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By building a general dynamical model for the quantum measurement process,
it is shown that factorization of the reduced evolution operator effectively results in
the quantum mechanical realization of wave packet collapse and state correlation be-
tween the measured system and the measurin,n instrument-detector. This realizability
is largely independent of the details of both the interaction and the Hamiltonian of the
detector. The Coleman-Hepp model and all of its generalizations are only special cases
of the more universal model given in this letter. Finally an explicit example of this
model is given in connection with a coherent state.

. PACS. 03.65.B~  - Foundations, theory of measurement, miscellaneous theories.
PACS. 03.SO.+r - General theory of scattering.

It is well-known that, although the theory of quantum mechanics and its applications

are extremely successful, its interpretation in connection with the corresponding measure-

ment is still a valid problem that the physicist must face [l-3]. Since an exactly-solvable

model was presented twenty years ago [4] to describe von Neumannís wave packet collapse

(WPC) in measurement as a quantum dynamical proccess  caused by the interaction between

the measured system (S) and the measuring instrument-detector (D), considerable studies

have been focused on this model [j-9], which is now called the Coleman-Hepp (CH) model.

More recently, it was respectively generalized to the case with energy exchange between

S and D [8] and to the case with simultaneously the classical limit - the large quantum

number limit and the macroscopic limit - the large particle number limit [9]. Notice that

another important problem in quantum measurement, the state correlation between S and

D (SCB) can also be studied by making use of other solvable-models, e.g., the Cini model

in Ref. IO.

However, all the investigations mentioned above use the concrete forms of the inter-

action and thus the main conclusions seem to depend on the selection of the specific form of
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the interactions. There is no doubt that a model-independent study of this problem would

be much appreciated. The present studies are dedicated to seek the essence of the quantum

machanical  rea.lization  of the WPC and SCB in the CH-model and its generalizations. To

this end a more universal dynamical model of quantum measurement is proposed which

is as interaction -independent as possible. Based on this model, we will show that the

realizability of the WPC and SCB as a quantum dynamical process mainly depends on the

factorizability of the reduced evolution operator for the system. This crucial observation not

only reveals the essence rooted in those well-established exactly-solvable models for quan-

tum measurement, but also provides us with guidance to find new exactly-solva.ble  models.

Finally, as an explicit example, an exactly-solvable model associated with a coherent state

is analysed in detail.

I. THE GENERAL MODEL

Our model can be rega.rded as an universal promotion of the original CH model.
. The mea.sured  system S is still represented by an ultrarelativisic particle with the free

Hamiltonian Hu = cp, but the detector D is made of N particles each with a single-particle

Hami1tonia.n hk(zk),(k  = 1,2,.  . . , Aí),  which is Hermitian. S is a.ssumed to be independently

subjected to the interaction \/j;(z,zk) of each pa.rticle k. Here, z and zk a.re the coordinates

of S and the single pa.rticle k in D respectively; t,lie  kíth  interaction potential Vk(5,21;)

only depends on z and xk and hk(xk)  only depends on the single particle coordinate xk

and the corresponding momentum. Then, we can write down the total Hamiltonian for the
ëuniverseí = S + D

HI = 2 Vk(x, xk), HD = 5 hk(xk),
k=l k=l

(1)

where

H í  = 111 + HD = fjhk(Xk) + lík(X,Xk)],

k=l
(2)

is a direct sum decomposition of single-particle forms. This fact, associated with the fact
that the Hu is of the first order in p, will lead to the factorization of the effective (reduced)

evolution operator and thereby produces LVPC in quantum measurement. This factoriz-

ability is also closely rela.ted to SCB. Fortmmtely,  to prove it we do not need the specific

forms of both h k I, and jí,,.(.(z,Zk).  In this sellse  we say this model iS more universal. It(x .)
is worth noting that the original IIC model a.nd its generalizations are special examples of

this universal model.
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I I .  THE EVOLUTION OPERATOR

In order to interpretate the ëIVPC  and SCB as a consequence of the Schrijdinger

evolution of the universe (S+D), we should consider the properties of the evolution operator

defined by the general Hamiltonian (1). Following Hepp [4], we first transform into the

interaction representation by assuming the evolution operator to be of the following form

U(t) = e -ictPIhue(t), (3)

Obviously, the reduced evolution operator U,(t) obeys an effective Schrodinger equation

8
+$x(t) = K(t)&(t), (4

with the effective Hamiltonian

&(t)  = 5 he&) = &c(4 + Vk(Z + ct,4], (5)
k=l k=l

. depending on time. Since H,(t) is a direct sum of the time-dependent Hamiltonians

h,&(t)(k  = 1,2,.  . . , nJ) parameterized by x, the x-depenedent  evolution operator, as the

formal solution to Eq. (-1)

L&(t) = fi @uqt) = Lqt) @ Uyt) 6 . . . @ U[ìl(
k=l

97 (G)

is factorizable, that is to say, U&t)  is a direct product

operators

of the single-particle evolution

J

t
dî](t)  = Sexp[(l/iti hek(t)~~t],

0

where S denotes the time-order operation. As proved below, it is just the above factor-

izable property of the reduced evolution operator tha.t results in the quantum dyna.mical

realization of WPC and is closely related to SCB in qua.ntum  measurement.

III. WAVE PACKET COLLAPSE AS A

P R O C E S S

Q U A N T U M  D Y N A M I C A L

Let us use the idt:al double-slit interference experiment to show that JVPC is the

consequence of the quantum dynamical evolution of the universe S+D described by the

above factorizable evolution operator. Xn incident wave is split by a divider into t\vo

branches 1~1 > and ]tiz > and the detector D is in the ground state
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at the same time where IOk > is the ground state of hk(zk).  Then, the initial state for the

universe S+D is

!$J(O>  >=  (Cll?1,1 > +C2lY52  >) @ IO >, (9)

Notice that the ground state is required by a stable measuring instrument. Starting with

this initial state the universe S+D will evolve according to the wave function

l+(t) >= Cll?h > @IO > +C2l?l2 > W&)lO  >7 (10)

.

Here, like the authors in Ref. 4-9, we have supposed that only the second branch wave

I+2 > interacts with D so that the double-slit interference experiment can be realized.

For example, such a partiality of interaction for different states of S can be automatically

given in the ëmomentumí (p-) representation with the basis Ip > if we use an improved

Hamiltonian

H = Ho + H' = Ho + H16,, (P) + HD, (11)

obtained by introducing an operator function S,,(p):

4d~)lP >= &J,,lP >

into the original Hamiltonian (1) and take

Ml >= c c;h’ >, NJ2 >= Ipo >,

PíZPO

(12)

From the final state (lo), we explicitly write down the density matrix for the universe S+D

p(t) = Iti@) >< $G>l  = IG121Th(~) >< W)l 63 IO >< 01
+IC2121+2(t)  >< $J2(t)l  @ U&>lO  >< OlUe(t>+

+Gq+l(~)  >< Y52(t)l  C3 u&>lO >< 01
(13)

tC2C;l+2(q  >< $9(q>l 63 10 >< wL(t>+

In the problem of WPC, because we are only interested in the behaviours of the system S

and the effect of the detector D on it, we only need the reduced density matrix for S

&)S = TrDt'tt) = iCd2hh(t) >< h(t)/ + IC2121$ë2(t)  >< $ë2(t)l

+GGl?w)  >< @z(t)1 + CzC;l$2(q  >< $l(ql>  < olqqlo >,
(14)
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where Tro represents the trace over the variables of the detector D. Let us recall that the

WPC postulate means the reduction to a pure state density matrix

Pws + p(t) = lG121Fh(~)  >< ~l(~>l  t lC2121~2(~)  >< Th(Ol, (15)

Obviously, under a certain condition to be determined, if < OIUe(t)10  >= 0, then the

coherent terms in Eq. (14) vanish and the quantum dynamics automatically leads to this

reduction, i.e., the WPC! Now, let us prove that this condition is just the macroscopic limit

which is defined by a very large particle number N of D, i.e., 1V + 00. In fact, due to the

factorization of the reduced errolution  operator U,(t), the norm of < O/U,(t)10  > is

k=l

where

.

112

,---) = 1 < OklUílillOk > 1 = 1 - c 1 < ?ilUíkllok >
n#O

I2 I 5 1, (17)

usudly, A,(t) is non-zero and positive and thus the series cr=,Ak(t) diverges to infinity,

that is to say, the factor < OlU,(t)lO > as well as its norm approach zero as N + m.

This just proves the central conclusion that WPC can appear as a quantum dynamical

process for the universal model (1) in the macroscopic limit as long as the dynamical

models are selected to have factorizable evolution operators. However, in this case, there

is no interactions among the particles in the detector. We understand it as an ideal case.

Because the particles in a realistic measuring instrument must interact with each other, it

is necessary to build an exactly-solvable dynamic model of quantum measurement with a

self-interacting detector. We belive the above -mentioned factorization property probably

is also a clue to finding such a model.

In terms of the above model, we can also discuss the energy-exchange process and

the delicate behaviour as N + 00 such as in Ref. S. For the latter, we have

1 < OlU&)lO  > 1 N e-k@)

where nk(t) represents the avera.ge  value of Ak(t).  The above formula shows the gradual

disappearance of the interference.

IL- . ,.
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IV. CORRELATION BETWEEN STATES OF THE SYSTEM AND
DETECTORS

Physically, the measurement is a. scheme using the counting number of the measuring

instrument D to manifest the state of the measured system S. The state correlation between

S and D (SCB) will hs ows this manifestation. Now, we show how this correlation occurs

for the above dynamical model (1) in a certain limit. To simplify the problem, we also use

the improved Hamiltonian (11). Let cmk be the coefficient with the largest norm among

Cnt =< n#lkl(t)lO~  > (k = 1,2.. .) and assume that the corresponding state 1r-r~  > is not

degenerate. Then,

. Except for the coefficient of Irnk >, each of the terms in c;:Ulkl(t)10 > has a norm less

than 1. Because of the factorization of the reduced evolution operator, the wave function

U(t)10  >= flf=ë,,  U[k]lOk > will be strongly peaked around the state

If the universe S+D with the Ha.mi1tonia.n (6) initially is in the state

INO) >= [IPO > +I21 >I 63 IO >,P # PO.

Then, it will evolve into a state near the state

IW >= IPO > @ fj cm,ln~ > SIP > 6310 > . W-9
I;=1

This just manifests the correlation between the state Ipu > of the system and Im > of the

detector. Notice that SCB can exactly appear only for the ëclassicalí limit, in which some

parameters or internal quantum numbers take their limit values (e.g., in Ref. 9, 10, this is

the limit with infinite spin). In fact, in a realistic problem, the correlation often occurs as

a good approximation valid to a quite high degree. A special example of such a correlation

problem was discussed in Ref. 10. In accord with the above general arguments, we will

give a new example to deal with both WPC and SCB.

,
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must approach zero as N + oo. This

quantum measurement.

Let us show how the correlation

FOR QUANTUM MEASUREMENT ... VOL. 31

implies the dynamical realization of WPC for the

between the states of the system and the detector

appears as a quantum dynamical process. If the detector is initially in its ground state

10 >= 101 > @IO2  > @ * * * 10~ >, the state at t is a direct product of the coherent states.

IQ(t) >= ulkl(t)~0 >= eFk(t) 2 s-ëìYtí$&oI,  >, (25)
n=O

Using the Stirling formula, we immediately determine the value fik of quantum number 7~

for which the norm of the coefficient of the Fock state In >J= l/(n!)ì2a~ì10k  > in Eq.

(25) is maximum, obtaining

.

fik =  IAk(t>i2, w-9

At time t the validity of Stirlingís formula requires fik = IAk(t)12  to be sufficiently large.

This means that the counting number of the detector is macroscopically large. It is just

what we expect for a measuring instrument. If we take the initial state of the system to be

1$(O)  >= (vlpu > +zolp  # pu >) @ IO >, then the correlation is enjoyed by the Schrodinger

evoluting state

/q!?(t) >= wlpo > @lfil > @Ifi > @. . .@ IfiN > +ìlP > @IO > . (27)

VI .  F INAL REMARKS

Finally, we should point out that in practical problems there must exist interactions

among the particles constituting the detector D. They seem to break the factorization of

the reduced evolution operator. How to realize the quantum measurement both for WPC

and SCB in this case is an open question that we must face. It is expected, at least

for some special cases, that certain canonical (or unitary) transformations possibly enable

these particles to become quasi-free ones. This is just similar to the system of harmonic

oscillators with quadratic coupling. In this case, we can imagine that the detector is made

of free quasi-particles that do not interact with each other. If each quasi-particle interacts

with the system independently, then the factorizability of the evolution operator can be

preserved in solvable models for quantum measurement.

We also remark on the realization of the double-slit type experiment where the in-

teraction selects only one of the two branch wave functions. Concerning the introduction

of 6,,(fi)  in the Hamiltonian (11) (to realize the partiality of interaction), some may not

feel content. In fact, we can also get this selection in a quite natural way. If the system

is a spin-l/2 with the free Hamiltonian Ho = hwug and the detector is still defined by the
general Hamiltonian in Eq. (2), the following interaction
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(28)

VOL. 31

HI = g(l+m) &a(~.),
k=l

naturally results in a selective interaction. Namely, the detector only acts on the spin-up

state. The spin-down state is free of interaction. Thus, Eq. (28) defines a new dynamical

model for quantum measurement, which is an extensive generalization of Ciniís model [lo].
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