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Abstract – We study the quantum state transfer (QST) of an electron spin along the half-filled
Peierls distorted chain (PDC). As has been proved, this solvable and feasible gapped model can
accomplish a high-fidelity and long-distance QST. Moreover, numerical simulations are performed
in and near the non-distortion point which is beyond the range of perturbation. The result shows
that the efficiency of the QST is sensitive to the uniform-to-distorted transition of the PDC, which
is related to the transition between the conductor and the insulator. Then this scheme can also
be employed to probe the conductor-to-insulator transition of the PDC.

Copyright c© EPLA, 2008

Introduction. – In many protocols of quantum infor-
mation processing, it is crucial to transmit a quantum
state with high fidelity [1]. While various schemes of
quantum state transfer (QST) were proposed and demon-
strated experimentally for optical systems [2] even with
the atom ensemble [3,4], other groups have tried to imple-
ment such a task based on solid-state systems [5,6]. It
was recognized that a quantum spin chain [7,8] or a Bloch
electron system [9] with artificial nearest-neighbor (NN)
couplings can be used as a data bus. In [8], it was shown
that the spectrum-parity matching is responsible for the
perfectness of most protocols for QST [10]. However, these
schemes based on solid-state systems are too artificial with
very specially designed NN couplings. Moreover, only the
single-particle cases were considered.
In this paper, we use a Peierls distorted chain (PDC)

[11], which is a tight-binding chain with the staggered NN
hopping integrals, to act as a quantum data bus. For a
QST scheme based on gapped systems, the key issue is
the period which usually grows up exponentially as the
transfer distance increases. Since the PDC is solvable, we
can study a larger size system, where it is found that
this chain can transfer a quantum state for electrons,
which is similar to the spin ladder for spins [12], but

(a)E-mail: songtc@nankai.edu.cn
(b)E-mail: suncp@itp.ac.cn

with higher fidelity and longer distance. It should be
noticed that, it is not easy to find such a good data
bus, since the energy gap between the ground and first
excited states is crucial: if the gap is too large, the QST
period increases exponentially with the transfer distance;
while if it is too small, the fidelity of QST becomes
lower. Furthermore, since the PDC can be solved exactly,
we can perform analytical investigations for the sender
and receiver with any arbitrary distance between them.
Besides these advantages, the PDC is a more natural
material, which is originated from the Su-Schrieffer-Heeger
(SSH) model [13,14], which describes the polyacetylene.
In the large atomic mass limit and the half-filled case,
the SSH model reduces to the PDC, and the dimerization
induces an energy gap for the half-filled PDC making the
QST feasible.
This paper is organized as follows: In the second section,

the model setup and the single-particle spectrum of the
PDC are introduced. The big energy gap in the middle
of the spectrum corresponds to the energy gap between
the ground and first excited states of the PDC in the
half-filled case. As an approximation up to the second
order, an effective Hamiltonian HAB with respect to AB
is deduced by using the Fröhlich transformation [15,16]
in the third section. Moreover, the fidelity of QST is
defined and plotted. In the fourth section, to demonstrate
that HAB is a good approximation for QST, the reduced
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Fig. 1: (Color online) (a) The schematic illustration of the
system. The sender A and receiver B are connected to two
sites of the PDC with distance l being (b) odd and (c) even.
Case (b) has the mirror inversion symmetry and is studied
extensively in this paper since it has a high efficiency for QST,
while case (c) has a lower efficiency.

density matrices of AB for the ground and first excited
states of the whole system are calculated. Our scheme is
also investigated numerically in a crossover region between
two types of dimerization in the fifth section. It is shown
that, at the uniform-to-distorted transition point, the QST
becomes the fastest with a similar loss of the fidelity
to what has been discussed in [17]. The conclusions are
presented finally in the last section.

Model setup. – The sender A and receiver B are
connected to two sites l0 and l0+ l of the PDC (fig. 1(a)),
and two connection ways are shown in fig. 1(b) and (c).
Only the case that both l0 and l are odd is discussed
(fig. 1(b)). The obtained results can be applied to the case
that l is odd but l0 is even, since the whole chain is with
the periodic boundary condition. A similar study can also
be applied to the case in fig. 1(c). We do not discuss this
case in detail but give a conclusion that such a setup has
a lower efficiency for QST.
The tight-binding Hamiltonian of PDC reads

HPDC =−
∑
n,σ

g0 [1− (−1)n δ]
(
c†n+1,σcn,σ +h.c.

)
, (1)

where cn,σ (c
†
n,σ) is annihilation (creation) operator of

electrons on site n with spin σ, and g0[1− (−1)nδ] is the
hopping integral, where δ denotes the distortion of the
hopping integral, which realizes the staggered NN hopping
integrals of the PDC. We consider the QST between A and
B via the PDC between them. The purpose is through the
hopping of a polarized electron to transfer a qubit state,
which is a superposition state of the spin up and down.
Since (1) does not contain any spin-dependent interaction,
the electron spin polarization is conserved. Then the
spatial motion of the electron along the PDC carries a spin

state from one location to another. Generally, the coupling
constant κ of moving particles is much larger than that of
spin-spin interactions, since the latter is usually a second-
order perturbation term. For example, the Heisenberg
model is originated from the half-filled Hubbard model
with the on-site repulsion U in the limit κ�U [18], where
the spin-spin coupling strength J ∼ κ2/U . Since the period
of QST is inversely proportional to κ, J , and the period of
QST is required to be much less than the decoherence
time, the efficiency of QST by using moving particles
should be better than that by using spin interactions. The
connection of AB to the chain is described by

HI =−g
∑
σ

(
c†A,σcl0,σ + c

†
B,σcl0+l,σ +h.c.

)
, (2)

where cA,σ and cB,σ (c
†
A,σ and c†B,σ) are annihilation

(creation) operators of the electron on A and B with
spin σ. l0 and l0+ l denote the connecting sites of the
chain.
Since the transfer distance l is short compared to the

whole size N of the chain, the boundary effect on the QST
is neglectable. Then we can take the periodic boundary
condition to diagonalize the Hamiltonian (1) as

HPDC =
∑
k,σ

εk

(
α†k,σαk,σ −β

†
k,σβk,σ

)
, (3)

where the dispersion relation is

εk = 2g0

√
cos2

k

2
+ δ2 sin2

k

2
. (4)

The excitations are described by fermion operators

αk,σ =
1√
N

N/2∑
j=1

e−ikj
(
c2j−1,σ − eiθkc2j,σ

)
(5)

and

βk,σ =
1√
N

N/2∑
j=1

e−ikj
(
c2j−1,σ + eiθkc2j,σ

)
, (6)

where k= 4πm/N , m= 0, 1, 2, . . . , N/2− 1, and

eiθk =
g0

εk

[
(1+ δ)+ (1− δ) e−ik

]
. (7)

The single-particle spectrum (4) is illustrated in fig. 2.
There is a big energy gap between two bands

2∆= 2min {εk}= 4|g0δ|, (8)

which approximately corresponds to the energy gap
between the ground and first excited states of the PDC
in the half-filled case.
In the following sections, it will be shown that such an

energy gap (8) in the half-filled case leads to a desirable
robust quantum data bus, and for the subsystem AB, the
original energy degeneracy will be removed by switching
on g, and then split into two sub-levels with the level
spacing ∆E = 2|geff |, as illustrated in fig. 2. Here, geff
is the effective hopping integral which can be obtained
analytically in the next section.

30004-p2



The Peierls distorted chain as a quantum data bus for quantum state transfer

2 ∆

/k gε /k kε

k

|g|2 eff=∆E

Fig. 2: (Color online) The single-particle spectrum of the PDC.
In the half-filled case, the gap 2∆ approximately corresponds
to the energy gap between the ground and first excited states
of the PDC. For the subsystem AB, by switching on g, the
degeneracy will be removed and split into two sub-levels with
the level spacing ∆E = 2|geff | as shown in eq. (20).

Effective long-range hopping. – To deduce an
effective Hamiltonian about the indirect coupling between
A and B, the Fröhlich transformation is utilized [15,16],
whose original approach was used successfully for the BCS
theory of superconductivity. In detail, for the Hamiltonian
of the total system

H =HPDC +HI (9)

in our scheme, through finding an anti-Hermitian operator
S which obeys

[S,HPDC ] =HI , (10)

the effective Hamiltonian Heff of H can be obtained as

Heff = e−SHeS

= HPDC +(HI − [S,HPDC ])

+
1

2
[(HI − [S,HPDC ]) , S]

+
1

2
[HI , S] + · · ·

∼= HPDC +
1

2
[HI , S] . (11)

Substitute cl0,σ and cl0+l,σ in eq. (2) with αk,σ and βk,σ
according to (5) and (6), we have

HI = −
g√
N

∑
k

[
eik

l0+1
2 c†A,σ (αk,σ +βk,σ)

+ eik
l0+l
2 −iθkc†B,σ (αk,σ −βk,σ)+h.c.

]
. (12)

According to the expressions (3) and (12), if we set S as

S = − g√
N

∑
k,σ

1

εk

[
eik

l0+1
2 c†A,σ (αk,σ −βk,σ)

− eik
l0+l
2 −iθkc†B,σ (αk,σ +βk,σ)−h.c.

]
, (13)

it will satisfy condition (10). Then this expression about
S is right.

Substituting (3), (12) and (13) into (11), the effective
Hamiltonian becomes

Heff =HAB +H0, (14)

where
HAB =

∑
σ

geff

(
c†A,σcB,σ + c

†
B,σcA,σ

)
(15)

denotes an effective hopping of an electron between A and
B with

geff =
2g2

N

∑
k

e−ik
l−1
2 +iθk

εk
, (16)

and

H0 =
∑
k,σ

εk

(
α†k,σαk,σ −β

†
k,σβk,σ

)

+
g2

2N

∑
k,σ,k′,σ′

1

εk′

[
A (k, k′) (α†k,σαk′,σ′ −β

†
k,σβk′,σ′)

+ B (k, k′) (β†k,σαk′,σ′ −α
†
k,σβk′,σ′)+h.c.

]
(17)

describes the dynamics of the data bus with

A(k, k′) = e−i(k−k
′) l0+12 [1+ ei(θk−θk′ )],

B(k, k′) = e−i(k−k
′) l0+12 [1− ei(θk−θk′ )].

(18)

Straightforward calculations show that, in the thermo-
dynamic limit, N −→∞, the hopping constant (16)
becomes

geff =
g2

g0

(−1)
l−1
2

1+ δ

(
1− δ
1+ δ

) l−1
2

. (19)

On the other hand, eq. (15) is a model consisting of
two sites in the half-filled case, where two eigenvalues of
the ground and first excited states are −|geff | and |geff |,
respectively. Then the corresponding energy difference
between two states is

∆E = 2|geff |. (20)

This energy difference is depicted in fig. 2. When the total
system consisting of A, B and the PDC is half-filled, ∆E
represents the energy difference between the ground and
first excited states of the whole system.
It needs to be pointed out that, only under some

specific conditions, the effective Hamiltonian HAB can
work well. These conditions include some restrictions
about parameters δ, g, and so on, which are considered in
the next section. Moreover, to obtain a perfect QST, the
energy gap between the ground and first excited states of
the data bus should be large enough to protect the QST
from the thermal fluctuation. Then in our scheme, the
PDC should be half-filled, since, as shown in fig. 2, when
the PDC is half-filled, its energy gap between the ground
and first excited states is 2∆, which can be large enough.
Now let us consider the QST scheme via our system.

Assume Alice is at the sender site A, and Bob is at the
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receiver site B. The medium PDC is half-filled and in its
ground state. Let Alice hold an electron with a spin state
she wants to communicate with Bob as

|ϕ〉= cos θ
2
| ↓〉+ eiφ sin θ

2
| ↑〉, (21)

where | ↑〉 (| ↓〉) denotes the spin-up (-down) state. Thus,
the initial state |ψ(0)〉AB = |ϕ〉A⊗ |0〉B about AB is

|ψ (0)〉AB =
(
cos

θ

2
c†A,↓+ e

iφ sin
θ

2
c†A,↑

)
|0〉AB , (22)

where |0〉A (|0〉AB) denotes the empty state, i.e., there is
no electron at A (both A and B). At the instant

t= τ =
π

∆E
=

π

2|geff |
, (23)

the system evolves into a new factorized state |ψ(τ)〉AB =
|0〉A⊗ |ϕ〉B . Here,

|ψ (τ)〉AB =
(
cos

θ

2
c†B,↓+ e

iφ sin
θ

2
c†B,↑

)
|0〉AB (24)

realizes a perfect quantum swapping. Then at this time,
Bob at the receiver site B receives an electron with the
spin state |ϕ〉, i.e., he receives the state Alice sends to
him. In this process, the fidelity of QST can be defined as

F (t) =Tr [ρB (t) |ϕ〉B〈ϕ|] , (25)

where
ρB (t) =TrA,PDC |Ψ(t)〉〈Ψ(t) |. (26)

In the above formula, Ψ(t) is the state of the whole system
consisting of A, B and the PDC at time t, and TrA,PDC
means tracing off the states of A and PDC.
It is desirable that the above scheme can work well over

a longer distance. In the inset of fig. 3, the fidelity (25)
obtained in our scheme is plotted with t= τ , N = 500,
l= 10n+9, n∈ [0, 7], δ= 0.01, g= 0.01, and g0 = 1. It
is very high, larger than 0.99, even for a long-distance
transfer. On the other hand, for a desirable QST scheme,
the QST time should not be too long. In our scheme,
since τ is the characteristic time, from (23), the effective
hopping integral |geff | should not decay too fast as l
increases. According to (19), |geff | decays exponentially
when l increases. However,

√
(1− δ) / (1+ δ) is close to 1

for small δ, where |geff | will not decay rapidly for any
finite l. To demonstrate this, |geff | is plotted in fig. 3
according to the analytical formula (19) and numerical
result ∆E (20). Two results agree with each other well,
and τ is proportional to l, which is crucial for scalable
quantum information processing.

Reduced density matrices. – In the above section,
|geff | has been studied as a function of l in a specific
range of parameters. It is shown that our scheme can
realize a high-fidelity and long-distance QST. However, the
obtained conclusion should be based on the fact that HAB

Fig. 3: (Color online) |geff | obtained from the approximate
analytical result (19) (line) and numerical result ∆E (20) (solid
dot) with l= 10n+9 and n∈ [0, 7]. Two results agree with each
other well, and |geff | does not decay very fast as l increases.
The inset is about the fidelity of QST at the instant τ . It is
very high, larger than 0.99, even for a long-distance transfer.

given by (15) is a valid approximation in the studied range.
In this section, such a validity of HAB is investigated
by comparing the eigenstates of HAB with the density
matrices reduced from the ground and first excited states
of the total system (9). Note that (9) does not contain
any spin-spin interaction term. Then this system can be
regarded as a spinless fermion system, and the feasibly
obtained results can be applied to the original system.
Therefore, in the following discussion, the spin degree of
freedom is ignored for simplicity.
Define the states |n−, n+〉AB as

|1, 0〉AB =
1√
2

(
a†A− a

†
B

)
|0〉AB , (27)

|0, 1〉AB =
1√
2

(
a†A+ a

†
B

)
|0〉AB , (28)

where a†A and a†B are spinless fermion operators on A
and B. These two states are the eigenstates of HAB in the
half-filled subspace, and n− (n+) is the particle number
in the anti-bonding (bonding) state. Moreover, we define
the states |n−, n+; η〉 and |n−, n+〉 for the total system (9).
|n−, n+; η〉 is the eigenstate of the total system with g= 0,
which is denoted as |n−, n+; η〉= |n−, n+〉AB ⊗ |η〉PDC ,
where |η〉PDC is the ground state (η= 0) and the excited
states (η= 1, 2, . . .) of the half-filled PDC. |n−, n+〉 is the
ground or first excited state of the total system with g �= 0,
which is spanned by the state possessing the same parity
as |n−, n+; η〉, and corresponds to the eigenvalue En−n+ .
Next the calculation task is the quantity defined as

Pn−n+ =Tr
(
ρRρn−n+

)
, (29)
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where
ρR =TrPDC(|n−, n+〉〈n−, n+|) (30)

and
ρn−n+ = |n−, n+〉AB〈n−, n+|. (31)

Substituting (30) and (31) into (29), Pn−n+ becomes

Pn−n+ =
∑
η

|〈n−, n+|n−, n+; η〉|2. (32)

In fact, Pn−n+ is the overlap between the eigenstates of
HAB and the reduced states from the exact eigenstates of
the total system. Then if Pn−n+ is near unity, it can be
concluded that HAB is a good approximation for QST.
In the following discussion, the efforts are made to

explicitly express |n−, n+〉 with the help of the Gellmann-
Low theorem [19], where |n−, n+〉 can be expressed with
|n−, n+; 0〉 as

|n−, n+〉=
U (0,−T ) |n−, n+; 0〉

e−iEn−n+T 〈n−, n+|n−, n+; 0〉
. (33)

Here T →∞(1+ iε), and

U (t, t0) = T exp
{
−i
∫ t
t0

dt′H ′I (t
′)
}

(34)

is the time-evolution operator in the interaction
picture, where T is the time-ordering symbol, and
H ′I(t

′) = exp(iHPDCt′)HI exp(−iHPDCt′). Similarly,

〈n−, n+|=
〈n−, n+; 0|U (T, 0)

e−iEn−n+T 〈n−, n+; 0|n−, n+〉
. (35)

With these expressions, Pn−n+ in (32) can be rewritten as

Pn−n+ =
〈n−, n+; 0|Q|n−, n+; 0〉

e−iEn−n+ (2T )|〈n−, n+; 0|n−, n+〉|2
, (36)

where

Q= T
{
Qn−n+exp

[
−i
∫ T
−T
dt′H ′I (t

′)

]}
, (37)

and
Qn−n+ = |n−, n+〉AB〈n−, n+| ⊗1. (38)

Note that for further calculations, (36) cannot be
calculated directly, because there is no explicit expression
for |n−, n+〉. To get rid of this difficulty, we use the
normalization condition 〈n−, n+|n−, n+〉= 1 as

〈n−, n+; 0|U (T,−T ) |n−, n+; 0〉
e−iEn−n+ (2T )|〈n−, n+; 0|n−, n+〉|2

= 1. (39)

Then Pn−n+ (36) becomes

Pn−n+ =
〈n−, n+; 0|Q|n−, n+; 0〉

〈n−, n+; 0|U (T,−T ) |n−, n+; 0〉
. (40)

Table 1: 1−Pn−n+ and−P (2)n−n+ withN = 500, l= 10n+9, n∈
[0, 7], g= 0.01, g0 = 1, and δ= 0.01. 1−P10 (1−P01) is close to
−P (2)10 (−P (2)01 ). All of the values are very small, which indicates
that Pn−n+ is close to 1, and HAB is a good approximation for
QST when the parameters satisfy the condition (44).

l 1−P10 −P (2)10 1−P01 −P (2)01
(×10−3) (×10−3) (×10−3) (×10−3)

9 4.48 4.53 0.54 0.54
19 0.41 0.41 4.62 4.66
29 4.66 4.70 0.37 0.37
39 0.38 0.38 4.64 4.68
49 4.60 4.64 0.43 0.43
59 0.50 0.50 4.53 4.57
69 4.45 4.49 0.58 0.58
79 0.67 0.67 4.37 4.40

Next we expand Pn−n+ (40) as the series of g. Calcu-

lations show that for small g, the zeroth order P
(0)
n−n+ is

unity, the first order P
(1)
n−n+ is zero, and the second order

P
(2)
n−n+ is non-zero and can be expressed as

P (2)n−n+ =−
∑
k

2g2

ε2kN

[
1+ (n−−n+) cos

(
k
l− 1
2
− θk
)]

.

(41)
It approximately describes the difference between the
eigenstates of HAB and the reduced states from the exact
eigenstates of the total system. In order to study it, the

upper bound of P
(2)
n−n+ is obtained as

|P (2)n−n+ |�
4

N

∑
k

g2

ε2k
. (42)

In the thermodynamic limit, it becomes

|P (2)n−n+ |�
g2

2g20δ
. (43)

When |P (2)n−n+ | � 1, Pn−n+ is close to 1. That is to say,
when g2/(2g20δ)� 1, or

g/(
√
2g0)�

√
δ, (44)

HAB can work well.
As an example, 1−Pn−n+ and −P

(2)
n−n+ with N = 500,

l= 10n+9, n∈ [0, 7], g= 0.01, g0 = 1, and δ= 0.01 are
listed in table 1, where the parameters satisfy the condi-
tion (44). 1−Pn−n+ is calculated from the exact diag-
onalization, and −P (2)n−n+ is obtained from the analyti-
cal expression (41). No matter n− (n+) equals 1 (0) or
0 (1), two results are in agreement with each other approx-
imately. Moreover, they are very small, which indicates
that Pn−n+ is close to 1, and the eigenstates of HAB can
well describe the states of AB in the ground and first
excited states of the total system. In the next section, the
QST is investigated in a more extensive range about δ,
where (44) may be violated.
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Fig. 4: (a) The energy difference ∆E between the ground and
first excited states and (b) the fidelity F with N = 200, l= 49,
g= 0.01, and g0 = 1. When δ approaches to zero, ∆E has a
sharp peak, while F drops rapidly. That is to say, the critical
properties affect the dynamics of the QST. Around the point
δ= 0, although the QST becomes fast, the fidelity decreases
rapidly, which indicates that the features of AB can be used
to detect the transition of the PDC.

Uniform-to-distorted transition of the PDC. –
The magnitude of δ is crucial for the QST since the
speed and fidelity of QST is sensitive to the dimerization.
There are two types of dimerization corresponding to ±|δ|.
So it is interesting to investigate what happens near the
transition point δ= 0. In this region, the above analytical
condition (44) is violated, which is due to the vanishing δ.
Then for this case, we should do numerical simulations
to study the energy difference ∆E between the ground
and first excited states of the half-filled total system (9),
and the fidelity F defined as (25) with t= π/∆E. Since
π/∆E is the recurrent time, both of them can characterize
the properties of QST. Figure 4 is plotted with N = 200,
l= 49, g= 0.01, and g0 = 1. When the system approaches
to δ = 0, which corresponds to a uniform chain, ∆E has
a sharp peak, while F drops rapidly. It indicates that
the critical properties affect the dynamics of the QST.
Although the QST becomes fast around the critical point,
the fidelity decreases rapidly. This phenomenon is very
similar to that discovered by [17], and it indicates that
the features of two probing sites AB, such as the recurrent
time, or the fidelity, can be used to detect the transition
of the PDC from uniform to distorted, which relates to
the transition between the conductor and insulator.

Conclusions. – A proper gapped system can be used
as a data bus to accomplish the QST. The challenge
comes from two aspects: a long-distance QST should be
fast and robust, and the scheme should be feasible in
the experiments. We find that the PDC originating from
the well-known SSH model and existing in conducting
polymers (polyacetylene) has the potential to overcome
these two challenges. Moreover, the PDC has an exact
solution, which makes it possible to obtain analytical
results.
In addition, for the vanishing distortion limit of the

PDC, which is beyond the region of perturbation, we

employ numerical simulations to investigate the QST.
It is found that the fidelity of QST strongly depends on
the distortion δ of the PDC. Then, from a measurement
perspective, the features of sites A and B, such as the
fidelity or the recurrent time of the QST, can be used to
detect the uniform-to-distorted transition of the PDC,
which relates to a transition between the conductor and
insulator. These observations have universality, which
may motivate us to investigate the function of other
natural materials.
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