − tn−2) + · · ·+ t1. Each interval in
the summation is associated with the hazard rate of the corresponding component. This
implies that if the n components are on one path, the further reduction of the parallel type
diagram can be done according to Figure 3. Since the path is unique for any tree graphs,
the path information is further reduced to lots of single-component information.

Figure 3. The reduction of the reliability block diagram. The right arrow means that if the n
components are on one path, the parallel type diagram can be further reduced for tree graphs.

4.3. Homogeneous Hazard Assumption

For the degradation propagated on more complex networks, it is difficult to apply
the above approach to infer hazard rates of all components, since required information,
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such as lifetime moments of specific components and subsystems, increases rapidly with
the increasing number of components. This information can only be obtained from the
observation to system ensemble. However, it is difficult to obtain the ensemble data for a
complex system in practice. In particular, it is impossible to make a precise component-
dependent inference based on the one-shot degradation data. If the components could be
sorted into several classes according to their degrees or other characteristics with negligible
difference in the same class, a class-dependent inference is possible to achieve. For example,
in the epidemic models, it is usually assumed that all individuals obey the same infection
and recovery rates. In this way, it is feasible to infer a homogeneous hazard rate with the
one-shot degradation data by MaxEnt.

Under the homogeneous hazard assumption, the variational joint probability distribu-
tion of the system in Figure 1c is:

p(t1, t2, t3, · · · , n) =
n

∏
i=1

ph(ti − ti−1)θ(ti − ti−1), (14)

where ph is the identical remaining lifetime distribution of all the components.
The constraints are the first and the second moment of tn: t̄n, t̄2

n.

C =−
∫

p(t1, t2, t3, · · · , tn)(ξ1tn + ξ2t2
n)

n

∏
i=1

dti, (15)

where ξ1(2) are the Lagrange multipliers. With ph = xh exp(−Xh), the MaxEnt by Equation (6)
leads to the Euler–Lagrange equation of the hazard rate as:

ẋh − x2
h + xh(ξ̃1 + 2ξ̃2t) = 0. (16)

The above equation has solution:

ph =
1
Z

exp(−ξ̃1t− ξ2t2), (17)

where Z is normalization constant, ξ̃1 = ξ1 + (n− 1)ξ2 t̄n/n. The parameters are deter-
mined by:

−∂ ln Z
∂ξ̃1

=
t̄n

n

−∂ ln Z
∂ξ2

=
t̄2
n
n
− (n− 1)

n2 t̄2
n.

(18)

These results are reduced to the single-component case [2], which coincides with the
reduction of the reliability block diagram in Figure 3.

For one-shot observation, it is difficult to infer the component-dependent hazard rate
due to the lack of moment information. The homogeneous hazard assumption provides an
alternative way to rebuild the joint distribution with the one-shot data.

4.4. Loop Networks and Parallel-Series Type Diagram

With a loop structure in a network, the degradation path is not unique, which leads
to a parallel-series type diagram. The diagram could not be reduced to single blocks.
Consequently, the constraints for the MaxEnt is no longer linear. Assume there are m
paths from the target component to the source, and the lengths of the paths are denoted by
di, i = 1, 2, · · · , m. The reliability block diagram is presented in Figure 4.
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Figure 4. The reliability diagram for parallel-series system.

Take the network in Figure 1d as an example, the components are labeled by C1, C2,
and C3. The joint distribution of the lifetime is:

p(t1, t2, t3) =p1(t1)p2(t2)[p3(t3 − t1)θ(t3 − t1)θ(t2 − t1)

+ p3(t3 − t2)θ(t3 − t2)θ(t1 − t2)],
(19)

where pi(t) = ph(t) is the lifetime distributions of component Ci.
The constraints, for example, are the first-order moments for each individual compo-

nent, namely:

C =3
3

∑
i=1

ξi

∫
p(t1, t2, t3)tidt1dt2dt3

=− 3ξ
∫

Fhdt− 3ξ3

∫
F2

hdt

(20)

where Fh =
∫ ∞

t ph(t′)dt′ is the survival probability of the homogeneous distribution ph,
and ξ1 = ξ2, ξ3 are the Lagrange multipliers with ξ = ξ1 + ξ3. The factor 3 in Equation (20)
is added to simplify the following calculation and note that it does not affect the distribution
determined by the MaxEnt. The first term in Equation (20) is the single-component moment,
and the second term is the moment for the series structure of two components. These
constraints are directly obtained with the reliability block diagram presented in Figure 5.

To see the non-linearity of the constraint in Equation (20), rewrite the entropy explicitly,

S =−
∫

p(t1, t2, t3) ln p(t1, t2, t3)dt1dt2dt3

=−
∫ ∞

0
dt1

∫ ∞

t1

dt2

∫ ∞

0
dτph(t1)ph2(t2)ph(τ)[ln ph(t1) + ln ph(t2) + ln ph(τ)]

−
∫ ∞

0
dt1

∫ t1

0
dt2

∫ ∞

0
dτph(t1)ph2(t2)ph(τ)[ln ph(t1) + ln ph(t2) + ln ph(τ)]

=− 3
∫

ph ln phdt,

(21)

which shows that the entropy of the three-dimensional distribution Equation (19) is pro-
portional to that of the one-dimensional distribution ph. It follows from Equation (20) that:

S + C = 3
[
−

∫
ph ln phdt− ξ

∫
Fhdt− ξ3

∫
F2

hdt
]
, (22)

where the constraint is nonlinear in ph, although still linear in p. The degradation model
converts the linear constraint in high-dimensional distributions to the non-linear constraint
in low-dimensional distributions.
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Figure 5. The reliability block diagram and its reduction for a parallel-series structure.

From the structure-dependent joint probability distribution by Equation (19) and the
constraints by Equation (20), the hazard rate for each component is inferred as:

ü + ξ3u̇u = 0, (23)

with u = Fh + ξ/ξ3. The solution is:

Fh =
ξ − ξ tanh(ξt/2)

ξ + (ξ3 + ξ) tanh(ξt/2)
. (24)

The above discussion presents the reduction of the reliability block diagram. It is
worth mentioning that the reduction depends on the network structure and the rule of
degradation propagation.

5. The Repairable System

This section motivates to demonstrate the MaxEnt-based reliability theory for the
repairable systems. A failed component can return to a normal component through the
recovery process. The recovery processes of the components are assumed to be statistically
independent of each other. The degradation is similar to that of the non-repairable model.

5.1. Double-Component Model

Consider a simple example as presented in Figure 1b. The component Ci fails at time
ti and recovers at time τi (the recovery time is τi − ti) with i = 1, 2. Before the first recovery
of C1, the component C2 may fail at least once or not, which are labeled by (1; 1) and (0; 1),
respectively. Here the notation (n; k) means k leaves of the hub with n leaves failed at
least once.

The joint distributions for two situations are written as:

p(1;1)(t2 − t1, τ1 − t1) =x(t2 − t1) exp[−X(t2 − t1)]y1(τ1 − t1)

exp[−Y(τ1 − t1)]θ(t2 − t1)θ(τ1 − t2),

p(0;1)(τ1 − t1) =y(τ1 − t1) exp[−Y(τ1 − t1)]θ(τ1 − t1),

(25)

where the hazard (recovery) rate is x(y). The corresponding probabilities are obtained as:

P(1;1) =
∫ ∞

0
exp(−Y)x exp(−X)dt,

P(0;1) =
∫ ∞

0
y exp(−Y) exp(−X)dt = 1− P(1;1).

(26)

Different number of variables in Equation (25) for the two distributions leads to
divergent entropy of the joint distribution. In this situation, one could estimate the most
probable distributions through maximizing the entropies of the following distributions:

q(t) = y exp(−Y),

p(t) = exp(−Y)x exp(−X)/P(1;1) ≡ x̃ exp(−X̃),
(27)

where p is the distribution of the series interval from C1 to C2, and x̃ is the effective
hazard rate.
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Based on the average recovery time and series interval obtained from the moments of
one-shot data, the hazard and recovery rates are directly inferred from

δ
[
−

∫
q(t) ln q(t)dt−

∫
p(t) ln p(t)dt

−∑
k
[ξk

∫
q(t)tkdt + ξ̃k

∫
p(t)tkdt]

]
= 0.

(28)

Particularly for constraints of first and second moments, MaxEnt gives the most
probable distribution as:

q(t) =
1
Z

exp(−ξ1t− ξ2t2),

p(t) =
1
Z̃

exp(−ξ̃1t− ξ̃2t2),
(29)

where Z, Z̃ are normalization constants.
The bare hazard rate and the ratio of degradation are determined:

p(1;1) =
1∫

p(t) exp(Y)dt

x exp(−X) = p(1;1) x̃ exp(−X̃ + Y).
(30)

The ratio of degradation is associated with the recovery duration and the series interval.

5.2. Degradation Propagation on Star Graph and Complex Networks

Since in the early stage of a degradation process on a low-clustering-coefficient net-
work, the sub-graph consisting of the failed nodes is usually in a star type, namely most
nodes fail due to the connection to one single failed node. As follows, the degradation on a
star graph is studied.

A graph is called a star graph if there is one specific node (called ‘hub’) links with
all other nodes (called ‘leaves’) and there are no links between the leaves. Consider a
star graph with the hub labeled by 0 and the leaves 1, 2, · · · , k. Without loss of generality
assuming t0 = 0, the detailed joint probability density function p(n;k)(τ0, t1, t2, · · · , tn) that
n of k failed is explicitly written as:

p(n;k) =y(τ0) exp[−(k− n)X(τ0)−Y(τ0)]

×
n

∏
i=1

x(ti) exp[−X(ti)]
n!

(k− n)!n!
,

(31)

with the corresponding probability:

P(n;k) =
∫

p(n;k)dτ0

n

∏
i=1

dti

=
n!

(k− n)!n!

∫ ∞

0
(1− e−X)ne−(k−n)Xqdt.

(32)

It is easy to verify the normalized condition ∑k
n=0 P(n;k) = 1, and the expected number

of the components failed at least once:

k

∑
n=0

nP(n;k) = kP(1;1). (33)

The moments of the series interval follow from Equation (31) as:
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∫ +∞

0
p(t)tmdt ≡

〈tm
1 〉(1|1)
〈1〉(1|1)

=
∑k

n=1〈tm
1 + tm

2 + · · ·+ tm
n 〉(n;k)/n

∑k
n=1〈t0

1 + t0
2 + · · ·+ t0

n〉(n|k)/n
,

(34)

where the average denotes 〈· · · 〉(n|k) =
∫
· · · p(n;k)dτ0 ∏n

i=1 dti. Equation (34) does not
depend on the leave number k, and gives a reliable estimation of moments based on the
data of the sampling nodes. The dynamical parameter estimation and network structure
estimation, thus, become separated in this way.

5.3. Illustration of the Method

The performance of the approach is presented with the simulation of the repairable
model on 10,000-node Watts–Strogatz small world [24] with the reconnected probability
p = 0.05 and the degree K = 12. The sub-graph of the generated Watts–Strogatz small
world is presented in Figure 6 for illustration. To clearly demonstrate the connection
14 nodes are shown.

Figure 6. The sub-graph of the generated Watts-Strogatz small world where 14 nodes are shown for
illustration purposes.

The hazard rate and the recovery rate are set to be exponential distributions:

xsim exp(−Xsim) ∝ exp(−αst− βst2),

ysim exp(−Ysim) ∝ exp(−αrt− βrt2),
(35)

with t > 0 In the simulation, the parameters are chosen as αs = −2, βs = −1/3, αr = 1/4.
Here for simplicity, the constant recovery rate is chosen with βr = 0.

The constraints are the first and second moments of the series interval and the first
moment of recovery time. With the reliability block diagram, the observed component is
chosen to ensure that only single-component data is obtained. The results are presented in
Figure 7.
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Figure 7. The performance of the MaxEnt method. (a) The inference of the bare hazard rate. (b) The
forecast of the number of normal and failed components by MaxEnt. The parameters of simulation
are αs = −2, βs = −1/3, αr = 1/4, βr = 0. The simulation result shows that the total spreading last
about T = 15(α−1

r ), the data with an initial 1.5(α−1
r ). The data of 27 single-component samples are

used to estimate the moments.

For the system-level models, the reliable estimation of the model parameters depends
on sufficient system-level survey data. For example, in the epidemics [27], the numbers
of susceptible, infected, and recovered individuals are needed at different time points to
estimate the model parameters. The counts are noisy due to the false alarm, test capacity,
and latency [28]. It is different with the approach in [27] that the proposed approach can
deal with the component-level data.

6. Conclusions and Discussion

In this work, a novel MaxEnt-based approach of multi-component systems was pro-
posed to assess the reliability of non-repairable and repairable systems. The developed
approach provides a rational way to estimate hazard rates of a system consisting of corre-
lated degrading components. Combined with the reliability block diagram, the one-shot
type of data can be used for the estimation. The case study shows that the developed
approach can yield reliable results with limited and noisy data at the early stage.

The application of the approach involves the following steps in general as presented
in Figure 8. (1) Form a network with nodes representing the multi-component system,
(2) build the variational joint distribution based on the network, (3) collect the observed
lifetime (recovery duration) data of the components as testable information, (4) process the
observed data according to the reliability block diagram and calculate the moments, and
(5) maximize the entropy of the variational joint distribution with the moment constraints.
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For many artificial systems, the network structure is usually known, and the network can
be constructed accordingly among the components. For the systems with an unknown
structure, the inference of network structure is also needed. Such inference is not the
subject of this paper. Relevant discussions can be found in [29,30] for network modeling.
Combination the inference of network and dynamics will be studied in future work.

Determined network structure 

      Physical degradation model 

      Variation joint distribution  

   Observed (point) data   Reliability block diagram   moment data 

  Max-Ent    
equation 

     The most probable 
 joint distribution  

Figure 8. The block diagram of proposed method.
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