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a b s t r a c t

We introduce a tight-binding chain with a single impurity to act as
a quantum data bus for perfect quantum state transfer. Our pro-
posal is based on the weak coupling limit of the two outermost
quantum dots to the data bus, which is a gapped system induced
by the impurity. By connecting two quantum dots to two sites of
the data bus, the system can accomplish a high-fidelity and long-
distance quantum state transfer. Numerical simulations for finite
system show that the numerical and analytical results of the ef-
fective coupling strength agree well with each other. Moreover,
we study the robustness of this quantum communication protocol
in the presence of disorder in the couplings between the nearest-
neighbor quantum dots. We find that the gap of the system plays
an important role in robust quantum state transfer.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The transfer of quantum states from one quantum unit of a quantum computer to another is of
fundamental importance in quantum information science. Recently, in view of the great potential of
a physical realization of the quantum computer, attention is being paid to the problem of the transfer
of quantum information in a solid-state system.
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Recently, spin systems have been proposed as a quantum data bus for transferring information.
In a pioneering study [1], Bose showed that the simplest coupled spin chain with uniform nearest-
neighbor (NN) couplings is able to act as a quantum channel, i.e., the spin system allows the transmis-
sion of an arbitrary quantum state with high fidelity from one end to the other. The advantages of this
protocol are that no external control is required throughout the entire transfer process, the quantum
state transfer (QST) is equivalent to the natural dynamical evolution of the time-independent Hamil-
tonian, and the system can be isolated from the environment to minimize decoherence. However,
the drawback of this proposal is that the transfer quality decreases with the size of chain. One way
to overcome this problem is to precisely modulate the couplings between NN spins throughout the
quantum data bus, as suggested in Ref. [2] so as to obtain perfect QST, which is independent of the
chain length. The reason is that the eigenvalues of the system match the parity of the corresponding
eigenstates, which is a sufficient condition for perfect QST [3–5]. However, such an implementation
requires precise control of the system, which is not desirable in an experiment. Another approach to
achieving perfect QST is based on a gapped quantum system [6–22]. By weakly connecting the trans-
mitting and receiving qubits to a gapped system, the dynamics of the total system can be reduced
to that of an effective two- or three-level system. In addition to the fact that no extra controls are
required for communication, a key advantage of these methods is their robustness against parame-
ter disorder, which comes from inevitable technological errors in the experimental implementation.
Moreover, we notice that the systems with long-range inter-qubit interactions for perfect QST or cre-
ating entanglement are well developed as well [23–27].

In this paper, we introduce an impurity-induced gapped system (IGS), which is a tight-binding
chain with on-site energy applied on a single quantum dot (QD), to act as a quantum channel. We
demonstrate the existence of a nonvanishing energy gap between the ground and first-excited states
in the single-particle case. We also investigate the QST using the IGS. It is found that at lower tem-
peratures, the total Hamiltonian can be mapped to a three-level effective Hamiltonian whose energy
levels are equally spaced and can be used to perform near-perfect QST. In the weak-coupling limit,
the coupling constant of the effective Hamiltonian has an inverse relationship with the transfer dis-
tance. Moreover, we study the robustness of the state transfer against the static imperfections of the
couplings, as discussed in Ref. [28,29]. The results of the state transfer fidelities in the presence of
couplings disorder reveal that chains with energy gap are more resilient to imperfections. Compared
with previously proposed schemes, the advantage of our scheme is that it is simple and can be readily
applied to experiments.

This paper is organized as follows: In Section 2, the model IGS is set up and its spectrum is intro-
duced. Moreover, our QST protocol is set up and the effective Hamiltonian Heff is deduced using per-
turbation theory. The scheme for using the IGS to transfer a quantum state is discussed in Section 3.
Finally, conclusions of these investigations are presented in Section 4.

2. Model of quantum communication

2.1. Quantum data bus

We begin by introducing a one-dimensional tight-binding chain ofN QDswith one diagonal impu-
rity at N0th site, which acts as a quantum data bus. Themodel is shown in Fig. 1(a), which is described
by the Hamiltonian

Ĥe
M = −J

N−1
j=1


σ=↑,↓


ĉĎj,σ ĉj+1,σ + h.c.


− µ0


σ=↑,↓

ĉĎN0,σ
ĉN0,σ , (1)

where −J (<0) is the hopping amplitude between NN sites j and j + 1, ĉĎj,σ and ĉj,σ are the creation
and annihilation operators of electrons on the jth site with spin σ , and −µ0 (<0) is the on-site en-
ergy of the defect. With a view toward the quantum information, we can encode the qubit on the spin
state. Note that Eq. (1) does not contain any spin–spin interaction term; thus, the spin degree does not
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Fig. 1. (Color online) (a) Schematic illustrations of impurity-induced gap system (IGS) which is a N-site chain with on-site
energy applied on the central quantumdot. (b) A schematic setup for QST between twoQDs L and R over the distance d = 2l+1,
through the gap system.

change during the evolution of the system. Hereafter, we shall omit the σ index, denoting the elec-
tron operator with generic spin state as âĎj = cos θ ĉĎj,↑ + eiφ sin θ ĉĎj,↓. This system can be regarded as
a spinless fermion system, and the feasibly obtained results can be applied to the original system. In
this sense, we can concentrate on the spinless fermionmodel in the following discussion which reads

ĤM = −J
N−1
j=1


âĎj âj+1 + h.c.


− µ0â

Ď
N0
âN0 . (2)

For the sake of clarity and simplicity,we only consider the casewhere the defect is placed in themiddle
of the medium, i.e., N0 = (N + 1)/2. Note that the Hamiltonian ĤM commutes with the total number
operator, n̂ =

N
j=1 â

Ď
j âj, and so the Hilbert space can be decomposed into subspaces corresponding

to different particle numbers, n. For the case of transferring a single particle, we restrict the discussion
to the single-particle subspace, which is spanned by the Fock states |j⟩ = âĎj |0⟩, with j = 1, 2, . . . ,N .

In this study, we focus on the bound state (or the ground state of ĤM ) of this Hamiltonian for
nonzeroµ0, which can be obtained via the Bethe ansatz method. We will also show that for Hamilto-
nian ĤM , there exists a finite energy gap∆ = ε1 − εg ∼ µ2

0/2J between the ground state and the first
excited state.

To deduce the above conclusion, we write the state in the single-particle Hilbert space as |λn⟩ =N
j=1 f

n
j |j⟩. Substituting the discrete superposition state into the eigenequation ĤM |λn⟩ = εn|λn⟩, we

get

− J
N
i=1


δi,j−1 + δi,j+1


f ni =


µ0δj,N0 + εn


f nj , (3)

with open boundary condition f n0 = f nN+1 = 0.
For µ0 = 0, the solution of Eq. (3) is

f nj =


1
N0

sin

(n + 1)π j

2N0


, (4)

with n = 0, 1, 2, . . . , N − 1, and the eigenvalues are εn = −2J cos [(n + 1)π/2N0].
We now study the effect of the impurity on the energy spectrum of Hamiltonian ĤM for nonzero

µ0. Before making calculations, wemake the following observations: First, when the Hamiltonian ĤM
is processingmirror symmetrywith respect to the inversion centerN0, its eigenvectors |λn⟩ have defi-
nite parities.Moreover, if the eigenvalues λn are in increasing order, then the eigenvectors |λn⟩ change
parity alternatively, i.e., the mirror-inverted eigenstates |λn⟩ satisfy the relation f nj = (−1)nf nN+1−j
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upon assuming that even (odd) n label even (odd) eigenstates |λn⟩. Second, the probability density
of all the eigenstates with odd parity in the central site N0 is zero, i.e., f 2m−1

N0
= 0, which means that

the eigenstates with odd parity are unaffected by the presence of the impurity. Third, by the Hell-
mann–Feynman theorem, the eigenvalues of even-parity eigenstates decrease due to the presence of
the impurity. Furthermore, the impurity contributes exactly one bound state, which we focus on in
this paper.

To see more precisely what happens for µ0 ≠ 0, we solve Eq. (3) via the Bethe Ansatz method. In
this work, the bound state is the ground state of ĤM . Through a straightforward calculation, one can
obtain the following analytical result for the ground state

f 0j = Ω−1/2
×


sinh k0j, j ≤ N0
sinh k0(N + 1 − j), j > N0,

(5)

with the eigenvalue λ0 = −2J

ξ 2 + 1, where k0 = ln


ξ +


ξ 2 + 1


and ξ = µ0/2J; Ω ≈ e2k0N0

e2k0 + 1

/4


e2k0 − 1


is the renormalization factor.

The remaining eigenstates with even parity are extended and similar to Eq. (4); the appropriate
Ansatz is

f nj =


sin knj, j ≤ N0
sin kn(N + 1 − j), j > N0,

(6)

which yields the eigenvalue εn = −2J cos kn and the wave vector kn obeys

ξ sin knN0 = cos knN0 sin kn. (7)

Setting tanϕn = ξ/ sin kn, Eq. (7) becomes cos (knN0 + ϕn) = 0, whose allowed values are

kn =
(2m − 1) π − 2ϕn

2N0
, m = 1, 2 . . . ,N0 − 1. (8)

From the above equations, we know that (i) the phase shift ϕn = 0 for ξ = 0 and ϕn = π/2 for
ξ = ∞, and (ii) the phase shifts do not alter the order of the sequence {kn}.

Until now, we have only discussed the solutions of eigenequation ĤM |λn⟩ = εn|λn⟩ without any
external perturbation. In the thermodynamic limit N0 → ∞, the excited energies become a contin-
uous energy band; it is not hard to find that the energy gap between the ground state and the first
excited state (see Fig. 2(a)) is

∆ = 2J

ξ 2 + 1 − 2J. (9)

For very small values of onsite energy, i.e., µ0 ≪ J , we get∆ ≈ Jξ 2.

2.2. The subspace Hamiltonian

Now, let us introduce the protocol of quantum communication by using IGS, in which two individ-
ual QDs (sender and receiver) are coupled to two sites of the IGS on opposite sides with respect to the
impurity (as illustrated in Fig. 1(b)). Moreover, QDs L and R are supplied with on-site energy, −µ. The
total Hamiltonian consisting of (N + 2) QDs reads

Ĥ = Ĥ0 + Ĥ ′,

Ĥ0 = ĤM − µ

âĎL âL + âĎRâR


,

Ĥ ′
= −J0


âĎL âN0−l + âĎRâN0+l + h.c.


, (10)

where âL and âR are the annihilation operators of electron on L and R, (N0 ± l) denotes the connecting
sites of the chain, and the coupling constant, J0, measures the strength of the interaction.
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Fig. 2. Schematic illustration of the energy levels of the system. (a) When the connections between two QDs and the medium
switch off J0 = 0 the ground states are three-fold degenerate. (b) When J0 = 0 switches on, the degeneracy will be removed
and split into three sub-levels with the level spacing δ =

√
2Jeff . This is approximately equivalent to that of tight-binding chain

with three QDs.

In the absence of coupling between the two qubits and the medium (J0 = 0) and setting −µ = λ0,
the total Hamiltonian (10) can be diagonalized in the basis {|L⟩, |R⟩, |λ0⟩, |λ1⟩, . . . , |λN−1⟩}, and its
ground states are threefold degenerate, i.e., |L⟩, |λ0⟩, and |R⟩ have the energy E(0)g = −µ. These three
states can be regarded as the components of an effective pseudo-spin-1 system that span an invari-
ant subspace. The original energy degeneracy will break down by switching on the weak coupling J0
(J0 ≪ ∆) and the ground state will split into three sub-levels with level spacing 1E =

√
2 |Jeff|, as

illustrated in Fig. 2(b). Here, Jeff is the effective hopping integral that can be calculated as follows.
When switching on J0, the eigenequation becomes (Ĥ0 + Ĥ ′)|ψ⟩ = E|ψ⟩. For weak coupling be-

tween QDs and the bus, i.e., J0 ≪ ∆, Ĥ ′ can be treated as a perturbation Hamiltonian. Let us assume
that, in some definite way, we can divide the basis into two classes, [G] = {|L⟩, |R⟩, |λ0⟩} and the
relative complement of [G] denoted by [O] = {|λ1⟩, . . . , |λN−1⟩}. Defining

Ĝ = |L⟩⟨L| + |λ0⟩⟨λ0| + |R⟩⟨R|, (11)

Ô =

N−1
n=1

|λn⟩⟨λn|, (12)

denote two orthogonal projection operators of two different subspaces. It is easy to check that ĜÔ = 0
and satisfying Ĝ + Ô = Î. The eigenequation can be rewritten as

Ĝ + Ô

Ĥ


Ĝ + Ô

 
Ĝ + Ô


|ψ⟩ = E


Ĝ + Ô


|ψ⟩. (13)

The above equation can be decomposed into two basic formulae in subspaces (G) and (O)

ĤGGĜ|ψ⟩ + ĤGOÔ|ψ⟩ = EĜ|ψ⟩, (14)

ĤOGĜ|ψ⟩ + ĤOOÔ|ψ⟩ = EÔ|ψ⟩, (15)

where Ĥαβ = α̂Ĥβ̂,

α̂, β̂ = Ĝ, Ô


. Using Eq. (15), one can express Ô|ψ⟩ in terms of Ĝ|ψ⟩:

Ô|ψ⟩ =


E − ĤOO

−1
ĤOGĜ|ψ⟩, (16)
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so that, substituting the above equation into Eq. (14), one finds that the equation only evolves Ĝ|ψ⟩:

ĤeffĜ|ψ⟩ = EĜ|ψ⟩, (17)

where

Ĥeff = ĤGG + ĤGO


E − ĤOO

−1
ĤOG (18)

denotes the effective Hamiltonian in subspace (G)with

ĤGG = −J0ζ0 (|L⟩ + |R⟩) ⟨λ0| + h.c. − µĜ, (19)

ĤOO =

N−1
n=1

λn|λn⟩⟨λn|, (20)

ĤGO =

N−1
n=1

−J0ζn(l)

|L⟩ + (−1)n|R⟩


⟨λn| (21)

and ζn(l) = ⟨N0 − l|λn⟩. Through a straightforward calculation, one can obtain

ĤGO


E − ĤOO

−1
ĤOG =

N−1
n=1

J20 |ζn|
2

E − λn


|L⟩ + (−1)n |R⟩

 
⟨L| + (−1)n ⟨R|


.

Note that the eigenvalues E determined from Eq. (17), are perturbed eigenvalues around respec-
tive unperturbed value −µ. With this connection, one seldom requires the second-order correction,
which is small (J20 ≪ |E − λn|, which is the condition for the perturbation procedure to be a good
approximation in this problem); it is therefore sufficient to quote the first-order results

Ĥeff ≈ −Jeff (|L⟩ + |R⟩) ⟨λ0| −
µ

2
(|L⟩⟨L| + |λ0⟩⟨λ0| + |R⟩⟨R|)+ h.c., (22)

with effective coupling strength Jeff = J0ζ0(l).
In this section, we have shown that the total Hamiltonian (10) can be simplified to the effective

Hamiltonian (22), due to a large gap (compared with coupling strength J0) existing in the medium.
This approximation holds when the energy splitting

√
2Jeff caused by the Ĥeff is smaller than the typ-

ical gap for the unperturbed Hamiltonian Ĥ0, i.e., Jeff ≪ ∆. To check the range of validity of the above
effective Hamiltonian, we compare the analytical result of Jeff with the results (E1 − E0) /

√
2 obtained

by direct numerical diagonalization of theHamiltonian (10). The results of this comparison are plotted
in Fig. 3 for a system of N = 499, with J0 = 0.001J , andµ0 = 0.1J, 0.05J , and 0.01J . In this figure, one
can see that taking µ0/J0 bigger than 50, the effective coupling strength Jeff of Ĥeff agrees very well
with that obtained numerically. So far, the validity of the effective Hamiltonian (22) is firmly estab-
lished. Thus one should be able to obtain high-fidelity QST with the effective Hamiltonian whenever
the perturbation solution is valid. Furthermore, we will show that the existence of an energy gap can
also be used to protect the performance of QST in the presence of static disorder in the couplings of
the quantum data bus.

However, it is worth pointing out that large µ0 can improve the validity of Ĥeff but decrease the
transfer efficiency characterized by Jeff, since 1/Jeff determines the transfer time of the QST between
the two qubits, L and R. As observed in Fig. 3, the decay rate of Jeff directly depends on the value of
µ0. The smaller the µ0 is, the slower the decay rate will be. Typically, Jeff decreases almost linearly
with the increase of the transfer distance for µ0 = 0.01J . From the two competing aspects described
above, we can summarize the proper choice of the system parameters,µ0 and J0, for high-fidelity QST.

To briefly summarize, we have theoretically and numerically studied Jeff as a function of d in a spe-
cific range of parameters. However, the obtained conclusion is based on the fact that the Ĥeff given by
Eq. (22) is a valid approximation in the studied range. In the following discussion, the validity of Ĥeff is
investigated by comparing the eigenstates of Ĥeff with the lowest three states of the total system (10).
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Fig. 3. (Color online) (a) Behavior of Jeff as a function of the transfer distance d for a chain of N = 499 sites, J0 = 0.001J and
different values of µ0 . Curves from top to bottom are, respectively, for µ0 = 0.1J, 0.05J , and 0.01J . Continuous curves display
the approximate expression for the Jeff and symbols denote the exact numerical data which is given by


E1 − Eg


/
√
2. (b) The

same as in (a) but for µ0 = 0.05J and different values of J0 .

Define the quasi-angular momentum states |j,m⟩ as

|1, 0⟩ =
1

√
2
(|L⟩ − |R⟩) , (23)

|1,±1⟩ =
1
2


|L⟩ ±

√
2|λ0⟩ + |R⟩


, (24)

which are the eigenstates of effective Hamiltonian (22). On the other hand, the eigenstates of Ĥ can
be generally written as

|ψjm⟩ = cL|L⟩ +

N−1
n=0

cn|λn⟩ + cR|R⟩, (25)

where we have the condition |cL|2 +


n |cn|2 + |cR|2 = 1 for the normalization of |ψjm⟩. Moreover,
we assign the state |ψjm⟩ to denote the ground state for j = 1,m = 1, the first excited state for j =

1,m = 0, and the second excited state for j = 1,m = −1. To evaluate the fidelity of the Ĥeff induced
by the perturbation, we introduce the overlap

Pjm =
j,m|ψjm

2 . (26)

For the case J0 = 0, the ground states |ψjm⟩ of Ĥ are threefold degenerate and |ψjm⟩ can be written
in symmetrical form by linear combinations of |L⟩, |λ0⟩, and |R⟩. Under this condition, one can obtain
Pjm = 1 for j = 1 and m = 0,±1. In particular, we have |cL|2 = |cR|2 = 1/4, |c0|2 = 1/2 for m = ±1
and |cL|2 = |cR|2 = 1/2, |c0|2 = 0 for m = 0. For the practical Hamiltonian Ĥ , i.e., J0 ≠ 0, the
values of |ci|2 (i = L, 0, R) and Pjm are numerically calculated for the three lowest eigenstates in the
N = 499 system with µ0 = 0.1J, 0.05J and J0 = 2 × 10−3J for finite transfer distances d = 5, 15, 25,
35, 45, 55, and 65, which are listed in Table 1(a) and (b).

We remark that the condition for mapping Ĥ to the effective Hamiltonian (22) is that J0 must be
small enough compared to the energy gap ∆ of the medium rather than the on-site energy µ0. As
mentioned before, the energy gap is ∆ ≈ µ2

0/4J for small µ0 (compared with J). It is straightfor-
ward to obtain ∆ ≈ 2.5 × 10−3J for µ0 = 0.1J and ∆ ≈ 6.25 × 10−4J for µ0 = 0.05J . From the
numerical results shown in Table 1, we observe that the realistic interaction leads to the results for
|ci|2 (i = L, 0, R), which are very close to those described by Ĥeff, even if∆ is of the same order of J0. It
is clear that such a three-level subsystem allows state |L⟩ to transfer with high fidelity, and the coher-
ent population exhibits oscillations between the two outermost QDs L and R. The oscillation period of
the population is given by τ = π/

√
2Jeff, and we can say that the quantum state is transferred from

QD L to QD R at the time τ = (2n − 1)×τ . In the next section, this problemwill be discussed in detail.



B. Chen et al. / Annals of Physics 348 (2014) 278–288 285

Ta
bl
e
1

Th
e
ov

er
la
p
P j

m
an

d
its

th
re
e
co

m
po

ne
nt
s,
w
hi
ch

pr
ov

id
e
a
cr
ite

ri
a
fo
rt

he
va

lid
ity

of
H

ef
f,
ar
e
ca
lc
ul
at
ed

nu
m
er
ic
al
ly

fo
rt

he
gr
ou

nd
st
at
e,

fir
st

ex
ci
te
d
st
at
e
an

d
se
co

nd
ex

ci
te
d
st
at
e
of

to
ta
ls

ys
te
m

fo
r
fin

ite
tr
an

sf
er

di
st
an

ce
d

=
5,

15
,2

5,
35

,4
5,

55
,a

nd
65

.T
he

re
su

lts
fo
r
µ

0
=

0.
1J
,a

nd
0.
05

J(
J 0

=
2

×
10

−
3 J
)
ar
e
lis

te
d
in

(a
),
an

d
(b
)r

es
pe

ct
iv
el
y.

It
sh

ow
s
th
at

th
e

re
su

lt
ba

se
d
on

th
e
re
al
is
tic

in
te
ra
ct
io
n
is
ve

ry
cl
os

e
to

th
at

by
H

ef
f
ev

en
if
µ

0
is
no

tl
ar
ge

en
ou

gh
.

St
at
es

j
m

d
=

5
15

25
35

45
55

65

(a
)

| c
L|

2
0.
25

52
0.
25

31
0.
25

39
0.
25

69
0.
26

18
0.
26

87
0.
27

78
|ψ

11
⟩

1
1

| c
0|

2
0.
48

84
0.
49

32
0.
49

20
0.
48

60
0.
47

57
0.
46

13
0.
44

26
| c

R
|2

0.
25

52
0.
25

31
0.
25

39
0.
25

69
0.
26

18
0.
26

87
0.
27

78
P 1

1
0.
99

86
0.
99

94
0.
99

97
0.
99

95
0.
99

88
0.
99

73
0.
99

50
| c

L|
2

0.
49

99
0.
49

94
0.
49

87
0.
49

80
0.
49

75
0.
49

71
0.
49

68
|ψ

10
⟩

1
0

| c
0|

2
3.
45

7
×

10
−
25

2.
33

4
×

10
−
24

6.
50

1
×

10
−
25

2.
24

8
×

10
−
23

1.
04

4
×

10
−
23

2.
92

0
×

10
−
23

1.
99

2
×

10
−
22

| c
R
|2

0.
49

99
0.
49

94
0.
49

87
0.
49

80
0.
49

75
0.
49

71
0.
49

68
P 1

0
0.
99

99
0.
99

88
0.
99

73
0.
99

60
0.
99

49
0.
99

41
0.
99

35
| c

L|
2

0.
24

32
0.
24

62
0.
24

59
0.
24

29
0.
23

75
0.
23

01
0.
22

05
|ψ

1−
1⟩

1
−
1

| c
0|

2
0.
51

16
0.
50

68
0.
50

80
0.
51

40
0.
52

43
0.
53

87
0.
55

74
| c

R
|2

0.
24

32
0.
24

62
0.
24

59
0.
24

29
0.
23

75
0.
23

01
0.
22

05
P 1

−
1

0.
99

79
0.
99

92
0.
99

97
0.
99

95
0.
99

87
0.
99

73
0.
99

50

(b
)

| c
L|

2
0.
26

41
0.
25

99
0.
25

80
0.
25

80
0.
25

95
0.
26

25
0.
26

66
|ψ

11
⟩

1
1

| c
0|

2
0.
46

33
0.
47

41
0.
48

01
0.
48

17
0.
47

95
0.
47

38
0.
46

50
| c

R
|2

0.
26

41
0.
25

99
0.
25

80
0.
25

80
0.
25

95
0.
26

25
0.
26

66
P 1

1
0.
99

04
0.
99

33
0.
99

57
0.
99

73
0.
99

81
0.
99

80
0.
99

70
| c

L|
2

0.
49

99
0.
49

85
0.
49

63
0.
49

37
0.
49

12
0.
48

87
0.
48

65
|ψ

10
⟩

1
0

| c
0|

2
6.
46

7
×

10
−
24

2.
46

1
×

10
−
25

1.
58

1
×

10
−
23

2.
07

5
×

10
−
23

2.
36

2
×

10
−
23

7.
62

0
×

10
−
24

2.
79

3
×

10
−
24

| c
R
|2

0.
49

99
0.
49

85
0.
49

63
0.
49

37
0.
49

12
0.
48

87
0.
48

65
P 1

0
0.
99

97
0.
99

70
0.
99

25
0.
98

75
0.
98

23
0.
97

74
0.
97

30
| c

L|
2

0.
21

94
0.
22

86
0.
23

48
0.
23

79
0.
23

83
0.
23

60
0.
23

15
|ψ

1−
1⟩

1
−
1

| c
0|

2
0.
53

18
0.
52

31
0.
51

85
0.
51

77
0.
52

03
0.
52

61
0.
53

50
| c

R
|2

0.
21

94
0.
22

86
0.
23

48
0.
23

79
0.
23

83
0.
23

60
0.
23

15
P 1

−
1

0.
96

84
0.
97

91
0.
98

74
0.
99

31
0.
99

63
0.
99

74
0.
99

67



286 B. Chen et al. / Annals of Physics 348 (2014) 278–288

3. Quantum state transfer

3.1. Weak coupling regime

Note that the spectrum structure and the corresponding parity of the effective Hamiltonian Ĥeff,
obey the spectrum–parity matching condition (SPMC) [4,5] exactly, which is the general criterion
for perfect QST. In this section, we consider the QST scheme based on our system. Assume Alice is
at the sender site, L, and Bob is at the receiver site, R. Let Alice hold an electron with a spin state
that she wants to communicate to Bob of |ϕ⟩ = cos (θ) | ↑⟩ + eiφ sin (θ) | ↓⟩, where | ↑⟩ (| ↓⟩)
denotes the spin-up (down) state. Thus, the initial state of the total system is |Ψ (0)⟩ = |L⟩ =
cos θcĎL,↑ + eiφ sin θcĎL,↓


|0⟩L, which is a superposition of the eigenstates of Hamiltonian Ĥeff

|Ψ (0)⟩ =
1
2


|1, 1⟩ +

√
2|1, 0⟩ + |1,−1⟩


. (27)

At time t , the initial state |Ψ (0)⟩ evolves into

|Ψ (t)⟩ = e−iĤefft |Ψ (0)⟩

=
1
2


eiδt |1, 1⟩ +

√
2|1, 0⟩ + e−iδt

|1,−1⟩


(28)

where δ =
√
2Jeff, and we have neglected the overall phase e−iε(0)g t . The density matrix corresponding

to |Ψ (t)⟩ is ρ = |Ψ (t)⟩⟨Ψ (t)|, and the probability of state |Ψ (0)⟩ transferring to the QD R at time t is
defined as

F(t) = Tr(ρρR) = sin4

δt
2


. (29)

At the moment when t = τ = π/δ, F(τ ) = 1 indicates that our scheme can perform QST perfectly.
That is to say, the system evolves into a new factorized state

|Ψ (τ )⟩ =
1
2


eiπ |1, 1⟩ +

√
2|1, 0⟩ + e−iπ

|1,−1⟩


= eiπ |R⟩. (30)

As an example of verifying the validity of the effective Hamiltonian Ĥeff, the fidelity for N = 499
and transfer distance d = 5, with J0 = 2× 10−3J , andµ0 = 0.1J, 0.05J are plotted in Fig. 4(a) and (b).
They show that large µ0/J0 leads to a result for transfer fidelity, which is very close to that described
by the effective Hamiltonian Ĥeff.

3.2. Robustness to disorder

We now turn to the performance of spin chains in the presence of static imperfections in the cou-
plings, which are unavoidable in experimental implementations. We will show that the energy gap
can protect the performance of the QST in the presence of static disorder in the system parameters.

We now assume that the tunnel coupling of the medium Hamiltonian has a random but constant
offset δϵj, i.e.,

Ĥ ′
=

N−1
j=1

−J(1 + δϵj)

âĎj âj+1 + h.c.


− µ0â

Ď
N0
âN0

−µ

âĎL âL + âĎRâR


− J0


âĎL âN0−l + âĎRâN0+l + h.c.


, (31)

where δ is the maximum coupling offset bias relative to J; ϵj is drawn from the standard uniform dis-
tribution in the interval [−1, 1] and all ϵj are completely uncorrelated with all sites along the chain.
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a b

Fig. 4. (Color online) Comparison of the exact transition probability F(t) (open circle) with the analytic result of Eq. (27) (red
solid line) for the system with N = 499, l = 2, J0 = 2 × 10−3J, µ0 = 0.1J (left plot), and 0.05J (right plot). Time is expressed
in units of 104/J . It shows that, small J0 leads to the result about transfer fidelity is very close to that described by the effective
Hamiltonian Heff .

a b c

Fig. 5. (Color online) The transition probability F(t) of QST as a function of time in aN = 499 systemwith J0 = 2×10−3J, l = 2
and random imperfections of coupling strength δ function of time. The left figure corresponds to the case when µ0 = 0.1J and
δ = 5×10−3 , themiddle figure toµ0 = 0.1J and δ = 1×10−2 , and the right figure toµ0 = 0.5J and δ = 1×10−2 . The results
shows that weak fluctuations in the coupling strengths do not deteriorate the quality of QST due to the existence of energy gap.

We numerically calculate the Schrödinger equation for the dynamical evolution and compute the

overlap, F (t) =

⟨R|e−iĤ ′t
|L⟩

2, to assess the performance of the chain. In Fig. 5 we plot the behavior

of F (t) as a function of time, t , in the system with N = 499 QDs, l = 2, J0 = 2 × 10−3J for three
cases: (a) µ0 = 0.1J, δ = 5 × 10−3, (b) µ0 = 0.1J, δ = 1 × 10−2, and (c) µ0 = 0.5J, δ = 1 × 10−2.
From this comparison, one can see that (i) this scheme is robust against the static disorders thatwould
be unavoidable in experimental implementations, and (ii) the large energy gap (or large µ0) is more
robust than small one against disorder.

4. Summary

According to quantummechanics, it is not difficult to establish a long-distance QST using a gapped
system. However, the magnitude of the gap in this kind of scheme is crucial: first, the gap should be
independent of the size of the system; second, the energy gap could be manipulated as required for
perfect QST. The reason is that if the gap is too large, the QST period increases exponentially with the
distance between two distant parities; when the gap is too small, the fidelity of the QST is reduced.

In this paper, the quantum transmission of an electron through an IGS (serving as the data bus) is
studied by theoretical analysis and numerical simulation. First, we show that the IGS has a nonvan-
ishing energy gap above the ground state in the single-particle subspace, which depends only on the
on-site energy −µ0 of the impurity. The approach to realize perfect QST is based on weakly connect-
ing two outermost QDs with the bus. Different transfer distances can be achieved by suitable choices
of connecting sites to the data bus. By treating the weak coupling as a perturbation, we find that a gap



288 B. Chen et al. / Annals of Physics 348 (2014) 278–288

system can induce an effective three-level Hamiltonian (Eq. (22)). This theoretical result is confirmed
by performing numerical simulations;moreover, the effective coupling Jeff decays almost linearlywith
the increase of the transfer distance if the system parameters are chosen reasonably.

Furthermore, the fault tolerance for more realistic system parameters is also demonstrated. It has
been shown that perfect state transfer can also be achieved in the presence of disorder. For larger val-
ues of the energy gap (or µ0), the effect of disorder on the quality of QST will be strongly suppressed.
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