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APPROXIMATION THEORY OF OSCILLATING FACTOR 
SUPPRESSING AMPLITUDE IN QUANTUM PROCESS 

AND ITS APPLICATIONS * 

S U N  CHANG-PU (fig%) and LIU XIA-JI ($JlJl@) 
Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, China 

(Received 9 September 1994; revised manuscript received 24 October 1995) 

The oscillating factor suppressing amplitude approximation is proposed in this paper as a basic 
method to study the evolution of a quantum system. By making use of this method, not only the 
quantum adiabatic approximation is described again, but also both the higher-order corrections for 
the rotation wave approximation and the influences of other levels on two-level approximation can 
be analytically investigated with the explicit discussion for the quantitative conditions under which 
the two approximations hold. 

PACC: 4250; 0365 

I. INTRODUCTION 

It is well known that the practical problems are frequently not solved in an exact form 

for physical theories. Besides using approximate model to simplify the problems, various 

approximation methods are needed to deal with these problems. Especially in quantum 

physics, the approximation methods, such as perturbation theory, the variation method, the 

WKB approximation, the adiabatic aproximation, the rotation wave approximation (RWA) 
and the two-level (or the few level) approximation (TLA) and so on, are the important ways 

linking the physical theories and the practical problems. 

In recent years, the quantum adiabatic approximation (QAA) method has attracted 
physicist’s notice again and evoked new developments because of the discovery of the Berry’s 

geometric phase For researches in cavity quantum electrodynamics (CQED) such 

as the atomic cooling and trapping in cav i t i e~ [~?~I ,  the RWA and TLA are still used widely 
as basic  tool^.[^)^] However, the QAA, RWA and TLA cannot hold strictly in many practical 
problems and the effects of the non-QAA, the non-TLA and so on are often substantial 
to have influence on physical phenomenon, but there are few systematic analyses for them 
(especially for the TLA) except for the QAA. Therefore, it is necessary to build a systematic 
method to deal with them uniquely. 
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Based on the above considerations, the oscillating factor suppressing amplitude approx- 

imation (OFSAA) i s  proposed in this paper as a basic method to study the evolution of a 

quamum system. Notice that the perturbation in this perturbation scheme i s  not caused by 

the small variation of the Hamiltonian, but is associated with the repaid-oscillating part of 

the Hamiltonian that sbppresses the contribution to the wave function. With the applica- 

tion of this method, the influence of the third level on the TLA is studied in detail and the 

analytic condition is given, under which the TLA holds. This method is also used to discuss 

the effects of the non-RWA on the Jaynes-Cummigs (JC) model. In the appendix A the 

high-order QAA method is proved to be a special example of this approximation method. 

11. OSCILLATING FACTOR SUPPRESSING AMPLITUDE APPROXIMA- 
TlQN 

Let the Hamiltonian or its effective form describing the evolution of a quartum system 

be 
Ii' = &(t)  + I?@), (1) 

which can be separated into the slowly-changing part f i o ( t )  and the fast-changing part I?'(t) 

where 3(t) changes slowly with time, r(t) is the phase of oscillation and O(t )  = f ' ( t ) .  The 

much large value of IQ(t)( li'(t)I means a fast oscillation of I?'. 
The Schrodinger equation 

has its integral form 

ih(l P('T)) - ~ P(0))) = IT l?O(f)l P( t ) )d t  + ( IT e-ir{')p(t)l P(t))dt + H.c.). (4) 

It is shown that e*ir(t) in the second integration in Eq. (4) is a fast-changing oscillation 
factor, which can cancel the integral of a slowly-changing function. By integrating it by 

part, successively, the second term on the right-hand side of Eq. (4) can be expanded into a 
converging power series 

0 e o  

where 
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is the "covariant" differential for time acting on I @(t)) .  This fact is proved in appendix B in 

detail. For the case 0 5 t 5 T with very large Q(t) ,  this term gives a very small contribution 
to  the wave function and the expression (5) is a rapidly converging power series. 

According to the above analysis, a Schrodinger equation in differential form is obtained 

its 

where E is a perturbation parameter accompanying the small quantity (Q(T) ) - ' .  Siinilarly 

to  that in the usual peturbation theory, we assume that 1 @ ( T ) )  = E ~ (  dk] ( - r ) }  ( E  will be 

taken to be 1 at the end of the calculation) and then substitute it into Eq. (7). Comparing 

the coefficients of the terms with the same power of E on the twosides of Eq. (7), orie can 
obtain the approximate equations of every order 

00 

k=O 

From the above equations, it is observed that the n-th order equation only includes 1 P ~ o ] ( ~ ) ) ,  
I P[x] ( T ) ) ,  e - , I P[n- ' ] ( r ) )  and so it can be solved successively order by order. In the following 

discussions, we take tL = 1. 

111. TWO-LEVEL APPROXIMATIONS AND THE INFLUENCE FROM 
OTHER LEVELS 

In this section the TLA is studied as an application of the OFSAA. As the spectral 
structure of atoms is very complicated in practical situation, only a few levels with the level 
spacing approaching the frequency of the external field are used to study the interaction 
between the atom and light field. This is because the transitions near resonance are much 
strcnger than that of off-resonance under the action of external field. These levels form an 
ideal model of few-level-atom. However, the influences of that besides these levels on the 

atomic dynamics must be considered in concrete problems such as atomic trapping and then 
the condition for the TL.4 can be analyzed quantitatively. To discuss the above-mentioned 
problems in a simple way, let us examine a V-type atom with three levelsj w illiistrated in 
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Fig. 1. 
In this figure, the level-spacings between [el), 1.1) and Ig) are respectively w1 and w2.Under 

dipole approximation and the RWA, the Hamiltonian of the atom-field system is 

where the requirement that ,U # 1 means different strengths of the coupling of light to le1) 
and IeZ), respectively. 

Fig. 1. The V-type three-level atom. 

In the interaction picture, the interacting Hamiltonian can be divided into two parts, 

the low-frequency part 

with the frequency 
6 = w 1 -  w, 

and the high-frequency part 

with the frequency 
n = w , - w .  

Notice that the vectors {lg,n + I), /e l ,n ) ,  le2,n)} span an invariant subspace for the 
evolution of the system. In this space, the matrix representation of the Hamiltonian is 
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(12) 
e i fit 

It can be found from the above expressions that the evolution matrix governed by HI is 

n=l 

. . . . . . . . .  1 0 0  0 

. . . . . . . . .  0 up 0 0 
. . . . . . . . . .  0 0  0 

. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  
0 0 0 . . . . . . . . .  VI,"] 

where 

On = Jb2/4 + g2(n + 1). 

Then, the zeroth order approximate wave function is obtained as 

It is known from the discussion in the last section that the first-order correction 1 !P['l(t)) 
obeys 

with the initial condition 

where C1 and C2 satisfy (C1I2 + lC2I2 = 1. Then we have zeroth order solution 
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and the first-order correction 

From the above results it can be observed that for 

the first-order correction can be neglected and the TLA holds. Then, Eq. (19) can be thought 

of as the dynamic condition for the TLA. The condition (19) means a weak light field, the 

third level with much higher energy than that of the resonant photon since the strength of 

the light field is proportional to the photon number n; and small g corresponds to the weak 

coupling. Physically, the strong light field and strong interaction may cause multi-photon 

transition, hence the probability of off-resonant transition cannot be neglected in this case. 

Therefore, the condition (19) is reasonable. 

IV. ROTATING WAVE APPROXIMATION AND ITS HIGHER-ORDER 
GENERALIZATION 

The RWA is an aprroximation method used frequently in quantum optics and atomic 

physics. The Dick Hamiltonian in this approximaation ignores the process of creating- 

annihilating virtual photon and effectively describes the collapse and revival of atomic pop- 
ulation, the resonant fluoescence and super-fluoescence. In practical problems, however, 

one should quantitatively understand the deviation from the RWA and the condition under 
which the RWA holds. In the following discussion the general theory of the OFSAA will be 

applied to investigate this prohlem. For simplicity, the case of a two-level atom interacting 

with a single-mode light field is considered in this section. In the dipole approximation the 
Hamiltonian of the field-atom system 

can be divided into the part of RWA-the Jaynes-Cunimings Hamiltonian 
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where the quasi-spin operators ut, U- and C T ~  are defined in terms of the ground state 19) 
and the excited state le) 

where a+ and a denote the creation and annihilation operator of the cavity mode. In the 

interacting picture the interacting part g(a+a + a-.+) can be written as a combination of 
the high-and low-frequency parts, 

f i ~  = (ga+ae St + H.c.) + (ga+a+e Rt + H.c.) &(t) + [go+a+e Ot + H.c.], (24) 

where b = w1 - w,  0 = w1 + w.  In this case, the differential equation (7) is expanded in 
terms of (WO + u)-l as 

and the corresponding perturbation approximate equations from Eq. (8) are specified as 

d (-i)eiRt 
!P['l(t)) = f i o ( t ) )  P[ll(t)) + Z [ sz ga+a+l !P[ol(t)) + H.c.], 

. . . . . . . . 

s y t ) )  = El,(t)I s y t ) )  

The zeroth order solutions are obtained as 

where An(t), Bn(t9 and s2, are defined same as in section 111. Notice only that 0 = w1 + w 

rather than 0 = w1 - w ;  C:L+l(0) and Ci:i(O) are determined by the initial conditions. 

Let us define 
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Then, the first-order approximate solutions are obtained as 
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From the above equations the conditions of the RWA are known as 

These conditions show that the RWA holds when variance rate of the high-frequency terms 
is much larger than that of the low-frequency one in the case of weak coupling and weak 

light field. In the view of energy conservation, the essence of RWA is an energy-conservation 

appr~ximat ion . [~?~]  The above results are the quantitative conditions of the energy-conservation 
approximation for a specific modei.[g] 

APPENDIX A 

The QAA method is mainly used to describe the dynamic process governed by a Hamiltonian that 
changes slowly, but with a finite variance. It is proved in the following that the essence of the QAA is still 
that the rapidly-oscillating factor suppresses the contribution of a slow-changing function to  an integral. Let 
&(t)  be an Hermitian Hamiltonian with a discrete system of instantaneous eigenstate {ln(t))l 0 5 TZ 5 N )  
and corresponding eigenvalues E,, ( t ) .  With the “rotating axis” representation, we let 

(-4.1) 
( ih) - l  Jot En(r )dr  I Wt)) = Cm(t)e In(t)) 

n 

be a solution of the Schrodinger equation. The coefficients Cn(t) satisfy an effective Schrodinger equation 
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where 

d 
d t  -i < n(t)l-ln(t)) if m = n, 

fin,m(t) = 
k @  if m # n. 

-i exp(-irn,m(t)} < m(t) - n(t)) if m # n, 
Wn,m = 14 

L O  if m = n. 

rn ,m = L'(En(T) - Em(.T))dT. 

It is clear that when 

is very small, Wn,m is a high-frequency oscillation term. When the adiabatic condition Fn,m(t) << 1 is 
satisfied, the contributions of the term W(t )  can be neglected. Then, we obtain the adiabatic approximate 
solution 

c!] ( t )  = exp{i v, (t)}Cn (01, 
where 

d 
v,(t) = i ( n ( T ) l ~ l n ( ~ ) ) d T  (-4.4) I' 

is the Berry's geometric phase factor. Baaed on the approximate solution (A.4) the approximate solutions 
of each order can be obtained by making use of the scheme of the OFSAA. This method and its applications 
have been systematically studied by one (CPS) of the  author^[^-^] and so the details are not described here. 
The purpose of this appendix is to  show that the QAA is only a special example of the OFSAA in the 
rotating axis representation. 

APPENDIX B 

Let us prove formula ( 5 )  

where 

Defining 

4 4  = i'(t)l @ ( t ) ) ,  
we obtain the integral by part 
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and then ntegrate the second part on the right hand side of Eq. (B.l) 

we obtain 

Finally, by recurrence, we prove that 
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