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Abstract – We study the Hawking radiation of black holes by considering the canonical typicality.
For the universe consisting of black holes and their outer part, we directly obtain a non-thermal
radiation spectrum of an arbitrary black hole from its entropy, which only depends on a few
external qualities (known as hairs), such as mass, charge, and angular momentum. Our result
shows that the spectrum of the non-thermal radiation is independent of the detailed quantum
tunneling dynamics across the black hole horizon. We prove that the black hole information
paradox is naturally resolved by taking into account the correlation between the black hole and
its radiation in our approach.

Copyright c© EPLA, 2018

Introduction. – The study of black hole physics have
elicited many important results, such as area law [1]
and Hawking radiation [2,3], which have tremendous im-
pacts on many related researches in different areas of
physics [4–7]. One of them is the study of the black hole
information paradox. The thermal radiation of a black
hole directly leads to an information loss [8,9], which
contradicts with the properties of unitarity in quantum
mechanics.

In 2000, Parikh and Wilczek [10] considered the problem
of black hole information loss from a consistent perspec-
tive of quantum tunneling, and a non-thermal radiation
spectrum was discovered. Such spectrum allows the cor-
relation between subsequently emitted particles. Zhang
et al. [11] shows that by taking the correlation of black
hole radiation into account, the black hole information is
conserved. Thus they declared that the black hole infor-
mation problem is explained.

Remarkably, all the radiation spectra studied case by
case through the quantum tunneling method [12] have a
simple form and perfectly satisfy the requirement of in-
formation conservation. This observation hints at an even
deep origin of the non-thermal nature of the Hawing radi-
ation without referring specially to the geometry of black
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hole’s horizon [13], as well as the exact quantum tunneling
dynamics. To reveal such origin of non-thermal spectra,
we need an even general derivation of radiation spectra.

In this letter, we prove that the non-thermal spectrum of
Hawking radiation can be derived with the general prin-
ciple of canonical typicality [14–16] without referring to
the dynamics of the particle tunneling. The radiation
spectrum is directly obtained by making use of the black
hole’s entropy and maintaining the non-canonical part,
which matches exactly with the non-thermal feature of
the radiation. Besides black holes, in specific finite sys-
tems [17,18], we also observed their non-canonical statis-
tic behavior, that is, their distribution is not a perfect
thermal equilibrium distribution. This implies that the
non-thermal property of black hole radiation is the in-
evitable result of the finite system statistics that goes
slightly off canonical typicality. With our general for-
malism, we derive the radiation spectra of several black
holes, which are well consistent with the previous re-
sults achieved from the perspective of quantum tunnel-
ing [10,19]. Further, the information carried by Hawking
radiation is discussed in our framework, and then we clar-
ify that the so-called black hole information loss paradox
is due to the ignorance of correlation between the black
hole and its radiation. It is worth mentioning that by
introducing icezones [20–22] to replace firewalls [23,24],
Stojkovic et al. have argued that once the correlation
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between the radiation fields is taken into consideration,
the black hole information paradox will no longer exists.
Such correlation, in our approach, is just the primary
cause that results in the black hole radiation off thermal
distribution.

Radiation spectrum off canonical typicality. – We
first consider the universe U, which consists of the system
of interest B (e.g., black hole) and the environment O (see
fig. 1). The whole universe is assumed to be in an arbitrary
pure universe state

|Ψ〉 =
∑

b

∑
o

C (b, o)√
ΩU

|b〉 ⊗ |o〉 , (1)

where ΩU = ΩU (EU) is the total number of micro-
states for the universe with energy EU, and C (b, o)
is the coefficient of state |b〉 ⊗ |o〉. And |b〉 and |o〉
are the eigenstates of B and O, respectively. Without
losing generality, we assume the orthogonal conditions
〈bi|bj〉 = δij , and 〈ok|ol〉 = δkl. The normalization
of state |Ψ〉,

∑
b

∑
o |C (b, o)|2 /ΩU = 1, directly implies

the average value of |C (b, o)|2, |C (b, o)|2 = 1. Let
|Ψb〉 =

∑
o C (b, o) |o〉. Then the universe state becomes

a maximum entanglement-like state, i.e., |Ψ〉 =
∑

b |b〉 ⊗
|Ψb〉 /

√
ΩU. As a result, ignoring the environment O, the

reduced density matrix of B is obtained as

ρB = TrO (|Ψ〉 〈Ψ|) =
1

ΩU

∑
bi,bj

〈
Ψbi

|Ψbj

〉
|bi〉 〈bj | , (2)

where TrO means tracing over the variables of O, and〈
Ψbi

|Ψbj

〉
= δij 〈Ψb|Ψb〉 have been proved in ref. [15]. For

the environment O supported in a high-dimension Hilbert
space, according to the central limit theorem, the average
over a large enough subset O of U is the same as that over
U, so that

〈Ψb|Ψb〉 =
∑

o

|C (b, o)|2 = ΩO (EU − Eb) . (3)

Here, ΩO (EO) is the number of O’s micro-states with en-
ergy EO = EU − Eb, and Eb is the eigenenergy of |b〉.
Thus, the reduced density matrix of B is simplified as

ρB =
∑

b

ΩO (EU − Eb)
ΩU

|b〉 〈b| . (4)

When the total energy of system B is taken as a certain
value, namely, Eb = E, the number of B’s micro-states, de-
noted as ΩB (E) ≡ ΩU/ΩO (EU − E), is fully contributed
by the degrees of freedom that degenerated in the macro
energy state of B with eigenenergy E. When B is specific
as a black hole, E corresponds to the total mass M of the
black hole. The reduced density matrix of B is thus writ-
ten as ρB =

∑
b |b〉 〈b| /ΩB (E) , which implies that B obeys

the micro-canonical distribution. In this case, the entropy
of B, SB = ln ΩB (E), has been proved to be proportional

Fig. 1: (Colour online) The relation between universe U, the
system of interest B, and the environment O. U consists of B
and O, and B is further divided into subsystems R and B′.

to the area of B’s boundary in some specific model [6,7].
And this is the so-called entanglement entropy area theo-
rem, which results in a possible explanation for the origin
of the black hole’s entropy.

Now we look at B’s subsystem R, as shown in fig. 1, the
rest of B is denoted as B′ = B − R. The reduced density
matrix of B can be rewritten as

∑
r,b′ |r, b′〉 〈r, b′| /ΩB (E),

where |r〉 and |b′〉 are the eigenstates of R and B′ with
eigenenergies Er and Eb′ , respectively. And Er +Eb′ = E
is the constraint condition given by energy conservation.
The reduced density matrix of R

ρR = TrB′ (ρB) =
∑

r

ΩB′ (E − Er)
ΩB (E)

|r〉 〈r| (5)

is obtained by tracing over B′. Here, ΩB′ (E − Er) is the
number of micro-states of B′ with energy E − Er, and
it can be rewritten as ΩB′ (E − Er) = exp [SB′ (E − Er)],
where SB′ (E − Er) is the entropy of B′. Therefore, we
can further write eq. (5) as

ρR = TrB′ (ρB) =
∑

r

e−ΔSBB′ (Er,E) |r〉 〈r| , (6)

where ΔSBB′ (Er, E) ≡ SB (E) − SB′ (E − Er) is the dif-
ference in entropy between B and B′. We can clearly see
from eq. (6) that only when ΔSBB′ depends on Er linearly,
the spectrum of R is perfectly thermal. What should be
mentioned here is that we do not expand ΔSBB′ only up
to the first order of Er, as done in most studies in the ther-
modynamic limit. It will be shown later that the higher
order of Er or the non-canonical part of ρR just determines
the non-thermal property of R.

Until here, the discussion is a general one without any
specification of black hole radiation. Now we will specify
our system with B as black hole, R as Hawking radiation,
and B′, in this case, is considered as the remaining black
hole. For the black hole B with three “hairs”, mass M ,
change Q, and angular momentum J , we let |ω, q, j〉 being
the eigenstate of radiation R with energy ω, change q, and
angular momentum j. Then it follows from eq. (6) and the
conservation laws for charge and angular momentum that
the radiation spectrum is obtained as

ρR =
∑
ω,q,j

e−ΔSBB′ (ω,q,j,M,Q,J) |ω, q, j〉 〈ω, q, j| . (7)
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This is the main result of this letter. To get the
explicit expression of ρR, we then make use of the
Bekenstein-Hawking entropy, which reads

SBH (M,Q, J) =
AH

4
= πR2

H , (8)

where AH = AH (M,Q, J) and RH = RH (M,Q, J) are
the “hairs”-determined area and radius of the black hole’s
event horizon, respectively. It follows from eqs. (7) and (8)
that the radiation spectrum of the black hole B is

ρR =
∑
ω,q,j

exp
[
πR2

H (M − ω,Q − q, J − j)

−πR2
H (M,Q, J)

]
|ω, q, j〉 〈ω, q, j| . (9)

As the black hole evaporates, its mass decreases, and when
M becomes very small, the effect of quantum gravity grad-
ually begins to appear. If the correction in the black hole
entropy due to the quantum gravity is taken into account,
the area entropy for the black hole is modified as [25]

SH =
AH

4
+ α ln

AH

4
= πR2

H + α ln
(
πR2

H

)
, (10)

where α is a dimensionless parameter determined by the
specific quantum gravity model. The effect of quantum
gravity causes eq. (9) to be rewritten as

ρR =
∑
ω,q,j

[
RH (M − ω,Q − q, J − j)

RH (M,Q, J)

]2α

× e−[πR2
H(M,Q,J)−πR2

H(M−ω,Q−q,J−j)] |ω, q, j〉 〈ω, q, j| . (11)

This is exactly the same as the radiation spectrum ob-
tained from the tunneling method [26]. For a given black
hole, one can first get the horizon radius as the function
of its external qualities with the help of its metric. And
then by making use of eqs. (9) and (11), the radiation
spectrum in the classical and quantum case are obtained,
respectively.

Schwarzschild black hole and Reissner-
Nordstrum black hole. – As the simplest black
hole, there is only one hair for the Schwarzschild black
hole, that is, the mass M . The radius of its event
horizon is RH = 2M , which together with eq. (9) give the
radiation spectrum of the Schwarzschild black hole as

ρR =
∑
ω

e−8πω(M−ω/2) |ω〉 〈ω| , (12)

where |ω〉 is the eigenstate of the radiation. It is seen from
eq. (12) that the probability

p (ω,M) = e−8πω(M−ω/2) (13)

for the state |ω〉 being in the distribution is the same as the
tunneling probability Γ (ω,M) = exp [−8πω (M − ω/2)],
which is known as the Parikh-Wilczek spectrum [10], as

the result of the WKB approximation through the per-
spective of quantum tunneling. Note that we did not use
the tunneling dynamics of the radiation process at all, but
we can obtain the non-thermal spectrum eq. (12). Here,
we only require the area entropy of the black hole to be
the function of energy. The simple derivation of radia-
tion shows that the entropy of the black hole is the key
quantity to determine the radiation spectrum.

For the Reissner-Nordstrum (R-N), black hole with
mass M and charge Q, the radius of its outer event horizon
obtained from the metrics reads RH = M +

√
M2 − Q2.

Substituting it into eq. (9), we obtain the non-thermal
spectrum of the R-N black hole as

ρR =
∑
ω,q

exp

{
π

[
(M − ω) +

√
(M − ω)2 − (Q − q)2

]2

−π
(
M +

√
M2 − Q2

)2
}
|ω, q〉 〈ω, q| , (14)

where |ω, q〉 is the eigenstate of the radiation. Equa-
tion (14) is exactly consistent with the radiation probabil-
ity obtained from the perspective of quantum tunneling
in ref. [19]. Here, we show the density matrix for
Schwarzschild and R-N black holes without referring to
the dynamics of the particle tunneling. A similar process
for other black holes results in the exact matching between
our results and that obtained from the dynamics analysis.
This remind us that while considering the non-thermal
effect of the black hole radiation spectrum, there is an
even deeper intrinsic relationship between the quantum
tunneling approach and our statistical method. For ex-
ample, in previous work, by using the radiation spectrum,
we successfully obtained the number of micro-states of the
black holes [27].

Information of black hole radiation. – Now we go
back to eq. (6) to discuss the information carried by Hawk-
ing radiation. The corresponding Von-Neumann entropy
SR = −Tr (ρR ln ρR) of R reads

SR = SB −
∑

r

e−ΔSBB′ (Er,E)SB′ (E − Er) . (15)

Namely, SR = SB − S
(
B′|R

)
, where S

(
B′|R

)
=∑

r e−ΔSBB′ (Er,E)SB′ (E − Er) is the conditional entropy
of B′. This shows that there exists a correlation be-
tween R and B′, as a result of energy conservation. In
the low energy limit, i.e., Er � E, the conditional en-
tropy is approximated, by keeping the first order of Er,
as S

(
B′|R

)
≈ SB′ (EB′). Here, EB′ = E − ER and

ER =
∑

r exp [−ΔSBB′ (Er, E)] Er are the internal energy
of B′ and R, respectively. This indicates that the correla-
tion between R and B could be ignored when the energy of
R is much smaller than that of B. At this time, the radia-
tion spectrum of the Schwarzschild black hole in eq. (12)
can be approximated as ρR =

∑
ω exp (−8πMω) |ω〉 〈ω|,

which is just the thermal radiation discovered by Hawking.

30001-p3



Yu-Han Ma et al.

So far it becomes clear that the thermal spectrum of the
black hole radiation is due to the ignorance of the correla-
tion information between the black hole and its radiation.
This is also the primary cause of the black hole information
loss. Analogously, it can be proved that the conditional
entropy for B′ of an arbitrary black hole system is
S

(
B′|R

)
≈ SB′ (M ′, Q′, J ′), where M ′ = M −

∑
ω p (ω)ω,

Q′ = Q −
∑

q p (q) q, and J ′ = J −
∑

j p (j) j are the av-
erage of the mass, charge, and angular momentum of the
black hole B′. The conditions for this approximation are∑

ω p (ω)ω � M ,
∑

q p (q) q � Q, and
∑

j p (j) j � J .
The existence of a correlation between sequences of

emitted particles has been proved via mutual informa-
tion [11,28,29]. Yet, the proofs are based on case-by-
case studies. We revisit this proof with our general
formalism. The mutual information for two emissions
ω1 and ω2 can be written, by definition [30], as I =∑

ω1,ω2
p1,2 ln [p1,2/ (p1p2)], where p1 (p2) is the possibility

for ω1 (ω2) in the distribution, and p1,2 is the joint proba-
bility of the two emissions. In our case, these possibilities
are given by eq. (13) as p1 = p (ω1,M), p2 = p (ω2,M),
and p1,2 = p (ω1 + ω2,M) . Moreover, it is easily checked
that p (ω1 + ω2,M) = p (ω1,M) p (ω2,M − ω1), with the
help of which, by straightforward calculation, we obtain
the mutual information I = 8π 〈ω1〉 〈ω2〉, where 〈ωi〉 =∑

ωip (ωi,M) is the average energy of ωi (i = 1, 2). This
shows that the mutual information between the emissions
is proportional to their internal energy, and coincides with
the result in ref. [11], where the authors proved that the
sum of these mutual information is just the total infor-
mation of the initial black hole. From this point of view,
our result can naturally give the conclusion that the black
hole information is not lost, if the information correlation
between the radiation particles is taken into account. The
derivation of this conclusion, which needs to be empha-
sized here, is now dynamics independent.

Conclusion. – In summary, we straightforwardly de-
rived the non-thermal spectrum of the black hole radiation
from the area law of entropy, which only depends on a few
external qualities of the black hole (known as hairs). The
derivation is based on the principle of canonical typical-
ity, without referring to the dynamics of quantum tun-
neling across the horizon. We showed that there exists
information correlation between the black hole and its ra-
diation, and thus the fact that the information is not lost
with the black hole’s evaporating is clarified. Taking into
account the effect of quantum gravity, we achieved the
modified radiation spectrum through our universal proto-
col succinctly. Since the general formalism we developed
does not require the specific form of the system and has
been successfully applied to the black hole to obtain its
non thermal radiation spectrum, we therefore conjecture
it can also be applied to some non-relativistic systems,
such as ideal gas, black-body, etc., to obtain their radia-
tion spectra. The advantage of this approach is that there
is no need to analyze the particle dynamics in the radiation

process, but it only refers to the dependence of the entropy
on the macro-conserved qualities of the whole system.
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Note added in proofs: Recently, we applied the canonical
typicality approach developed in this paper to obtain the
radiation spectrum of Schwarzschild black hole in the case
with dark energy [31]. Some interesting results have been
reported in this relevant work, showing the influences of
dark energy on the non-thermal radiation of black holes.
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