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Frobenius-norm-based measures 
of quantum coherence and 
asymmetry
Yao Yao1,2,*, G. H. Dong3,*, Xing Xiao4 & C. P. Sun3

We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. 
In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of 
quantum coherence inspired from optical coherence theory while the group theoretical approach is 
employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit 
physical meanings, we observe that these quantities are intimately related to the purity (or linear 
entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed 
coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) 
quantification of quantum coherence contained in quantum states, which can also be viewed as a 
normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of  
N-qubit quantum systems is considered under local independent and collective SU(2) transformations. 
In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry 
measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance.

In the 20th century, quantum mechanics, as the core of quantum physics, is undoubtedly one of the most pro-
found scientific theories during the development process of modern science and philosophy. Notably, quantum 
coherence is one of the most remarkable and characteristic traits of quantum mechanics and also viewed as 
the critical resource for the emerging field of quantum technologies, such as quantum cryptography1, quantum 
metrology2 and quantum computation3. This intrinsic principle of quantum mechanics enforces its entire depar-
ture from classical lines of thought, similar to the notion of quantum entanglement4. In different occasions, the 
generalized concept of quantum coherence manifests itself as quantum superposition, quantum asymmetry or 
non-commutability. These specific notions have gotten extensive applications in quantum physics both theoret-
ically and experimentally. Therefore, the characterization, quantification and application of quantum coherence 
are one of the central topics in quantum information science.

Although the investigation of coherence theory has a long history in classical and quantum optics5–9, it does 
not provide an integrated and unified framework for quantitative study. In some contexts, even conflicting defi-
nitions have appeared with respect to the same concept10–15, especially when the vectorial character of electro-
magnetic waves is involved. From the perspective of quantum information theory, a rigorous framework for 
the characterization and quantification of coherence has been formulated very recently, based on the quantum 
resource theory16,17. On one hand, Baumgratz et al. defined the incoherent states and incoherent operations and 
further discussed the quantum coherence monotones in the constraint of a series of axiomatic-like prerequisites18, 
which is extremely similar to the approach adopted in quantum entanglement theory19. Within this framework, 
novel measures of quantum coherence have been proposed and the connections between coherence and other 
manifestations of quantum correlations have been carefully scrutinized20–31. On the other hand, Marvian and 
his collaborators proposed the resource theory of asymmetry which included the former notion of quantum 
coherence as a special case32–37. Moreover, the internal relations between these two approaches and their physical 
justifications have been further clarified lately38,39.
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However, the story has never come to the end. The investigation of quantum coherence is now facing several 
crucial problems that need to be solved urgently. First of all, we should further identify the application scopes and 
physical meanings of existing measures of quantum coherence. In particular, the quantifiers presented in ref. 18 
are established in the finite-dimensional setting and thus can not be directly applied to the infinite-dimensional 
systems. Moreover, explicit physical (or operational) meanings of existing measures of quantum coherence are to 
be pursued by the community, though partial results have been obtained31,40,41. Secondly, as indicated by Marvian 
et al., distinct approaches of quantifying quantum coherence will lead to different conclusions in a diverse set of 
tasks. For instance, the speakable notions of coherence may not be suitable to characterize the consumed resource 
in the task of phase estimation37,38. Moreover, Chitambar et al. also pointed out that all currently proposed 
basis-dependent theories fail to satisfy a criterion of physical consistency39. In addition, the interactions between 
quantum coherence and other manifestations of quantum correlations still need to be uncovered22,23. Finally, the 
quantitative relations between quantum coherence and other important quantities in quantum information are 
yet to be established42,43.

In contrast to the resource-theory framework, we notice that other types of coherence or asymmetry measures 
are also of great significance in optical coherence theory and condensed matter physics. For example, a measure 
of first-order coherence ρ= −2 Tr 12  (for qubit subsystem) was exploited to introduce the concept of acces-
sible coherence44 and it was recently demonstrated that  can be unveiled from hidden coherence in partially 
coherent light45. Moreover, Fang et al. proposed a novel measure of the degree of symmetry by virtue of group 
theoretical approach and showed that this quantity can effectively detect the phenomena of accidental degeneracy 
and spontaneous symmetry breaking46. In this work, we formulate two Frobenius-norm-based measures by fur-
ther extending their previous work and more importantly, illustrate the clear physical meanings of these quanti-
fiers. Through the establishment of relationship with other significant physical quantities (e.g., Brukner-Zeilinger 
information), we emphasize that the purity of quantum states is not only a measure of mixedness, but also a 
basis-independent quantification of quantum coherence contained in quantum states.

Results
Coherence measure based on Frobenius norm.  In the famous work of Mandel and Wolf, they intro-
duced an important measure depicting the degree of polarization for planar electromagnetic fields7
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where Φ​2 represents 2 ×​ 2 equal-time coherence matrix at a given point r  and Φ = 〈 〉
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i, j =​ x, y. Note that this quantity characterizes the coherence between two mutually orthogonal components of the 
complex electric vector E(t) =​ [Ex(t), Ey(t)]T. Be aware of the Hermiticity and non-negativity of the matrix Φ​2,  
we can define a physically valid quantum state ρ =​ Φ​2/TrΦ​2. Since the Bloch sphere is analogous to the Poincaré 
sphere, 2  can be rewritten as
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s(1 )/2 are eigenvalues of ρ. It is 
apparent that 2 is equivalent to the degree of first-order coherence  adopted in refs 44,45 and exactly equal to 
the length of the Bloch vector s . In fact, in this case (e.g., for qubit system) ρ can also be recast as
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Furthermore, Setälä et al. moved a step forward and extended the above 2D formalism into the formulation of 

the 3D degree of polarization coherence for arbitrary electromagnetic fields47,48, that is
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where Φ​3 denotes the 3 ×​ 3 coherence matrix at a given point r  and Φ = 〈 〉
 ⁎E r t E r t[ ] ( , ) ( , )ij i j3 , i, j =​ x, y, z. 

Similarly, by redefining ρ =​ Φ​3/Tr Φ​3, we obtain
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Actually, we observe that this formalism can be unified and generalized to arbitrary dimensional systems, moti-
vated by the work of Luis49, where a 4 ×​ 4 density matrix was considered. The key idea is to quantify quantum 
coherence from the geometrical point of view, that is, the degree of coherence between distinct variables of optical 
fields is assessed as the distance between the coherence matrix and the identity matrix. Note that this geometrical 
approach is also employed in quantum resource theories16–19. Here the identity matrix, or maximally mixed state 
in the sense of quantum information, is identified as the fully incoherent and completely unpolarized light7,49. 
Therefore, we can construct the following general measure
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where d is the dimension of the Hilbert space, ρ = d
*

/d  denotes the maximally mixed state. and the Frobenius 
norm is given by = †A A ATr( )F . Note that here the Frobenius norm is normalized to guarantee ρ ∈  ( ) [0, 1]  
(see Methods section for more details). It is worth pointed out that this measure inherently possesses the follow-
ing desirable properties:

(i)	 When d =​ 2, 3, 4, the coherence measure6 reduces to the existing quantifiers for 2D, 3D and 4D cases, where 
for 4D formalism, this measure was also termed as the depolarization index50,51.

(ii)	 No optimization is involved in ρ( ) , which is in sharp contrast to the coherence measures proposed in ref. 
18, though the optimization is rather straightforward there.

(iii)	  ρ( ) is independent of the specific representation of ρ, that is, ρ( )  is basis-independent.
(iv)	  ρ( ) is unitarily invariant, since  ρ ρ=†U U( ) ( ) owing to the fact that the maximally mixed state ρ

*
 is the 

only state that remains invariant under arbitrary unitary transformation. In fact, the property (iv) is equiva-
lent to (iii).

(v)	 ρ( )  has an analytical expression and explicit geometrical interpretation. As we shall see below, ρ( )  also has 
a clear operational meaning.

To further elaborate on the characteristics of ρ( ) , we first present several observations where this coherence 
measure is involved.

Observation I: Straightforward calculation shows that the square of ρ( )  is directly proportional to the cele-
brated Brukner-Zeilinger invariant information52
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where the Brukner-Zeilinger information  BZ is an operational notion defined as the sum of individual measures 
of information over a complete set of mutually complementary observables (MCO)53
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Here i =​ 1, …​, m and j =​ 1, …​, d label complementary observables and their eigenvectors, respectively. A signifi-
cant feature of  BZ is its independence of the specific choice of the measured set of MCO and this independence 
is also equivalent to the unitary invariance of ρ ρ=†U U( ) ( )BZ BZ  , since the unitary transformations do not 
alter the eigenvalues of ρ and Trρ2 only relies on them. Therefore, it is evident that  ρ( ) (and BZ ) is a measure of 
basis-independent coherence contained in quantum states and quantifies the intrinsic randomness irrespective of 
the amount of entanglement between subsystems (if there are any). It is worth noting that the (global) purity does 
not solely determine the entanglement of a multi-partite state and this fact led to the investigation of the so-called 
maximally entangled mixed states for a given degree of purity54,55. Moreover, all pure states should always be rep-
resented as a coherent superposition of a certain set of basis states rather than a classical mixing, and by our 
definition  ρ =( ) 1 for any pure state. This is reminiscent of the argument by von Neumann that the entropy of 
all pure states is defined to be 0 as a kind of normalization56. Finally, since the Brukner-Zeilinger invariant infor-
mation was successfully utilized in quantum teleportation57, state estimation58 and the violation of Bell’s inequal-
ities59, ρ( ) , as a renormalized version of BZ , also plays an important role in all these quantum information tasks.

Observation II: The coherence measure ρ( )  is associated with entropy production problem of 
doubly-stochastic (bistochastic) quantum channels. By use of the quantum version of Kullback inequality (or a 
stronger Pinsker inequality60)
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Streater proved the following theorem61:

Theorem 1. Let  be a Hilbert space with dim = < ∞d  and denote by B H( )2 the Hilbert space of operator 
on  with scalar product 〈​A, B〉​ =​ Tr (A†B). If →T : ( ) ( )2 2B H B H  is a bistochastic channel which is ergodic and 
has spectral gap γ​ ∈​ [0, 1) (e.g., up to a scalar multiple, the identity matrix  is the only fixed point of T in ( )2B H , 
and the spectrum of the channel T† ◦T is contained in the set [0, 1 −​ γ​]∪​{1}), then for any density matrix ρ​

ρ ρ γ ρ ρ− ≥ −S T S( ( )) ( )
2 *

, (10)F
2

where S(ρ) =​ −​Tr(ρ ln ρ) is the von Neumann entropy of ρ.
From Theorem 1, we find that two separated terms contribute to the lower bound of the entropy production. 

The first term ρ ρ−‖ ‖
* F

2  is just the unnormalized version of ρ( ) , which characterizes the intrinsic coherence 
independent of the choice of a specific basis, while the spectral gap γ relies on representations of both T and ρ. To 
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further elucidate the role of the bistochastic channel T, we consider the thermodynamics problem raised in ref. 62,  
where the the bistochastic channel was taken to be a projection measurement ρ →​ Δ​(ρ) : =​ ∑​kΠ​kρΠ​k. If {|l〉​}l is the 
eigenbasis of ρ and {Π​k =​ |φk〉​〈​φk|}k constitute another orthogonal basis, then γ is the second smallest eigenvalue 
of the matrix  − M Md

T , where M is a bistochastic matrix with the entries Mkl =​ 〈​l|Π​k|l〉​ =​ |〈​φk|l〉​|2. It is easy to 
show that γ is zero if {|l〉​}l and {|φk〉​}k are the same, while γ =​ 1 if they are mutually unbiased. A deeper insight can 
be gained by noticing that once quantum thermodynamics is viewed as a resource theory, it can be cast as a hybrid 
of the resource theory of purity and the resource theory of asymmetry16. In particular, if {Π​k}k are the eigenvectors 
of an observable L, γ (e.g., second smallest eigenvalue of  − M Md

T ) is a quantifier to characterize to what extent 
ρ fails to commute with L and γ ≠​ 0 if and only if ρ has some coherence over the eigenspaces of L. This line of 
thought coincides with that of Marvian et al.36.

Observation III: For a square d-dimensional matrix A and p ∈​ [1, +​∞​), the lp norms (or vector norms) and 
Schatten-p norms are defined as63
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where = †A A A , r =​ rank(A) and s A( ) is used to refer to the vector of nonzero singular values 
σ σ= …

s A( ) ( , , )r1 . In addition to the monotonicity ≥ ≥ ≥ ∞A A A Ap q1  for 1 ≤​ p ≤​ q ≤​ ∞​, we can 
prove the following inequality by using Hölder’s inequality64
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Note that the monotonicity and the above inequality12 is also satisfied by lp norms, and the Schatten-p norms 
of A coincides with the ordinary (vector) lp norms of s A( ). In particular, the Frobenius norm of A coincides with 
the corresponding l2 norm. Therefore, ρ( )  gives a upper bound of l1 norm coherence and trace-norm coherence 
discussed in refs 18 and 27 respectively
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where   denotes the set of diagonal states defined in a pre-fixed basis. It is not surprising that the upper bounds 13,14  
are not tight in general though ρC ( )l1

 and Ctr(ρ) indeed achieve their maximum values with the closest state 
δ ρ=

*
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1

 and ρ = −C d( ) 2(1 1/ )tr
max , which is satisfied by the maximally coherent 

state18.
On the other hand, it is intuitive to assume that the intrinsic coherence measure ρ( )  may have a natural rela-

tionship with the resource theory of purity65, due to the fact that  ρ( ) is proportional to ρ ρ= − d( ) Tr 1/BZ
2 . 

Actually, ρ( )BZ  provide a lower bound for the so-called unique measure of information introduced in ref. 66. By 
virtue of the quantum Kullback inequality9, we have
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2
2

where ρ ρ= −I d s( ) log ( )2  is a unique measure for information, in the sense that ρ ρ= −I d s( ) log ( )2  is equal 
to the optimal transition rate for mixed states to one qubit pure state π (i.e., π =​ |0〉​〈​0|)16,65. However, since the 
Kullback inequality is not very sharp, this lower bound is rather loose, especially for the states with high purity.

Cohering (Purifying) power of quantum channels.  With the framework of Baumgratz et al.18, we pro-
posed the notion of cohering power of quantum channels (i.e., completely positive and trace preserving maps)23, 
which has been further explored in ref. 67. In the context of this work, we can introduce a similar quantity to 
characterize the cohering (purifying) capacity of quantum channels
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It is observed that the operator ∑µ µ µ
†K K[ , ] is Hermitian and traceless. Moreover, C E =( ) 0 if and only if  ⋅( ) 

is a unital quantum channel, i.e., doubly-stochastic (bistochastic) completely positive map or  ρ ρ=(
*
)

*
68. 

Therefore, the cohering capacity ρ( )  can be recognized as a measure of nonunitality of quantum channels. Note 
that the nonunital channels also play a crucial role in the local creation of quantum correlations69. Within the 
scope of resource theories16,17, we may make a correspondence in our context: the only free state is the maximally 
mixed state ρ

*
, the free operations are unital channels and the resources are states with ρ >( ) 0 . The justification 

of such a correspondence relies on the monotonicity of the function  ρ( ) under unital channels. The following 
theorem proves that it is the case.

Theorem 2 For any unital (i.e, bistochastic) quantum channel, it holds that C E Cρ ρ≤( ( )) ( ).
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where we have defined =µν µ ν
†A K K . It is interesting to see that {Aμν} also constitute a unital quantum channel 
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where the unitality of  ⋅( ) is used. With the aid of Chauchy-Schwarz inequality for operators 
≤†A B A BTr( ) p q for p−1 +​ q−1 =​ 1 (e.g., p =​ q =​ 2 in our case), we finally obtain
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where the unitality property of A(⋅​) is applied.
We have attempted to check whether the unitality of quantum channels is also a necessary condition for the 

monotonicity of  ρ( ). Note that for finite-dimensional Hilbert spaces, a dynamical semigroup is strictly 
purity-decreasing if and only if the Lindblad generator is unital70. However, actually the Kraus or operator-sum 
representation is more general than the master equation approach3. Therefore, the necessity of unitality of 
operator-sum representation for strictly-decreasing purity is still an important unsolved problem. See Method 
section for more information.

Asymmetry measure based on Frobenius norm.  In realistic physical scenarios, there are some states 
which are invariant under a set of symmetric operations or a given symmetric group. This fact tells us that a spe-
cific group of symmetric transformations assigns a specific type of symmetry to the underlying systems. A state ρ 
is called symmetric (or G-invariant) with respect to a finite or compact Lie group G if it satisfies34,36,71

ρ ρ ρ= = ∀ ∈†U g U g g G( ) ( ) ( ) , , (23)g

where U(g) denotes a unitary representation corresponding to the group element g ∈​ G. We notice that this defi-
nition of symmetry is equivalent to other two criterions

∑ρ ρ ρ ρ ρ ρ⇔= = ⇔ = ∀ ∈ = ∀ ∈
∈

†

G
U g U g g G U g g G( ) 1 ( ) ( ) ( ) , [ ( ), ] 0, ,

(24)
G

g G

i
g

ii( ) ( )G U

where the summation in ρ( )G  will be replaced by integral over dg when a compact Lie group is considered. The 
criterion (i) induced a nature entropic measure of the asymmetry of ρ with respect to G36,71, (i.e., 
ρ ρ ρ= −A S S( ) ( ( )) ( )G G ), which was also proved to be a measure of the quality of a quantum reference frame33. 
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Based on the criterion (ii), it is realized that the commutator [U(g), ρ] characterizes to what extent ρ is asymmet-
ric with respect to G and some matrix norm of [U(g), ρ] should be a reasonable measure of G-asymmetry36.

Along this line of thought, a new quantifier of asymmetry has recently been proposed by Sun’s group, which 
is defined as an average of the fidelity deviations of Hamiltonian H (or quantum state ρ) over a specific symmetric 
group g ∈​ G46

 ∫=G H
H

U g H dg( , ) 1
4

[ ( ), ] ,
(25)g

0 F
2 F

2

where H0 =​ H −​ TrH/d is a re-biased version of H. G H( , )  is mathematically tractable and also has desirable prop-
erties (e.g., basis-independence), mainly owing to the geometric feature of the Frobenius norm64. More importantly, 
it is has been demonstrated that G H( , )  can effectively detect some significant phenomena in condensed matter 
physics, such as accidental degeneracy and spontaneous symmetry breaking46. Meanwhile, an analogous measure 
can be defined since we are more concerned with how to quantify the asymmetry (symmetry) of quantum states

 ∫ρ
ρ

ρ=G U g dg( , ) 1
4

[ ( ), ] ,
(26)g

F
2 F

2

S A ∫ρ ρ
ρ

ρ= − = .G G U g dg( , ) 1 ( , ) 1
4

{ ( ), }
(27)g

F
2 F

2

With this formulation, we can investigate the asymmetry of any quantum state with respect to a specific symmet-
ric group. Remarkably, while seemingly unrelated, there actually exists a close connection between ρG( , )  and 
ρ( ) . We first focus on the single qubit system ρ σ= + ⋅

� ��s(1 )/2, where s  is the Bloch vector and can be parame-
terized as θ φ θ φ θ=

 s s sin cos(sin cos , sin , )0 0 0 0 0  with polar and azimuthal angles (θ0, φ0). Since the group of 
all linear unitary operations over a single qubit is equivalent to a SU(2) algebra, here what interests us most is to 
investigate the performance of ρG( , )  under the SU(2) group. The group element of SU(2) can be expressed as

ω θ φ ω σ

ω ω θ ω θ

ω θ ω ω θ
=



− ⋅ →


 =







− −

− +







φ

φ

−

ˆR i n
i i

i i
( , , ) exp

2

cos
2

sin
2

cos e sin
2

sin

e sin
2

sin cos
2

sin
2

cos
,

(28)

i

i

where n̂ is a real unit vector and for simplicity we denote the triple as a vector ω ω θ φ=�� { , , }. With the identity 
ω ρ ρ ρ ω ρ ω= −�� �� �� †R R R[ ( ), ] 2 Tr 2 Tr[ ( ) ( ) ]F

2 2  and ρ ρ= TrF
2 2, the quantity  ρG( , ) for SU(2) group can be 

explicitly calculated

SU ∫

∫

∫ ∫ ∫

ρ
ρ

ω ρ ω

ρ
ρ ω ρ ω ω

ρ π
φ θ θ ω ω θ φ ω

ρ

=

= −

= −

= − = −
+

ω

ω

π

π π π

−

�� ��

�� �� ��

�

��

��
†

R d

R R d

d d F d

s

( (2), ) 1
4

[ ( ), ]

1
2

1
2 Tr

Tr[ ( ) ( ) ]

1
2

1
2 Tr

1
4

sin sin
2

( , , )

1
2

1
4 Tr

1
2

1
2(1 )

,
(29)

F
2 F

2

2

2 2 0 0

2 2

2 2



where we have used the integral formula for a functional ω��F ( ) over the SU(2) group72

∫ ∫ ∫ ∫ω ω
π

φ θ θ ω ω θ φ ω=
π

π π π

−

�� ��d F d d F d( ) 1
4

sin sin
2

( , , ) ,
(30)2 0 0

2 2

and in our case the functional ω θ φ ρ ω ρ ω= �� �� †F R R( , , ) Tr[ ( ) ( ) ] can be represented as

ω θ φ ω ω θ θ

θ θ ω φ φ θ θ

φ φ θ θ

=





+ +






+ +

+






+ −

+ −

 



F s s

s

( , , ) 1
16

8 3 5 cos 2 sin
2

(cos 2 cos 2

3cos 2 cos 2 ) 8 sin
2

[cos 2( )sin sin

cos( )sin 2 sin 2 ]} (31)

2 2 2
0

0
2 2

0
2 2

0

0 0

As expected, the result29 indicates that  SU ρ( (2), ) is a basis-independent quantity, that is, it does not rely on 
the initial orientation of s , although F(ω, θ, φ) explicitly depend on θ0 and φ0. Moreover, when s  =​ 0, the initial 
state ρ is the maximally mixed state ρ

*
 and meanwhile SU ρ =( (2),

*
) 0 . This observation coincides with the fact 

that for any symmetry and for any representation of the symmetry, the completely mixed state ρ
*
 is invariant 

under all symmetry transformations34. Intriguingly, we build up a relationship between  SU ρ( (2), ) and ρ( )  for 
arbitrary single-qubit system
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SU ρ
ρ

= −
+

.( (2), ) 1
2

1
2[1 ( )] (32)2A

C

Apparently,  SU ρ( (2), ) is a monotonic increasing function of  ρ( ), which implies that more intrinsic coher-
ence signifies more asymmetry under the SU(2) group. Such a simple but novel relation motivates us to inspect 

ρG( , )  for N-qubit states by invoking the tensor product structure of Hilbert space.
An arbitrary N-qubit (pure or mixed) states can be written as

∑ρ σ σ= ⊗ ⊗
… =





T1
2

,
(33)

N
x x

x x x x
N

, , 0

3
1

N
N N

1
1 1

where σx
j
j
 (xj =​ 1, 2, 3) are the standard Pauli matrices in the Hilbert space of qubit j and σ j

0  is the corresponding 
identity operator. The set of real coefficients 



T x x N1
 with xj =​ 1, 2, 3 constitutes the so-called correlation matrix T. 

To gain further insight into the property of  ρG( , ), we consider the symmetry group SU SU= ⊗ ⊗G (2) (2), 
where the group element is = ⊗ ⊗R R RNind 1  and SU∈R (2)j  are independent local unitary operations acting 
on qubit j. Similar to the single-qubit case 29, the key procedure is to calculate the average of ρ ρ †R RTr[ ]ind ind  over 
SU ⊗(2) N . Due to the tensor product structure of N-qubit states and the trace formula Tr(A⊗​B) =​ Tr(A)Tr(B), we 
have the relation

∑ ∑ ∏ρ ρ σ σ= .
… = … = =

 

† †( )R R T T R RTr[ ] 1
4

Tr
(34)

N
x x y y

x x y y
j

N

x
j

j y
j

jind ind
, , 0

3

, , 0

3

1N N

N N j j
1 1

1 1

Therefore, the problem reduces to the evaluation of the integral ∫ σ σ ωω
��

�� †R R dTr( )x
j

j y
j

jj j
. In fact, we can prove 

that only when xj =​ yj =​ 0, this integral is nonzero, namely (see Methods section)

∫ σ σ ω =






= =
ω

��
��

†( )R R d
x y

Tr
2, if 0

0, otherwise (35)
x
j

j y
j

j
j j

j j

Finally, we obtain the asymmetry of N-qubit states under SU ⊗(2) N  in a general form

SU

∫

∑ ∑

∏

ρ
ρ

σ σ ω

ρ ρ

ρ ρ

= −

×

= − = −

= −
+ −

= −
+

ω

⊗

… = … =

=

+

+

��

� �

��

� �

†( )

T T

R R d

T T

( (2) , ) 1
2

1
2 Tr

1
4

Tr

1
2

1
2 Tr

1
4

2 1
2

1
2 Tr

1
2

1
2 2(2 1) ( )

1
2

1
2 2 ( )

,
(36)

N
N

x x y y
x x y y

j

N

x
j

j y
j

j

N
N

N

N N
BZ

2
, , 0

3

, , 0

3

1

2 0 0 0 0 1 2

2 1

N N

N N

j j

1 1

1 1
A

C I

where the coefficient ρ= =


T Tr 10 0 . Obviously, this result reduces to the single-qubit case for N =​ 1 and the 
maximally mixed state ρ =

*
/2N

2N  still corresponds to the minimum value of ρG( , )   ρ =G( ,
*
) 0. In addition 

to the unambiguous and monotonous relation between  SU ρ⊗( (2) , )N  and  ρ( ) (hence ρ( )BZ ), it is worthwhile 
to note that SU ρ⊗( (2) , )N  is independent of the correlation matrix T, more precisely, independent of the inter-
nal quantum correlations (e.g., entanglement) between subsystems.

Intuitively, one might be tempted to conjecture that any local symmetric transformation group G will lead to 
a correlation-independent measure of asymmetry. However, this is not the case. To illustrate this, let us take a 
closer look at local unitary transformations. Other than the independent local unitary transformations consid-
ered above, their collective counterparts also plays a crucial role in quantum information and computation73. In 
this circumstance, the element of symmetry group is the tensor product of N identical unitary transformations 
ω��R ( ), that is, = ⊗ ⊗R R Rcol . Take two-qubit states for example and we obtain (see Methods section for more 

details)

∫

∑ ∑

∑

∑

ρ
ρ

σ σ σ σ ω

ρ

ρ

⊗ = −

×

= −





+




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= −





+






.

ω

= =

=

=

��
��

† †( ) ( )

R R T T

R R R R d

T T

T T

( , ) 1
2

1
2 Tr

1
16

Tr Tr

1
2

1
2 Tr

1
16

4 4
3

1
2

1
8 Tr

1 1
3 (37)

x x y y
x x y y

x y x y

i j
ii jj

i j
ii jj

2
, 0

3

, 0

3

1 1 2 2

2
, 1

3

2
, 1

3

1 2 1 2

1 2 1 2

1 1 2 2


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It is evident that the collective effect exhibits a significant influence on the asymmetry measure and 
 ρ⊗R R( , ) indeed relies on the diagonal entries of the correlation matrix T, which are basis-dependent 
quantities.

Discussion
In this work, we first formulate a coherence measure ρ( )  based on the Frobenius norm, which is defined from a 
geometric perspective. Remarkably, we have demonstrated that this quantity is not only a measure of mixedness, 
but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which 
can also be viewed as a normalized version of Brukner-Zeilinger information52. To further illustrate this point, a 
comparison can be made between ρ( )  and the coherence measures proposed by Baumgratz et al.18. For example, 
for a single-qubit state ρ σ= + ⋅

� ��s(1 )/2, those quantifiers are listed as follows

ρ ρ= = + + =




+ 

 −






+ 








s s s s C h s h
s

( ) , ( ) 1
2

1
2

,
(38)R1

2
2
2

3
2 3

ρ ρ= = − + − = + = −
C C s is s is s s s s( ) ( ) 1

2
( ) , (39)l tr 1 2 1 2 1

2
2
2 2

3
2

1

where h(x) =​ −​xlog x −​ (1 −​ x)log (1 −​ x) is the binary entropy function and CR(ρ) is the relative entropy of coher-
ence. From the above expressions, it is evident that CR(ρ), ρC ( )l1

 and Ctr(ρ) are all basis-dependent measures, since 
they all depend on s3, which is not a unitarily-invariant quantity. Moreover, the participation of s3 precisely reflects 
the choice of the pre-fixed basis. In fact, we can present an alternative formulation of ρ( )  based on the eigenval-
ues λj of ρ, by noticing that λj −​ 1/d is the corresponding eigenvalues of ρ ρ−

*
, which is a Hermitian and trace-

less operator

 ∑ ∑ρ λ λ λ=
−



 −



 =

−
− .

= =

d
d d d

( )
1

1 1
2( 1)

( )
(40)j

d

j
j k

d

j k
1

2

, 1

2

Note that ρ =( ) 1  for any pure state. This result is just a consequence of the basis-dependent property of  ρ( ):  
pure states can only be represented as a coherent superposition in any pre-fixed basis (without including itself as 
a base vector), and more precisely, any pure state can always be connected by a unitary transformation within a 
given dimension. In contrast to quantum correlations,  ρ( ) is a global property of quantum states, which quanti-
fies the intrinsic randomness irrespective of the amount of entanglement between subsystems. This is reminiscent 
of the argument by von Neumann that the entropy of all pure states is defined to be zero as a kind of normaliza-
tion, but the entropy itself does not give a clue on the quantum correlations between subsystems of the (pure) 
states. Moreover, the current construction of coherence measure is not valid for infinite dimensional systems and 
a possible solution is to invoke the so-called extended (or unitized) Hilbert-Schmidt algebra instead74.

Analogous to previous works23,67, the cohering power C E( ) of quantum channels is introduced in our context. 
It is demonstrated that =( ) 0C E  if and only if ⋅( )  is a unital quantum channel, i.e., doubly-stochastic (bistochas-
tic) completely positive map. Therefore, the cohering capacity C E( ) can be recognized as a measure of nonunitality 
of quantum channels. For instance, for some common types of decoherence processes (such as depolarizing and 
phase damping channels) C E =( ) 0 since they are unital quantum channels. However, for dissipative channels 
(e.g., amplitude damping channel) C E( ) is exactly equal to the damping parameter γ, which can be thought of as 
the probability of losing a photon (here we adopt the notations in ref. 3). Intrudingly, the spontaneous emission 
process is one of the strongest cohering channels, due to the fact that it maps any state into a certain pure state 
(e.g., the ground state of a system). As a comparison, it’s worth noting that J. Wallman proposed a measure of 
coherence of quantum operations rather than the coherence of quantum states, where the role of purity is also 
highlighted75. Based on the commutator between quantum state and the elements of a specific symmetric group 
G, we formulate an asymmetry measure  ρG( , ) by integrating the Frobenius norm of the commutator over this 
group. Two distinct situations are considered: local independent and collective SU(2) transformations. For N-qubit 
quantum states, ρG( , )  only relies on the purity and is actually equivalent to  ρ( ) (or BZ ) under local inde-
pendent SU(2) transformations. However, for local collective SU(2) transformations,  ρG( , ) also depends on the 
quantum correlations between subsystems. One important open question is to find a closed expression of  ρG( , ) 
for arbitrary N-qubit states (especially N >​ 3) in this case.

Methods
Normalization of (ρ) and C E( ).  Here we only focus on  ρ( ), because  ⋅( ) is a completely positive and 
trace preserving map and hence C E( ) is also a valid density matrix. Trace-preserving property renders 

ρ ρ= =Tr( (
*
)) Tr(

*
) 1 , and we obtain

ρ ρ ρ− = − .
d

(
*
)

*
(

*
) 1

(41)F
2

F
2 

Note that for p ∈​ [1, +​∞​) and an arbitrary non-negative vector x, the following inequality holds for vector 
p-norms76
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≤ .∞
−  x x x (42)p

p p p
1
1/ ( 1)/

Since the Schatten-p norms of an operator A is equal to its vector p-norm of its singular values (e.g., 
=

A s A( )p p), the above inequality also holds for Schatten-p norms. Therefore, we have

ρ ρ ρ ρ ρ− ≤ − = − ≤ −
∞ ∞d d d

(
*
)

*
(

*
) (

*
) 1 (

*
) 1 1 1 , (43)F

2
1

   

where we have used  ρ ρ= =(
*
) Tr[ (

*
)] 1

1
 due to the positivity of  ⋅( ) and the monotonicity 

ρ ρ≤
∞

(
*
) (

*
)

1
  . It is quite clear that the equality is satisfied only if the quantum channel ⋅( )  maps the 

maximally mixed state ρ
*
 to a pure state, which only possesses intrinsic (e.g., basis-independent) coherence in our 

context.

Necessity of unital channels.  In ref. 70, it is proved that a dynamical semigroup is strictly purity-decreasing 
if and only if the Lindblad generator is unital. Here the quantum dynamic semigroup (in the Schrödinger picture) 
is a family of one-parameter linear trace-preserving maps  τ ≥τ{ , 0} satisfying an additional property except for 
complete positivity, namely77

  =τ τ τ τ+ , (44)1 2 1 2

which is called semigroup condition or Markov property. However, we recall that a linear map   is completely 
positive if and only if it admits a Kraus representation. Thus in our context we are dealing with a more general 
class of dynamical maps. Note that Nielsen and Chuang stated in their book that a quantum process described in 
terms of an operator-sum representation cannot necessarily be written down as a master equation, especially for 
non-Markovian dynamics3. In particular, it is worth pointing out that the technique used in ref. 70 does not work 
for our purpose. Therefore, the necessity of unitality of operator-sum representation for strictly-decreasing purity 
is still an important unsolved problem.

Moreover, though we present an elegant proof of the sufficient part, we can reach this conclusion from a dif-
ferent perspective. For α ∈​ (0, 1)∪​(1, +​∞​), the quantum α-divergence28

ρ σ
α

ρ σ=
−

−α
α α−D ( )

1
1

[Tr( ) 1], (45)
1

where we assume that supp(ρ)⊂​supp(σ). The monotonicity of  ρ( ) under unital channels follows from the facts 
that ρ σαD ( ) is monotone under completely positive and trace preserving maps in the range α ∈​ (0, 2]28 and 
ρ ρ ρ|| = −☆D d( ) ( 1) ( )2

2 .

Integrals over independent and collective local unitary transformations.  For independent local 
unitary transformations, the key task is to calculate the integral ∫ σ σ ωω

��
�� †R R dTr( )x

j
j y

j
jj j

. For simplicity, we define 
 σ σ= †R RTr( )i j i j, . A straightforward observation shows that the evaluations of i j,  can be divided into four 
categories

∫ ω =











= =
= ≠
≠ =
≠ ≠

ω
��

�� d

i j
i j
i j
i j

2, if 0, 0
0, if 0, 0
0, if 0, 0
0, if 0, 0 (46)

i j,

The first three situations are evident but the last one is not immediately obvious. In order to calculate 
∫ ωω
��

�� di j, , the key point is that for any σj (j =​ 1, 2, 3), one can always find an operator SU∈U (2) such that 
UσjU† =​ σ3. Moreover, this operator can be absorbed into the average over SU(2). Therefore, we only need to 
consider 3,3. Finally, we can obtain

 σ σ θ θ ω= = +†R RTr( ) 2 cos 2 sin cos , (47)3,3 3 3
2 2

where we have used the identity

ω ω σ=


− ⋅



 =

φ
σ θ σ ω σ θ σ

φ
σ− − −�� ��ˆR i n( ) exp

2
e e e e e ,

(48)
i i i i i2 2 2 2 23 2 3 2 3

and the commutation relations

σ θσ θσ σ θσ θσ= + = − .
θ σ θ σ θ σ θ σ− −e e cos sin , e e cos sin (49)i i i i2 3 2 3 1 2 1 2 1 3

2 2 2 2

Finally, for any i, j =​ 1, 2, 3 we have

∫ ∫ ∫ ∫ω
π

φ θ θ ω θ θ ω ω= + = .
ω π

π π π

−

��
�� d d sin d d1

4
sin

2
(2 cos 2 sin cos ) 0

(50)i j, 2 0 0

2 2 2 2
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However, the situation is much more complex when confronted with the collective local unitary transforma-
tions. Take two-qubit state for example, and in this case we should deal with the integral  ∫ ωω

��
�� dx y x y, ,1 1 2 2

. Similar 
analysis leads to the fact

 ∫ ω =











= = = =

∃ = =

= ≠ = ≠ω
��

�� d

x x y y
x y

x x y y

4, 0
0, 0 or 0

4
3

, 0, 0

0, otherwise (51)

x y x y

j j

, ,

1 2 1 2

1 2 1 2
1 1 2 2

Special attention should be paid to the case x1 =​ x2 ≠​ 0, y1 =​ y2 ≠​ 0, that is

 ∫ ∫ ∫ ∫ω
π

φ θ θ ω θ θ ω ω= + = .
ω π

π π π

−

��
�� d d d d1

4
sin sin

2
sin (2 cos 2 sin cos ) 4

3 (52)x y x y, , 2 0 0

2 2 2 2 2
1 1 2 2

We have also considered the three-qubit state and only present the result here

  ∫ ω δ δ δ δ

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ ε ε

=

+ +

+ +

ω ≠ ≠

≠ ≠ ≠ ≠

��
�� (

)
d 2

3

2 2
3

,
(53)

x y x y x y x x x y y y

x x x y y y x x x y y y

x x x y y y x x x y y y

, , ,

3

,0 0, ,0 0,

,0 0, ,0 0, ,0 0, ,0 0,

3
,0 ,0 ,0 ,0 ,0 ,0

2

, , , ,

1 1 2 2 3 3 1 2 3 1 2 3

2 1 3 2 1 3 3 1 2 3 1 2

1 2 3 1 2 3 1 2 3 1 2 3

where δi,j and εi,j,k denote the Kronecker delta and Levi-Civita symbol, respectively. However, the generalization to 
arbitrary N-qubit states is still missing, which is left as an open question for further study.
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