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Energy is often partitioned into heat and work by two independent paths corresponding to the change in the eigenen-
ergies or the probability distributions of a quantum system. The discrepancies of the heat and work for various quantum
thermodynamic processes have not been well characterized in literature. Here we show how the work in quantum machines
is differentially related to the isochoric, isothermal, and adiabatic processes. We prove that the energy exchanges during
the quantum isochoric and isothermal processes are simply depending on the change in the eigenenergies or the probability
distributions. However, for a time-dependent system in a non-adiabatic quantum evolution, the transitions between the
different quantum states representing the quantum coherence can affect the essential thermodynamic properties, and thus
the general definitions of the heat and work should be clarified with respect to the microscopic generic time-dependent
system. By integrating the coherence effects in the exactly-solvable dynamics of quantum-spin precession, the internal
energy is rigorously transferred as the work in the thermodynamic adiabatic process. The present study demonstrates that
the quantum adiabatic process is sufficient but not necessary for the thermodynamic adiabatic process.
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1. Introduction
Thermodynamics is reputed to have the ability to deal

with the energy transfer and work utilizing an extremely
small number of variables. Numerous quantum devices that
are related to harnessing energy focus on pioneering con-
cepts and unexplored mechanisms. They are exemplified
by artificial photosynthesis,[1–3] quantum information heat
engines,[4–7] quantum thermodynamic cycles,[8–10] and pho-
tovoltaic cells.[11,12] The design of an improved quantum-
inspired energy converter compels us to clarify the heat ex-
change and work done from microscopic mechanisms, and
study the emergence of thermodynamic behaviors within
quantum mechanical systems.

According to the first law of thermodynamics, the in-
finitesimal internal energy variation of a quantum system is

dU = d–Q+ d–W = ∑
n
(En dρnn +ρnn dEn) , (1)

where En and ρnn are the eigenenergy and the occupation prob-
ability of the n-th eigenstate, respectively. The change in the
internal energy dU can be written in terms of a perfect dif-
ferential. The symbol d– indicates that the heat Q and work
W are path-dependent. The heat exchange d–Q and the work

done d–W during an infinitesimal thermodynamic process are
often identified as[13,14]

d–Q = ∑
n

En dρnn (2)

and

d–W = ∑
n

ρnn dEn. (3)

These imply that the heat transfer between the quantum system
and the heat bath induces the rearrangement of the occupation
probabilities, while the work has to be done by changing the
generalized coordinates of the system.[15,16] However, these
forms of identification are not strictly comfortable with rigor-
ous mathematical proof. Questions inevitably arise when one
is faced with a system undergoing different thermodynamic
processes studied commonly. In fact, it may induce doubts
over whether the above definitions of the heat and work are
applicable for any process.

Based on the dissipative master equation, the heat
and work relevant to the open quantum system with time-
dependent Hamiltonian were introduced in the pioneering re-
search of Alicki.[17,18] Kosloff et al. implemented Alicki’s for-
mulas and systematically studied quantum heat engine cycles
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working with harmonic oscillators and spins.[19–21] Here, writ-
ing the heat and work in term of the systemic instantaneous or-
thonormal basis, we show that quantum coherence character-
ized by the off-diagonal elements of the density matrix stimu-
lates additional energy changes in thermodynamic processes.
The quantum effects make the heat and work of quantum
isochoric, quantum isothermal, and thermodynamic adiabatic
processes different from one another. The exactly-solvable
dynamics of high-spin precession will be used to prove that
quantum coherence guarantees the thermodynamic adiabatic
evolution of a time-dependent system.

2. Expressions of heat and work in quantum
thermodynamic processes
For a general quantum system, an external driving field

gives rise to a time-dependent Hamiltonian Ĥ(t). According
to the microscopic description of the first law of thermody-
namics, the change in the internal energy of the system can be
split into two separate parts, i.e.,

U̇ = Tr
( ˙̂ρĤ

)
+Tr

(
ρ̂

˙̂H
)
, (4)

where the superposed dot denotes the time derivative and ρ̂ is
the density operator corresponding to the ensemble.[17,22,23]

Let {|m(t)⟩ ,m = 1,2, . . .} be a complete instantaneous
orthonormal basis of Ĥ(t), we can write the Hamiltonian and
the density operator in a matrix form, that is

Ĥ(t) = ∑
m

Em (t) |m(t)⟩⟨m(t)| (5)

and

ρ̂ (t) = ∑
nm

ρnm (t) |n(t)⟩⟨m(t)| , (6)

where Em (t) is the eigenvalue of the state |m(t)⟩ at any partic-
ular instant and ρnm (t) = ⟨n(t)| ρ̂ |m(t)⟩ represents the density
matrix element. For the sake of simplicity, time t is omitted in
the notation. Note that the off-diagonal element ρnm (n ̸= m)

exists, meaning that ρ̂ and Ĥ do not have a common orthonor-
mal basis. With the help of Eqs. (5) and (6), we have

Tr
( ˙̂ρĤ

)
= ∑

n
ρ̇nnEn − ∑

n̸=m
ρnm ⟨m| ∂ Ĥ

∂ t
|n⟩ ,

and

Tr
(

ρ̂
˙̂H
)
= ∑

n
ρnnĖn + ∑

n̸=m
ρnm ⟨m| ∂ Ĥ

∂ t
|n⟩

(see Appendix A for detail). The rate of change of the internal
energy becomes

U̇ = ∑
n

ρ̇nnEn − ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩

+∑
n

ρnnĖn + ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ , (7)

which are classified into four different categories. The second
and fourth terms representing the quantum coherence have the
same magnitude but different signs. They would cancel each
other resulting in the consistency between Eq. (7) and Eq. (1).
However, we find that the connection between the quantum co-
herence and the infinitesimal increments of the heat and work
exists. For a closed system subjected to a time-dependent
force, the unawareness of the quantum coherence may violate
the first law of thermodynamics.

In thermodynamics, an adiabatic process in a closed sys-
tem occurs when the transfer of heat and matter between the
thermodynamic system and its surrounding is avoided. The
evolution of the density operator during the adiabatic process
is unitary. Based on the Liouville–von Neumann equation[24]

˙̂ρ =− i
h̄

[
Ĥ, ρ̂

]
(8)

and the time derivative of the density matrix formula, we have
(see Appendix B for detail)

∑
n

ρ̇nnEn = ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ , (9)

which indicates that Tr
( ˙̂ρĤ

)
= 0. According to the first law

of thermodynamics, the internal energy in an adiabatic process
is transferred only as work, and the rate of work performed in
this process is given by

Ẇ = ∑
n

ρnnĖn + ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ . (10)

The rate of the heat transfer should have the following
form

Q̇ = ∑
n

ρ̇nnEn − ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ . (11)

Only when the quantum coherence, represented by

∑n̸=m ρnm ⟨m| ∂ Ĥ
∂ t |n⟩, is considered, is the absence of the heat

loss to the surroundings in the adiabatic process guaranteed.
The above descriptions of the heat and work are compatible
with Alicki and Kieu’s definitions and can be generalized to
open quantum system dynamics.[17,25]

For the combined system bath scenario, the quantum mas-
ter equation is described explicitly as

˙̂ρ =− i
h̄

[
Ĥ, ρ̂

]
+ℒD (ρ̂),

where ℒD (ρ̂) is the dissipative superoperator responsible for
the interaction of a quantum system with its environment.
Straightforwardly, we obtain Tr

( ˙̂ρĤ
)
= Tr

(
ℒD (ρ̂)Ĥ

)
, which

demonstrates that all dissipative parts due to the heat exchange
are contained in Eq. (11). Equations (10) and (11) give the
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general definitions of the heat and work in quantum thermo-
dynamic processes. The first part of Eq. (10) indicates that
the work done on or by a system can be obtained through the
redistribution of the energy eigenvalues En. The first term in
Eq. (11), on the other hand, shows that the heat transfer is re-
lated to a change in the occupation probabilities ρnn. The sec-
ond terms in Eqs. (10) and (11) imply that both the heat trans-
fer and the work done in a microscopic process are closely
related to the quantum coherence. Considering other specific
types of thermodynamic processes, we will find that the heat
transfer rate and the work flux may have different characteris-
tics.

When the external field is fixed and the quantum system
is put into contact with a thermal bath at a certain temperature,
an isochoric evolution can be carried out. Since ∂ Ĥ/∂ t = 0
and the eigenvalues of the Hamiltonian operator En remain
constant throughout the isochoric process, no external work
is performed

(
Ẇ = 0

)
, leading to the sole change in the in-

ternal energy due to the heat exchange. The heat transfer rate
between the system and the thermal bath under this condition
can be calculated as Q̇ = ∑n ρ̇nnEn, which is simply depending
on a change in the population of the microstates.

The quantum isothermal processes typically occur when
a system is kept in contact with a thermal bath. The system is
capable of performing positive work to the outside, and mean-
while absorbs heat from the bath. Both the eigenvalues En and
the occupation probabilities ρnn need to be changed simulta-
neously. This operation will occur slowly enough to allow the
system to remain in equilibrium with the thermal bath at every
instant. The density operator at thermal equilibrium is char-

acterized by thermally distributed populations in the quantum
states

ρ̂ (t) = (1/Z)∑
m

exp [−Em (t)/(kBT )] |m(t)⟩⟨m(t)|

with Z = ∑m exp [−Em (t)/(kBT )] being the canonical par-
tition function. Since the system approaches thermal equi-
librium without a typical relaxation time due to the bath-
system interactions, quantum coherence vanishes, i.e., ρnm =

0(n ̸= m). The heat transfer rate and the work flux in the quan-
tum isothermal processes can be expressed as Q̇ = ∑n ρ̇nnEn

and Ẇ = ∑n ρnnĖn, respectively. Because the adiabatic pro-
cess does not require the second terms in Eqs. (10) and (11)
to be a zero value, the general expressions of the rates of the
work performed and the heat transfer are different from the
counterparts in the isothermal and isochoric processes. Exam-
ples of illustrating the valid arguments of the above discussion
will be given in the following sections.

3. The adiabatic evolution of a two-level model
in a magnetic field

It is instructive to look at an electron with charge −e
and mass m located at the origin of three-dimensional space
(as shown in Fig. 1). The dipole moment of the electron is
proportional to its gyromagnetic ratio γe = −e/m and spin
angular momentum 𝑆̂, i.e., 𝜇̂ = γe𝑆̂. When a magnetic
field 𝐵 (t) = B0[sinα cos(ωt)𝑒x + sinα sin(ωt)𝑒y +cosα𝑒z]

is applied, the electric dipole of the electron interacts with the
field and the time-dependent Hamiltonian of the system is[26]

Ĥe (t) =−𝜇̂ ·𝐵 (t) =
h̄ω1

2
[sinα cos(ωt) σ̂x + sinα sin(ωt) σ̂y + cosασ̂z], (12)

where ω1 = eB0/m; σ̂i (i = x, y, and z) are the usual Pauli spin matrices; and h̄ equals the Planck constant divided by 2π .
The wave function for the two-state system is a linear combination of the normalized eigenvectors |χ+ (t)⟩ and |χ− (t)⟩, i.e.,

|χ (t)⟩=
[

cos
(

λ t
2

)
− i

ω1 −ω cosα

λ
sin
(

λ t
2

)]
e−iωt/2 |χ+ (t)⟩+ i

[
ω

λ
sinα sin

(
λ t
2

)]
e iωt/2 |χ− (t)⟩ , (13)

where
λ =

√
ω2 +ω2

1 −2ωω1 cosα

(see Appendix C for detail). The density matrix operator can
be written as ρ̂ = |χ (t)⟩⟨χ (t)|. Taking the matrix elements,
we obtain

ρ++ = ⟨χ+ (t)| ρ̂ |χ+ (t)⟩ , ρ−− = ⟨χ− (t)| ρ̂ |χ− (t)⟩ ,

ρ+− = ⟨χ+ (t)| ρ̂ |χ− (t)⟩ , ρ−+ = ⟨χ− (t)| ρ̂ |χ+ (t)⟩ .

It is obvious that ρ++ and ρ−− are the probabilities of be-
ing in the spin up and spin down states along 𝐵 (t) and are,

respectively, given by

ρ++ = cos2
(

λ t
2

)
+

(ω1 −ω cosα)2

λ 2 sin2
(

λ t
2

)
, (14)

and

ρ−− =

[
ω

λ
sinα sin

(
λ t
2

)]2

. (15)

Most of the existing literature studied the thermodynamic
properties of the quantum systems with time-independent
Hamiltonian. Thus, the heat exchange rate and the work flux in
a thermodynamic process can be simplified as Q̇ = ∑n ρ̇nnEn
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and Ẇ = ∑n ρnnĖn. These indicate that only the population

transfer results in the microscopic realization of the heat ex-

change, while the work merely depends on the energy change

generated by the external field. However, for the electron-

spin system driven by a rotating magnetic field, the eigenval-

ues corresponding to the instantaneous eigenstates |χ+ (t)⟩ and

|χ− (t)⟩ are time independent (see Appendix C for detail). If

the work flux in the adiabatic evolution process remains being

computed by Ẇ = ∑n ρnnĖn, we have Ẇ = 0. It means that

no work can be done by the magnetic field 𝐵 (t), which is an

apparent paradox. In addition, according to the time derivative

of ρ++ and ρ−− from Eqs. (14) and (15), the heat exchange

rate

Q̇ = ρ̇++E++ ρ̇−−E− =− h̄ω1

2λ
ω

2 sin2
α sin(λ t) .

As Q̇ is a non-zero value, it is a paradox that there exists heat
transfer between the system and the environment in the ther-
modynamic adiabatic process.

In the present studies, we emphasize that the quantum
coherence effects are necessary for reclaiming the validity of
the first law of thermodynamics when a quantum system with
time-dependent Hamiltonian is considered. Making use of
Eq. (13) and taking the off-diagonal elements of the density
operator, one readily obtains

∑
n̸=m

ρnm ⟨m| ∂ Ĥe

∂ t
|n⟩= ρ−+ ⟨χ+|

∂ Ĥe

∂ t
|χ−⟩+ρ+− ⟨χ−|

∂ Ĥe

∂ t
|χ+⟩=− h̄ω1

2λ
ω

2 sin2
α sin(λ t) . (16)

It is observed that

∑
n

ρ̇nnEn = ∑
n̸=m

ρnm ⟨m| ∂ Ĥe

∂ t
|n⟩ .

According to this and Eq. (11), we ensure that the heat transfer
rate Q̇ of the two-state system in the adiabatic evolution pro-
cess equals zero and the corresponding power generated by the
external field Ẇ =−(h̄ω1/2λ )ω2 sin2

α sin(λ t).

Fig. 1. (color online) An electron in the presence of a magnetic field whose
magnitude B0 is a constant, but whose direction rides around at an angular
velocity ω on the tip of a cone of opening angle α .

4. Test of the thermodynamic adiabatic process
via the exactly-solvable dynamic of high-spin
precession
In this section, we consider a neutral particle with a mag-

netic moment and arbitrary spin j in a harmonically-changing
external magnetic field

𝐵 (t) = B0
[

sinθ cos(ωt) , sinθ sin(ωt) , cosθ
]
.

The magnetic field rotates around the z axis with frequency ω

and is inclined at a constant angle θ . The systemic Hamilto-
nian is time-dependent and is given by

ĤJ (t) = γ𝐵 (t) ·𝐽

= γB0[Ĵx sinθ cos(ωt)+ Ĵy sinθ sin(ωt)

+ Ĵz cosθ ], (17)

where γ is the coupling parameter and 𝐽 is the total angular
momentum vector. The operators Ĵx, Ĵy, and Ĵz represent three
Cartesian components of the angular momentum. Learning
the thermodynamic behavior of high-spin precession faces a
demand with the exact solution for the wave function. The
Schröinger equation with the time-dependent Hamiltonian is
usually difficult to deal with. However, it can be reduced to
a Schröinger-like equation with a time-independent effective
Hamiltonian by invoking quantum rotation transformation in
angular momentum theory.[27]

If the system is placed initially in an instantaneous eigen-
state of ĤJ (0), i.e.,

|ψ (0)⟩= R̂z (0) R̂y (ϕ) | j,M⟩=∑
m′

d j
m′M (β )

∣∣ j,m′ (ϕ)
〉
, (18)

the exact solution of the time-dependent wavefunction be-
comes

|ψ (t)⟩= ∑
mm′

d j
m′M (β )d j

mm′ (ϕ) e−im′ω0t e−i Ĵzωt/h̄ | j,m⟩ ,

(19)
where λ0 = ω/γB0; ω2

0 = (γB0)
2 (1−2λ0 cosθ +λ 2

0
)
; and

β = θ −ϕ . In Eq. (18), the operators R̂z (ωt) = e−i Ĵzωt/h̄ and
R̂y (ϕ) = e−i Ĵyϕ/h̄ are the rotation operators, and | j,m(ϕ)⟩ =
R̂y (ϕ) | j,m⟩ with (m = j, j−1, . . . ,− j) are the rotations of
the standard angular momentum basis | j,m⟩. d j

m′m (ϕ) =

⟨ j,m′| e−i Ĵyϕ/h̄ | j,m⟩ represents an element of Wigner’s d-
matrix. Details of the algorithm are given in Appendix D. The
wavefunction |ψ (t)⟩ is a linear combination of the eigenstates
|ψm⟩. As the density operator ρ̂ = |ψ (t)⟩⟨ψ (t)|, we can ex-
plicitly carry out its matrix elements
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ρnl (t) = ⟨ψn| ρ̂ |ψl⟩= ∑
mm′

e−i(m−m′)ω0td j
mM (β )d j

m′M (β )d j
mn (β )d j

m′l (β ) . (20)

Similar to the previous model, the dynamic evolution of high-spin precession can also be visualized as an adiabatic process
in which no heat is gained or lost by the system. Accordingly, using Eq. (11), we will show that the high-spin system is hardly
thermally isolated unless the quantum coherence is considered. From Eqs. (11) and (20), we immediately have

∑
n

ρ̇nnEn =−iω0γB0h̄ ∑
nmm′

(
m−m′)ne−i(m−m′)ω0td j

mM (β )d j
m′M (β )d j

mn (β )d j
m′n (β ) . (21)

Knowing that

⟨ψm|
∂ ĤJ

∂ t
|ψn⟩=

ωγB0h̄sinθ

2i

[√
( j−n)( j+n+1)δm,n+1 −

√
( j+n)( j−n+1)δm,n−1

]
(22)

and the relation ω sinθ =−ω0 sinβ , we can write the second term of Eq. (11) as

∑
nm

ρnm ⟨ψm|
∂ ĤJ

∂ t
|ψn⟩= iω0γB0h̄ ∑

nmm′

sinβ

2
× e−i(m−m′)ω0td j

mM (β )d j
m′M (β )d j

mn (β )

×
[
d j

m′n+1 (β )
√
( j−n)( j+n+1)−d j

m′n−1 (β )
√

( j+n)( j−n+1)
]
. (23)

In the spin 1/2 case, the matrix representation of Wigner
d-function

d1/2 (β ) =

(
cos(β/2) −sin(β/2)
sin(β/2) cos(β/2)

)
.

If we substitute ω0 → λ , γB0 → ω1, and ϕ → α , it is not dif-
ficult to work out that

∑
n

ρ̇nnEn = ∑
n̸=m

ρnm ⟨ψm|
∂ ĤJ

∂ t
|ψn⟩=− h̄ω1

2λ
ω

2 sin2
α sin(λ t) .

This formula is completely analogous to the result obtained by
the two-level model moving in an adiabatically rotating mag-
netic field. As an interesting application of the exact explicit

solutions of the Hamiltonian in Eq. (17), we will show that the
spin-precession processes are thermodynamically adiabatic re-
gardless of the spin quantum numbers of any particles. The
proof is straightforward, which can be done by substituting
Eqs. (21) and (23) into Eq. (11).

When m = m′, we have

∑
m

ρmm ⟨ψm|
∂ ĤJ

∂ t
|ψm⟩= 0.

Only the terms with m ̸= m′ need to be considered in the com-
putation. In the quantum theory of angular momentum, the
recursion relation for Wigner’s d-matrix implies that[28–30]

−m+ncosβ

sinβ
d j

mn (β ) =
1
2

[
d j

mn+1 (β )
√
( j−n)( j+n+1)+d j

mn−1 (β )
√
( j+n)( j−n+1)

]
. (24)

Combining the relation between d j
mn (β ) and d j

mn±1 (β ) and the usual index transformation, one can derive the following
invariant sum which gives the coupling rules relating to the direct product of two rotation matrices

∑
n

(
m−m′)nd j

mn (β )d j
m′n (β ) =

sinβ

2 ∑
n

d j
mn (β )

[
d j

m′n−1 (β )
√

( j+n)( j−n+1)−d j
m′n+1 (β )

√
( j−n)( j+n+1)

]
. (25)

The detail calculations are given in Appendix E. Applying the
invariant sum to Eqs. (21) and (23), we can verify that

∑
n

ρ̇nnEn = ∑
n̸=m

ρnm ⟨ψm|
∂ ĤJ

∂ t
|ψn⟩

for an instantaneous state. As the heat exchange rate Q̇ = 0,
the spin system exchanges no mass or heat energy with its en-
vironment. The change in its internal energy is merely due to
the work done by the external magnetic field. Once again, the

analysis demonstrates that the unitary evolution of a closed
system with time-dependent Hamiltonian is equivalent to a
thermodynamic adiabatic process when the quantum coher-
ence is taken into account.

If a system starts from an eigenstate of the initial Hamil-
tonian, the quantum adiabatic theorem states that the system
will remain in the corresponding instantaneous eigenstate of
the final Hamiltonian when a given perturbation acting on it is
slow enough.[31,32] The adiabatic approximation holds when

060502-5



Chin. Phys. B Vol. 27, No. 6 (2018) 060502

the time derivative of the Hamiltonian is extremely small and
the dimensionless adiabatic parameter

τ =

∣∣∣∣h̄⟨m| ∂ Ĥ
∂ t

|n⟩/(En −Em)
2
∣∣∣∣≪ 1(n ̸= m) .

However, the above analysis shows that the thermodynamic
adiabatic processes do not require the quantum adiabatic ap-
proximation to be satisfied. A quantum adiabatic process cer-
tainly results in a thermodynamic adiabatic process, but not all
thermodynamic adiabatic processes are due to the quantum-
mechanical adiabatic processes.

5. Conclusions
In summary, we found that the heat and work in micro-

scopic processes are closely related to the transition between
different quantum states. The energy exchanges during the
quantum isochoric and isothermal processes are simply de-
pending on the change in the eigenenergies or the probabil-
ity distributions. However, for a closed system with time-
dependent driving, the unitary evolution is equivalent to a ther-
modynamic adiabatic process only when the quantum coher-
ence is taken into account. Under this consideration, one can
ensure that no heat is lost to or gained from the surroundings
in the case of quantum-spin precession. The microscopic ex-
pressions for thermodynamic quantities are applicable to both
the thermal equilibrium case and the nonequilibrium case.

Appendix A: Expressing Tr( ˙̂ρĤ)Tr( ˙̂ρĤ)Tr( ˙̂ρĤ) and Tr(ρ̂ ˙̂H)Tr(ρ̂ ˙̂H)Tr(ρ̂ ˙̂H) in
terms of the instantaneous orthonormal basis of
Ĥ̂ĤH

From Eq. (E6), the time derivative of the density operator
is given by

˙̂ρ = ∑
nm

(ρ̇nm |n⟩⟨m|+ρnm |ṅ⟩⟨m|+ρnm |n⟩⟨ṁ|) . (A1)

Using Eq. (A1), we obtain the trace of ˙̂ρĤ as

Tr
(

˙̂ρĤ
)
= ∑

m′

〈
m′∣∣ ˙̂ρEm′

∣∣m′〉

= ∑
n

Enρ̇nn +∑
nm

Emρnm ⟨m |ṅ⟩+∑
nm

Enρnm ⟨ṁ| n⟩

= ∑
n

ρ̇nnEn − ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ . (A2)

In the last step, the relation[26]

⟨m|ṅ⟩=−⟨ṁ|n⟩= ⟨m| ∂ Ĥ
∂ t

|n⟩/(En −Em)(n ̸= m) (A3)

has been applied.
Next, we consider the trace formula Tr

(
ρ̂

˙̂H
)
. The time

derivative of the systemic Hamiltonian in Eq. (5) reads

˙̂H=∑
α

Ėα |α⟩⟨α|+∑
α

Eα |α̇⟩⟨α|+∑
α

Eα |α⟩⟨α̇| . (A4)

With the help of Eqs. (A3) and (A4), it is reasonable to expect
that

Tr
(

ρ̂
˙̂H
)
= ∑

nm
ρnm ⟨m| ˙̂H |n⟩

= ∑
n

ρnnĖn +∑
nm

ρnmEn ⟨m |ṅ⟩+∑
nm

ρnmEm ⟨ṁ| n⟩

= ∑
n

ρnnĖn + ∑
n̸=m

ρnm ⟨m| ∂ Ĥ
∂ t

|n⟩ . (A5)

Appendix B: Time dependence of the density ma-
trix in an adiabatic process

By invoking Eqs. (5) and (6) in the main text, the Poisson
bracket

[
Ĥ, ρ̂

]
is expanded as follows:[

Ĥ, ρ̂
]
= Ĥρ̂ − ρ̂Ĥ

= ∑
m′

Em′
∣∣m′〉〈m′∣∣∑

nm
ρnm |n⟩⟨m|

− ∑
nm

ρnm |n⟩⟨m|∑
m′

Em′
∣∣m′〉〈m′∣∣

= ∑
nm

(En −Em)ρnm |n⟩⟨m| . (B1)

Substituting Eq. (B1) into the Liouville–von Neumann equa-
tion, we obtain

∑
nm

(ρ̇nm |n⟩⟨m|+ρnm |ṅ⟩⟨m|+ρnm |n⟩⟨ṁ|) =− i
h̄ ∑

nm
(En −Em)ρnm |n⟩⟨m| . (B2)

Multiplying both sides of Eq. (B2) by a bra ⟨k| on the left
and a ket |l⟩ on the right yields

ρ̇kl =− i
h̄
(Ek −El)ρkl −∑

m
(ρml ⟨k |ṁ⟩+ρkm ⟨ṁ| l⟩) . (B3)

When k = l = n and considering

⟨m|ṅ⟩=−⟨ṁ|n⟩= ⟨m| ∂ Ĥ
∂ t

|n⟩/(En −Em)(n ̸= m) ,

one readily finds the equality of Eq. (9).

Appendix C: Electron spin precession in an adi-
abatically rotating electric field

Considering the orthonormal bases |↑⟩ =
(

1
0

)
and |↓⟩ =(

0
1

)
, we have the normalized eigenvectors of Ĥe (t) as

|χ+ (t)⟩= cos
α

2
|↑⟩+ e iωt sin

α

2
|↓⟩ (C1)
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and

|χ− (t)⟩= e−iωt sin
α

2
|↑⟩− cos

α

2
|↓⟩ , (C2)

which represent the spin up and spin down, respectively, along
the instantaneous direction of 𝐵 (t). The corresponding eigen-
values are

E± =± h̄ω1

2
. (C3)

When the electron starts out with spin up along 𝐵 (t), the
system is initially in a state of superposition and is given by

|χ (0)⟩= cos
α

2
|↑⟩+ sin

α

2
|↓⟩ .

The Schröinger equation can be integrated formally to give the
time-dependent wave function |χ (t)⟩ = Û (t) |χ (0)⟩, where
the unitary time-evolution operator is solved by

ih̄
∂

∂ t
Û (t) = Ĥe (t)Û (t) .

Appendix D: Exactly-solvable dynamics of high-
spin precession

Moving to a rotating frame using

ĤR = R̂z (ωt)† ĤJ (t) R̂z (ωt)− ih̄R̂z (ωt)† ∂

∂ t
R̂z (ωt)

with R̂z (ωt) = e−i Ĵzωt/h̄, one has

ĤR = ω0

(
Ĵx sinϕ + Ĵz cosϕ

)
, (D1)

where

sinϕ =
sinθ√

1−2λ0 cosθ +λ 2
0

,

cosϕ =
cosθ −λ0√

1−2λ0 cosθ +λ 2
0

.

Obviously, the effective Hamiltonian ĤR contains no explicit
time dependence in the rotating frame. The corresponding ro-
tated wavefunction is

|φ (t)⟩= R̂z (ωt)† |ψ (t)⟩ . (D2)

Invoking the transformation R̂y (ϕ) = e−i Ĵyϕ/h̄, one can
rewrite ĤR as

ĤR = R̂y (ϕ)ω0ĴzR̂y (ϕ)
† . (D3)

It is reasonable to expect that ĤR’s eigenstates | j,m(ϕ)⟩ =
R̂y (ϕ) | j,m⟩ (m = j, j−1, . . . ,− j) are the rotations of the
standard angular momentum basis | j,m⟩. Therefore, when the
initial state of the system is |ψ (0)⟩, the exact wavefunction is
straightforwardly given by

|ψ (t)⟩= ∑
mm′

⟨ j,m(ϕ) |ψ (0)⟩d j
m′m (ϕ) e−imω0t e−i Ĵzωt/h̄ ∣∣ j,m′〉 .

(D4)
Starting from Ĵz | j,m⟩= mh̄ | j,m⟩ and remembering that

e−i Ĵyϕ/h̄Ĵz e i Ĵyϕ/h̄ = Ĵz cosϕ + Ĵx sinϕ,

e−i Ĵzωt/h̄Ĵx eıĴzωt/h̄ = Ĵx cosωt + Ĵy sinωt,

we recognize the following relation

ĤJ (t) R̂z (ωt) R̂y (ϕ) | j,m⟩= γB0R̂z (ωt) R̂y (ϕ) Ĵz | j,m⟩ .
(D5)

It indicates that ψm = R̂z (ωt) R̂y (ϕ) | j,m⟩ is the eigenstate of
ĤJ (t) and its corresponding eigenvalue is mγB0h̄.

Appendix E: Proof of the coupling rules relating to the direct product of two rotation matrices

In angular momentum theory, one has the relations between d j
m(m′)n (β ) and d j

m(m′)n±1 (β ) as[28–30]

−m+ncosβ

sinβ
d j

mn (β ) =
1
2

[
d j

mn+1 (β )
√
( j−n)( j+n+1)+ d j

mn−1 (β )
√

( j+n)( j−n+1)
]
, (E1)

and

−m′+ncosβ

sinβ
d j

m′n (β ) =
1
2

[
d j

m′n+1 (β )
√
( j−n)( j+n+1)+ d j

m′n−1 (β )
√
( j+n)( j−n+1)

]
. (E2)

Multiplying each of them by d j
m′n (β ) and d j

mn (β ), respectively, yields

−m+ncosβ

sinβ
d j

mn (β )d j
m′n (β ) =

1
2

[
d j

mn+1 (β )d j
m′n (β )

√
( j−n)( j+n+1)+ d j

mn−1 (β )d j
m′n (β )

√
( j+n)( j−n+1)

]
, (E3)

and

−m′+ncosβ

sinβ
d j

m′n (β )d j
mn (β ) =

1
2

[
d j

m′n+1 (β )d j
mn (β )

√
( j−n)( j+n+1)+ d j

m′n−1 (β )d j
mn (β )

√
( j+n)( j−n+1)

]
. (E4)
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Subtracting Eq. (E4) from Eq. (E3) to eliminate the term (ncosβ/sinβ )d j
mn (β )d j

m′n (β ) and multiplying both sides of the
equation by n, we arrive at a summation formula

∑
n

(m−m′)n
sinβ

d j
mn (β )d j

m′n (β ) =
1
2 ∑

n

[
d j

m′n+1 (β )d j
mn (β )n

√
( j−n)( j+n+1)

−d j
mn−1 (β )d j

m′n (β )n
√

( j+n)( j−n+1)+ d j
m′n−1 (β )d j

mn (β )n
√
( j+n)( j−n+1)

−d j
mn+1 (β )d j

m′n (β )n
√

( j−n)( j+n+1)
]
. (E5)

According to the usual rules of arithmetic,

∑
n

d j
mn−1 (β )d j

m′n (β )n
√
( j+n)( j−n+1) = ∑

n
d j

mn (β )d j
m′n+1 (β )(n+1)

√
( j−n)( j+n+1), (E6)

and

∑
n

d j
mn+1 (β )d j

m′n (β )n
√
( j−n)( j+n+1) = ∑

n
d j

mn (β )d j
m′n−1 (β )(n−1)

√
( j+n)( j−n+1). (E7)

As a direct consequence of Eqs. (E5)–(E7), the following invariant sum is obtained

∑
n

(m−m′)n
sinβ

d j
mn (β )d j

m′n (β ) =
1
2 ∑

n
d j

mn (β )
[
d j

m′n−1 (β )
√
( j+n)( j−n+1)− d j

m′n+1 (β )
√
( j−n)( j+n+1)

]
. (E8)
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