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We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor
harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the
quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously.
This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of free-
doms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions.
In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary
conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity.
Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to
degrade even without applying an external symmetry-breaking field or surrounding environment.

spontaneous quantum decoherence, periodic boundary condition, gauge interaction

PACS number(s): 03.65.Yz, 05.30.Jp, 03.65. C w, 03.75.Kk

Citation: Z. R. Gong, Z. W. Zhang, D. Z. Xu, N. Zhao, and C. P. Sun, Spontaneous decoherence of coupled harmonic oscillators confined in a ring, Sci.
China-Phys. Mech. Astron. 61, 040311 (2018), https://doi.org/10.1007/s11433-017-9101-4

1 Introduction

Quantum decoherence has been a subject of active research
since quantum mechanics was established [1]. The revival of
the study of decoherence as a popular subject originates from
the development of quantum information. As the physical
states in quantum mechanics are described by the superpo-
sition of some eigenstates, the coherence existing between
different eigenstates is an important criteria for whether the
quantum properties of the system remain. In this sense,
quantum decoherence explains the emergence of the classi-
cal limit in a quantum system, which apparently determines
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the quantum-classical boundary [2-5], and plays a crucial role
in quantum information technologies such as quantum state
transfers [6-8], quantum error corrections [9], and so on.

Originally, quantum decoherence was the name for the
collapse of the wave function in the Copenhagen interpre-
tation [10]. Instead of generating actual wave function col-
lapse, it only gives the appearance of wave function collapse.
Nowadays, studies on decoherence focus on the quantum
correlation between a system and its environment [11-14].
As commonly understood, the decoherence process can be
viewed as the quantum system losing information to its en-
vironment. Mathematically, losing information in the deco-
herence process can be defined as the disappearance of the
off-diagonal elements of the system’s reduced density matrix.
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A perfect decoherence process requires that the environment
approaches its thermodynamic limit, whose infinite degrees
of freedom guarantees the infinitely long recurrence time of
the decoherence process [15-21].

To reveal the mechanism of quantum decoherence, Heisen-
berg introduced a random phase factor according to the un-
certainty principle. This phase factor also results in the ran-
domness of the coefficients of the off-diagonal elements in
the system’s reduced density matrix, whose average over time
tends to zero. However, the uncertainty principle is not the
only mechanism to cause decoherence, which has been ver-
ified experimentally [22, 23]. Additionally, in some specific
systems, such as quantum non-demolition measurement, the
Heisenberg uncertainty does not cause the randomness of the
phase factor due to the relationship between the measured
variables and the Hamiltonian of the system. In general, the
random factor originates from the interaction between the
quantum system and its environment. In contrast to the ex-
ternal environment mentioned above, we are more interested
in an internal one [24, 25]. For most quantum systems, only
some subspaces of the system’s complete Hilbert space are
concentrated on, whose adjoint space can be regarded as the
“internal” environment with interactions between these two
spaces, such as the spin-orbit interaction, electron-phonon in-
teraction, and so on. Instead of the infinite degrees of freedom
the external environment has, the internal environment only
possesses a few degrees of freedom.

In contrast with the usual decoherence, which always in-
volves the interaction between the system and the environ-
ment, decoherence can also result from the symmetries or
non-trivial boundary conditions of the system plus the en-
vironment. Since there is no obvious interaction between
the system and environment in the latter case, such decoher-
ence is called “spontaneous decoherence.” Previous theoret-
ical research has indicated that, due to the spontaneous sym-
metry breaking [26-29] in association with quantum phase
transitions [30], quantum decoherence emerges in a multi-
particle system when a small but finite symmetry breaking
field is added to a closed symmetric quantum system. When
the symmetry is broken, a series of thin spectra emerge in
the vicinity of the original energy levels. The subtle energy
differences of the thin spectra actually result in spontaneous
decoherence. Recently, researchers have shown that sponta-
neous decoherence can also be induced by gravitational time
dilation [31-33].

In this paper, we shall study the spontaneous decoherence
of a closed multiparticle system without symmetry break-
ing. Considering N coupled harmonic oscillators confined
in a ring container, the Hamiltonian can be decoupled into
the center-of-mass motion and N − 1 relative motions. It is
essential that the harmonic potentials between oscillators are

periodic because of the ring configuration. Such a bosonic
multiparticle system possesses U(1) ⊗ CN symmetry, where
the continuous U(1)-symmetry and discrete CN-symmetry
respectively relate the center-of-mass and relative motions’
symmetries. Then, nontrivial boundary conditions emerge in
order to guarantee the single-valuedness of the wave function,
which eventually results in the total energy spectrum not only
depending on the excitations of the relative motions, but also
on the total momentum corresponding to the center-of-mass
motion. Similar to the Aharonov-Bohm effect, the nontrivial
boundary conditions are actually equivalent to applying an
induced gauge field [34]. This gauge coupling between the
center-of-mass motion and relative motions introduces a se-
ries of thin spectra of the total momentum, which contributes
to the decoherence process of the relative motions. If the
center-of-mass motion is not condensed to the state with a
single momentum, the spontaneous decoherence process oc-
curs in the superposition states of the relative motions. Since
there is no environment or symmetry-breaking field at all, the
decoherence in our model is definitely intrinsic and its dy-
namical process is spontaneous. The paradox of such sponta-
neous decoherence is that the information represented by the
quantum coherence is mysteriously missing in a completely
closed system. The key point to explaining this is that the
center-of-mass motion actually acts like a surrounding envi-
ronment to the relative motions we concentrated on. The in-
formation is only transferred from the subspace of the com-
plete Hilbert space into its adjoint space.

This article is arranged as follows. We describe the multi-
particle model and derive the nontrivial boundary conditions
in sect. 2. Then, the explicit total energy spectrum includ-
ing all the thin spectra is obtained in sect. 3. In sect. 4, we
demonstrate how the thin spectra contribute to the dynamic
decoherence process. We conclude in sect. 5.

2 Coupled harmonic oscillators confined in a

ring container

2.1 Model setup

To investigate the mechanism of decoherence due to the sym-
metries of system, we consider a bosonic multiparticle sys-
tem confined in a ring container (Figure 1(a)), which is mod-
eled as N coupled harmonic oscillators with the Hamiltonian

Ĥ =
N∑

j=1

 p̂2
j

2m
+ V(x̂ j − x̂ j+1)

 , (1)

where

V(x̂ j − x̂ j+1) =
κ

2

(
x̂ j − x̂ j+1

)2
(2)
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Figure 1 (Color online) (a) Schematic illustration of the coupled harmonic
oscillators confined in a ring container. Here, the light blue torus and the
red spheres represent the ring container with radius R and the oscillators,
respectively; (b) schematic illustration of the periodic harmonic potential.
Here, x denotes any displacement difference between the nearest-neighbor
oscillators; (c) schematic illustration of the real part of the center-of-mass
motion wavefunction versus the displacement X0 for the first four values of
the quantum number n.

are the harmonic potentials between nearest-neighbor oscilla-
tors. Here, p̂ j and x̂ j are the momentum and the displacement
of the j-th oscillator. For the sake of simplicity, the oscillator
mass m and the spring constant κ are identical for all oscil-
lators, and the system is considered to be one-dimensional
since the cross section radius of the ring container is much
smaller than the radius of the ring R. Our model is analogous
to the textbook example of phonons in solid state physics with
the Born-von Karman boundary condition. However, there
is an essential difference between these two models. Since
the harmonic oscillator potentials for the phonons are effec-
tive ones, which result from the Coulomb interaction between
the electrons and the nuclei, the Hamiltonian would not be
changed if the positions of any two particles are switched.
However, in our model, the harmonic oscillator potentials are
inherent and the Hamiltonian would be changed if the posi-
tions of any two particles are switched. In the present situa-
tion, the oscillators can potentially move far away from their
equilibrium positions if their kinetic energies are sufficiently
large. In this case, the harmonic potentials become periodic

as:

V(x j − x j+1 + nL) = V(x j − x j+1), (3)

when any of the displacement differences between the
nearest-neighbor oscillators are augmented by nL (n is an
integer). This periodic potential is schematically plotted in
Figure 1(b). Here, L = 2πR is the perimeter of the ring con-
tainer. Since the harmonic potentials only involve the dis-
placement differences between the nearest-neighbor oscilla-
tors, the above coupled-oscillator system can be decoupled
into N oscillators, which correspond to the center-of-mass
motion and (N − 1) relative motions.

To decouple the system into N oscillators, we successively
perform the Fourier transformation

(
q̂ j = p̂ j, x̂ j

)
:

Q̂k =


√

2
N

∑N
j=1 q̂ j cos

(
2πk j

N

)
, 1 ≤ k ≤ N

2 ,√
2
N

∑N
j=1 q̂ j sin

(
2πk j

N

)
, k > N

2 ,
(4)

where Q̂k = P̂k, X̂k (k = 1, · · · ,N − 1) are the momenta and
the displacements of the N − 1 independent relative motions.
Besides the relative motions, there is a unique center-of-mass
motion, whose momentum and displacement are described as
P̂0 =

∑N
j=1 p̂ j and X̂0 = 1/N

∑N
j=1 x̂ j, respectively. We intro-

duce the different forms for the momenta and the displace-
ments when 1 ≤ k ≤ N/2 and k > N/2. After the Fourier
transformation, the Hamiltonian becomes N decoupled har-
monic oscillators:

Ĥ = Ĥ0 +

N−1∑
k=1

Ĥk, (5a)

Ĥk =
P̂2

k

2m
+
κ

2

(
2 sin

πk
N

)2

X̂2
k . (5b)

It is noticeable that the zeroth Hamiltonian

Ĥ0 =
P̂2

0

4mN
=

1
2mN

 N∑
j=1

p̂ j


2

(6)

describes the center-of-mass motion of the multiple particle
system, which is regarded as a whole as carrying a kinetic
energy associated with the total mass of the system. The rest
part of the Hamiltonian ĤR = Ĥ − Ĥ0 =

∑N−1
k=1 Ĥk, describes

the decoupled N − 1 relative motions. It should be noted that
the Hamiltonian can be completely separated into the center-
of-mass motion part and the relative motions part only when
the adjacent particles couple to each other with harmonic os-
cillator potentials, as shown in eq. (2). Obviously, each rel-
ative mode is described by a periodic harmonic oscillator.
Although the periodicities of these relative motions are no
longer simply demonstrated, the sum of all the relative har-
monic oscillators potentials still possesses the periodicities
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shown in eq. (3). By solving the eigenvalue problem for the
system, we can obtain the thin spectrum that plays an essen-
tial role in our spontaneous quantum decoherence process.

It should be emphasized that although in a ring geome-
try the displacement operator is no longer a physical observ-
able [35, 36] that needs to be replaced by exp (iθ), with θ =
x̂/R, the momentum operator is still a physical observable
due to the translational symmetry. Under this circumstance,
the commutation relation between the displacement and the
momentum becomes

[
M j, exp (αiθk)

]
= αδ j,k exp (αiθk) with

the corresponding angle and angular momentum operators
θk =

xk
R and M j =

R
~

p j, respectively. It is easy to prove that
the Fourier transformation we applied in eq. (4) guarantees
that the transformed displacements and momentum still fol-
low the same commutation relation. In this sense, the center-
of-mass motion and relative motions are completely indepen-
dent.

2.2 Origin of the thin spectrum

Although the center-of-mass motion and relative motions
seem independent of each other in the Hamiltonian, there is
a gauge coupling between them due to the symmetry of the
system. For a given quantum system, the energy spectrum
and eigen-states are not only governed by its Hamiltonian,
but also by the boundary conditions, which depend on the
symmetries of the system [34]. We will find the boundary
conditions for our system as follows.

We first analyze the existing symmetries of the system
shown in Figure 1(a). If all the oscillator displacements
x j ( j = 1, . . . ,N) are augmented by the same increment δx,
the Hamiltonian remains unchanged, which means the sys-
tem possesses U(1)-symmetry. Since the Hamiltonian has
been decoupled as eq. (5a), the eigenstate of the system is
obtained as:

Ψ (X) = exp
(

i
~

P0X0

)
χ (X) , (7)

where the plane wave exp (iP0X0/~) and the product state

χ (X) =
N−1∏
j=1

χ j

(
X j

)
(8)

describe the center-of-mass motion and the relative motions,
respectively. Here, the vector X = {X1, X2, . . . , XN−1} rep-
resents the displacements of the relative motions, and x =
{x1, x2, . . . , xN−1} is the displacements of the original oscilla-
tors. They are linked by the linear transformation X = Mx,
where the transformation matrix is determined by eq. (4). If
all the oscillator displacements x j ( j = 1, . . . ,N) are aug-
mented by the same increment µL (µ is an integer), the rel-

ative motions remain unchanged because all the relative dis-
placements are unchanged; however, there is an additional
phase to the center-of-mass motion wave function

Ψ ′ (X) = exp
(

i
~

P0 (X0 + µL)
)
χ (X) . (9)

The single-valuedness condition of quantum mechanics re-
quires Ψ ′ (X) = Ψ (X) , which leads to the quantized total
momentum (n is an integer):

P0 (n) = n
~

R
. (10)

The real part of the plane waves of the center-of-mass motion
versus the displacement X0 is depicted in Figure 1(c). When
the quantum number n increases, the number of nodes for the
real part of the center-of-mass motion wavefunction also in-
creases.

Besides this continuous symmetry, there is a discrete sym-
metry due to the periodicity of the harmonic potential shown
in eq. (3). When any of the displacements x j are augmented
by µL, the Hamiltonian is still unchanged. In this sense, the
operation not only introduces a similar phase to the center-
of-mass motion as:

Ψ ′
(
X′

)
= exp

[
i
~

P0 (n)
(
X0 +

1
N
µL

)]
χ
(
X′

)
, (11)

but also changes the displacements of the relative motions
to X′ = X + µLM j0 . Here, M j0 is the column vector of the
transformation matrix M. If we only focus on the additional
phase of the center-of-mass motion and substitute the quan-
tized total momentum in eq. (10), the phase exp (i2πnµ/N)
actually only has N possible values for mod [nµ,N] =
0, 1, . . . ,N − 1, where mod [x, y] gives the remainder of the
division of x by y. These N operations actually constitute
the N elements of the CN group. Therefore, the total system
symmetry group is U(1) ⊗CN .

To obtain the energy spectrum, the corresponding
Schrödinger equation is taken into consideration as:

ĤΨ (X) = E (n)Ψ (X) , (12)

where the eigenenergy contains the kinetic energy of the
center-of-mass motion and the energies of the relative mo-
tions as:

E (n, α) =
n2~2

2mNR2 + ϵ (α) . (13)

Here, we have already substituted the quantized total momen-
tum into the kinetic energy P2

0/2mN. Since the total momen-
tum commutes with all displacements of the relative motions,[
X̂k, P̂0

]
= i~δk,0, the eigenstates describing the relative mo-

tions also satisfy the following Schrödinger equation:

Ĥχ (X) = ϵχ (X) . (14)
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Usually, the energy spectrum of the relative modes ϵ is
independent of the total momentum P0, and the coherence
of the relative motion states can be maintained all the time.
However, the single-valuedness condition requires the wave-
function in eq. (11) to be the same as the wavefunction in
eq. (7), which leads to

χ (X) = exp (iµθn)χ
(
X + µLMk0

)
(15)

with θn = 2πn/N for any k0 = 1, 2, . . . ,N − 1. Here, the
boundary conditions in eq. (15) actually can guarantee the
single-valuedness condition for any µ:

χ (X) = exp (iθn)χ
(
X + LMk0

)
= exp (i2θn)χ

(
X + 2LMk0

)
= . . . = exp (iµθn) χ

(
X + µLMk0

)
. (16)

Obviously, θn depends on the total momentum P0, which
eventually results in the energy of the relative motions ϵ (n, α)
becoming dependent of the total momentum. For a different
quantum number n of the total momentum, the group of en-
ergy levels forms the thin spectrum, which plays an essential
role in the spontaneous decoherence. The Hamiltonian, in
the first place, possesses CN-symmetry, implying a periodic
θn as θn=θn+µN ; therefore, the thin spectrum is also periodic:
ϵ (n, α) = ϵ (n + µN, α) . Since the Hamiltonian has an inver-
sion symmetry when x→ −x, this implies that the thin spec-
trum is an even function of n: ϵ (n, α) = ϵ (−n, α) .

We will solve the energy spectrum of the relative motions
from its eigenequation in eq. (14) together with the nontriv-
ial boundary conditions in eq. (15) in order to obtain the thin
spectrum depending on the quantum number n of the total
momentum in the next section.

3 The total energy spectrum

Since the harmonic oscillator potentials for the relative mo-
tions are still periodic, according to the Floquet theorem [37],
the k-th relative motion can be rewritten as:

χk (Xk) = eiqk Xk uk (Xk) (17)

with wave vector qk and the periodic part uk (Xk) . Accord-
ing to eq. (8), the total relative motions are described by the
product state as:

χ (X) = e
∑N−1

k=1 iqk Xk

N−1∏
k=1

uk (Xk) . (18)

In order to satisfy the boundary conditions in eq. (15), we
calculate the wavefunctions of all the relative motions when
the j0-th oscillator displacement is augmented by L as:

χ
(
X + LM j0

)

= e
∑N−1

k=1 iqk

(
Xk+LMk

k0

) N−1∏
k=1

uk

(
Xk + LMk

k0

)
= e

∑N−1
k=1 iqk LMk

k0 e
∑N−1

k=1 iqk Xk

N−1∏
k=1

uk

(
Xk + LMk

k0

)
= e

∑N−1
k=1 iqk LMk

k0χ (X) , (19)

where Mk
k0

are the elements of the vector Mk0 =(
M1

k0
,M2

k0
, . . . ,MN−1

k0

)
and in the last step we apply the pe-

riodicity of the wavefunctions {uk (Xk)} as:

N−1∏
k=1

uk

(
Xk + LMk

k0

)
=

N−1∏
k=1

uk (Xk) . (20)

In contrast with the boundary conditions in eq. (15), we actu-
ally obtain the constraints for the wave vectors {qk}:

N−1∑
k=1

LMk
k0

qk + θn = 0, (21)

which should be satisfied for any k0. The N − 1 constraints
completely determine the wave vectors {qk}. In vector form,
they can be rewritten as:

LMq + θnI = 0, (22)

where q = (q1, q2, . . . , qN−1)T and I = (1, 1, . . . , 1)T. The
solution is straightforwardly obtained as (see Appendix A1):

q j =

q, 1 ≤ k ≤ N−1
2 ,

0, N+1
2 ≤ k ≤ N − 1,

(23)

for odd N and

q j =


q, 1 ≤ k ≤ N

2 − 1,
q
2 , k = N

2 ,

0, N
2 + 1 ≤ k ≤ N − 1,

(24)

for even N, with q =
√

2n√
NR
. It indicates that for those relative

motions with k < N/2 the wave vectors q are exactly same,
which are proportional to the quantum number n as well as
the total momentum P0 (n), while for relative motions with
k > N/2 the wave vectors vanish. In this sense, the phase
factor θn resulting from the total momentum is now divided
into individual phase factors of those relative motions with
k ≤ N/2. In fact, the consequence of the nontrivial boundary
conditions is an additional phase factor in eq. (15), which is
actually equivalent to introducing a gauge field to the relative
motions (see Appendix A2).

Therefore, it is feasible to deal with a single relative mo-
tion in order to obtain the corresponding energy spectrum



Z. R. Gong, et al. Sci. China-Phys. Mech. Astron. April (2018) Vol. 61 No. 4 040311-6

once the individual periodicity of the relative motion is de-
termined. When the j0-th oscillator’s displacement is aug-
mented by µL, the change in the relative motion displacement
is X′ = X + µLMk0 and the periodic part of the wavefunction
uk (Xk) satisfies

uk (Xk) = uk

(
Xk + LMk

k0

)
. (25)

Since we can permutate the indices of the original oscillators
such that {k0, k0 + 1, . . . ,N, 1, 2, . . . , k0 − 1} → {1, 2, . . . ,N}
in order to always augment the first oscillator’s displacement,
the periodicities of those relative motions are considered to
be uk (Xk) = uk

(
Xk + LMk

1

)
. In this sense, we can solve the

Schrödinger equation

Ĥkχk (Xk) = ϵkχk (Xk) , (26)

and the corresponding boundary conditions, which require
both the wavefunction and the derivative of the wavefunction
to be continuous, as:

χk

(
−L

2
Mk

1

)
= eiqk LMk

1χk

(L
2

Mk
1

)
, (27a)

d
dXk
χk (Xk)

∣∣∣∣∣
Xk=− L

2 Mk
1

= eiqk LMk
1

d
dXk
χk (Xk)

∣∣∣∣∣
Xk=

L
2 Mk

1

. (27b)

The energy spectrum depending on the quantum number n
can be approximated as (see Appendix A3):

ϵk (n, α) =
(

1
2
+ α + δk (n, α)

)
~ωk (28)

with the frequency of the oscillator of the k-th relative mo-
tion ωk = 4

√
κ/m sin (πk/N). The explicit form of the to-

tal momentum-dependent term δk (n, α) can be found in Ap-
pendix A3.

The total thin spectrum is the sum of all the energies of
the relative motions: ϵ (n, α) =

∑N−1
k=1 ϵk (n, α) . The schemat-

ics of the spectrum are depicted in Figure 2, which is almost
quadratic in n and linear in α. The subtle difference between
the different thin spectra with different excitation quantum
numbers of the relative modes α usually still depends on the
total momentum, which leads to the decoherence of the rel-
ative modes. The details of this decoherence process will be
discussed in the next section.

4 Decoherence of the relative motions

4.1 Decoherence factor

To explore the decoherence of the relative modes caused by
the thin spectrum, we consider the dynamics of an actual
qubit of the multiparticle system. The qubit is chosen to be

Thin spectrum

of zero phonons

Thin spectrum

of one phonon

Thin spectrum

of two phonons

α=0

α=1

α=2

E (3, 0)

E (2, 0)

E (1, 0)
E (0, 0)

E (3, 1)

E (2, 1)

E (1, 1)
E (0, 1)

E (3, 2)

E (2, 2)

E (1, 2)
E (0, 2)

Figure 2 (Color online) Schematic illustration of the total energy spectrum
E (n, α). The thin spectrum is almost quadratic in the quantum number n
of the total momentum, and linear in the quantum number α of the relative
motions.

(a |0⟩+b |1⟩)⊗ |n⟩, with the ground state of the relative modes
|α = 0⟩, the first excitation state of the relative modes |α = 1⟩,
and the center-of-mass state |n⟩ (Figure 2). If the multiparti-
cle system condenses into the BEC (Bose-Einstein conden-
sate) state with a single momentum, which is equivalent to
|n⟩ only containing a single mode plane wave, the effect of
the thin spectrum is adding a phase factor to the off-diagonal
elements of the relative modes’ reduced density matrix, and
thus no decoherence occurs. However, at a relatively high
temperature such as kBT ≫ ~2/2mNR2, the center-of-mass
state usually stays in the thermal state

ρT =
1
Z

∞∑
n=−∞

e−βE(n,α) |n⟩ ⟨n| (29)

for a macroscopic object with β−1 = kBT , where the thin
spectrum is labeled by the quantum numbers n of the total
momentum and α of the relative motions:

E (n, α) =
n2~2

2mNR2 + ϵ (n, α) , (30)

and Z =
∑

n e−βE(n,0) is the partition function corresponding
to the product of the center-of-mass thermal state and the
ground state of the relative modes.

We prepare the initial state of the qubit in its ground state
|0⟩ and then apply a rotation to transform the ground state
into a |0⟩ + b |1⟩ . In this case, the initial density matrix is the
product of the thermal state density matrix and the qubit one:

ρ0 =ρT ⊗ ρQ

=
1
Z

∞∑
n=−∞

e−βE(n,0) |n⟩ ⟨n|

× (a |0⟩ + b |1⟩)(a∗ ⟨0| + b∗ ⟨1|). (31)
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Since we have solved the total energy spectrum of the sys-
tem, the time evolution of the eigenstate |n, α⟩ ≡ |n⟩⊗|α⟩ (α =
0, 1) can be described by a time evolution operator:

Ut |n, α⟩ = exp
[
− i
~

E (n, α) t
]
|n, α⟩ . (32)

Then, the time evolution of the density matrix is

ρt =Utρ0U†t

=
1
Z

∞∑
n=−∞

e−βE(n,0) |n⟩ ⟨n|
(
|a|2 |0⟩ ⟨0| + |b|2 |1⟩ ⟨1|

+a∗be−
i
~ (E(n,1)−E(n,0))t |1⟩ ⟨0| + h.c.

)
. (33)

Tracing out the degree of freedom of the center-of-mass, we
can define the decoherence factor from the coefficients of the
off-diagonal elements as:

F =

∣∣∣∣∣∣∣ 1Z
∞∑

n=−∞
e−βE(n,0)e−

i
~∆E(n)t

∣∣∣∣∣∣∣ , (34)

with ∆E (n) = E (n, 1)− E (n, 0). Obviously, the decoherence
factor is equal to or less than 1, which characterizes the com-
pleteness of the decoherence. F = 1 means the state has the
same coherence as the initial quantum state; F < 1 means
decoherence occurs, and the multiparticle system becomes
classical when F = 0.

4.2 Timescale of the decoherence at two limits

Since the ground state is the product of the ground states of
all relative motions, namely |0⟩ = ∏N−1

k=1 ⊗ |0k⟩, the ground
state energy

E (n, 0) =
n2~2

2mNR2 +

N−1∑
k=1

(
1
2
+ δnk

)
~ωk (35)

is the summation of the ground state energies of all relative
motions and the kinetic energy of the center-of-mass motion.
Additionally, since the first excited state is the state where
the (N − 1) relative motions remain in the ground state and
only the first relative motion is excited to the excited state as
|1⟩ = |11⟩

∏N−1
k=2 ⊗ |0k⟩ , the energy difference in the decoher-

ence factor actually only depends on the energy level spacing
of the ground state and the excited state of the first relative
motion, namely

∆E (n) = ϵ1 (n, 1) − ϵ1 (n, 0)

≈ −~ω1
g
2

cos
(
4π

n
N

)
, (36)

where g~ω1 = ∆E (N/4) − ∆E (0) is the maximum energy
difference between thin spectra. Here, we have assumed the

thin spectrum has cosine-type oscillating behavior because it
is a periodic even function associated with the period N/2 of
the phase factor θn. Under this approximation, the decoher-
ence factor in eq. (34) can be written in terms of a series of
Bessel functions:

F ≈
∣∣∣∣∣ 1Z

∫ ∞

−∞
e−β∆

′
en2

ei g
2ω1t cos(4π n

N )dn
∣∣∣∣∣

=

∣∣∣∣∣∣∣ 1Z
∫ ∞

−∞
e−β∆

′
en2

∞∑
γ=−∞

eiα(4π n
N +

π
2 )Jγ

[g
2
ω1t

]
dn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑
γ=−∞

Jγ
(g
2
ω1t

)
eiγπ

2 exp
(
− 4π2γ2

N2β∆′e

)∣∣∣∣∣∣∣ . (37)

Here, we have assumed the second term in E (n, 0) is
quadratic in n as

∑N−1
k=1 δ

n
k~ωk = ∆en2 and ∆′e = ∆e +

~2/2mNR2. We also have neglected the n-independent terms
because they will vanish in the absolute value of eq. (34).

Obviously, for the first limit, if 4π2/N2β∆′e ≫ 1 the last
term exponentially decays as γ increases and eventually only
the γ = 0 term contributes to the decoherence factor as
F = J0

(
g
2ω1t

)
. In this limit, the decoherence factor is in-

dependent of the temperature and has an oscillating behavior
associated with the 0-th Bessel function.

We can obtain the decoherence factor in another limit.
Since the decoherence factor in eq. (34) is basically the in-
tegral of both the Gaussian part and the dynamic phase; if
the period of the dynamic phase (N/2) is greater than the full
width at half maximum (FWHM) of the Gaussian part, only
the first period of the thin spectrum contributes to the deco-
herence factor. In this sense, the energy difference is approx-
imately linear:

∆E (n) =ϵ1 (n, 1) − ϵ1 (n, 0)

≈
∆g

N
|n| ~ωk (38)

with ∆g = g1 (1, 1) − g1 (1, 0). The definition of function
g1 (k,m) can be found in Appendix A3. The decoherence fac-
tor actually possesses an exponentially decaying behavior as
given by

F ≈
∣∣∣∣∣ 1Z

∫ ∞

−∞
e−β∆

′
en2

e−i
√
κ
m 2π ∆g

N2 |n|tdn
∣∣∣∣∣

= e−(
t
τ )

2

√
1 + Erfi

( t
τ

)2
, (39)

where

τ =

√
βN4m∆′e
π2∆2

gκ
, (40)
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Erfi(t/τ) is the imaginary error function and the summation
becomes an integral at high temperatures, such as kBT ≫
~2/2mNR2. The typical timescale of the decoherence is

τspon =

√
2 (π − 2)

π
τ ≈ 0.85τ. (41)

Since the ∆e and ∆g usually depend on all other parameters
such as N, T , κ, m, and R (see Appendix A3), it is hard to
determine the exact dependence of the decoherence factor on
those parameters, and we will present the numerical analy-
sis in the next subsection. In particular, if the lattice constant
R/N is unchanged while the ring container radius R increases,
the decoherence time tends to infinity, ∆e and ∆g both tend
to remain constant, and thus the τspon is proportional to

√
R.

This implies that no spontaneous decoherence occurs in the
thermodynamic limit.

4.3 Numerical results

The numerical calculations based on eq. (34) are presented
in this section. The typical thin spectrum ϵ1 (n, 0) for zero
phonons of the first relative motion and the normalized Gaus-
sian part

P (n) =
1
Z

e
−β

(
n2~2

2mNR2

)
(42)

in the decoherence factor versus the quantum number n are
depicted in Figure 3(a) and (b). The parameters are chosen to

be N = 80, R = 0.5 µm, κ = 10−13 N/s, m = 40mp, with mp

the mass of the proton. The temperature is T = 0.1 µK for
(a) and T = 8 µK for (b). This mechanism is depicted in Fig-
ure 3(c) and (d), where each successive complex term in the
summation of the decoherence factor is regarded as a vector.
In this sense of the vector summation picture, the decoher-
ence factor is the length of the vector summation. There are
three typical decoherence processes. If all the phases of the
vectors are the same, the coherence can be maintained well.
If N/4 is larger than the full width at the half-maximum of the
Gaussian part, only the first period of the thin spectrum con-
tributes to the decoherence factor shown in Figure 3(a) and
(c). When N/4 is smaller than the FWHM of the Gaussian
part, the next several periods of the thin spectrum also con-
tribute to the decoherence factor, and it will usually extend
the decoherence time shown in Figure 3(b) and (d). Usually,
the FWHM of the Gaussian part

nFWHM =

√
2mNR2

β~2 (43)

decreases when the temperature T , the particle mass m, the
particle number N, and the radius of the ring container R
decrease. In this sense, we can define one parameter

r =
nFWHM

N/4
= 4

√
2mR2

βN~2 (44)
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Figure 3 (Color online) (a) and (b) Typical thin spectrum ϵ1 (n, 0) for zero phonons of the first relative motion, and the normalized Gaussian part P (n)
versus the quantum number n. The blue solid line and the red dashed line represent ϵ1 (n, 0) and P (n), respectively. The parameters are chosen to be N = 80,
R = 0.5 µm, κ = 10−13 N/s, m = 40mp, where mp is the mass of the proton. The temperature is T = 0.1 µK for (a) and T = 8 µK for (b); (c) and (d) typical
vector summation pictures of the decoherence factor |F|, respectively corresponding to the cases (a) and (b). The red arrow and the blue arrows respectively
represent the decoherence factor |F| and successive terms in the decoherence factor. Obviously, for case (a) there is only the single period of the thin spectrum
contributing to the decoherence factor. For the case (b), there are multiple periods of the thin spectrum contributing to the decoherence factor.
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to distinguish between these two cases, where r < 1 and r > 1
respectively correspond to the single and multi-period contri-
butions shown in Figure 3(a) and (b).

Eq. (36) is valid for describing the decoherence process
when the thin spectrum has approximately cosine-type os-
cillating behavior. The decoherence factor obtained from
eq. (34) and the approximate decoherence factor in eq. (37)
are shown in Figure 4(a) with solid lines and dashed lines,
respectively. For the summation of the series of Bessel func-
tions in eq. (37), we need to set a cutoff for γ. Here, we set a
parameter

η =
4π2

N2β∆′e
(45)

to determine the cutoff:

exp
(
−ηγ2

cutoff

)
= 10−2. (46)

The parameters are chosen to be N = 80, κ = 10−13 N/s,
R = 0.5 µm, m = 40mp. The temperatures are, respectively,
T = 483, 121, 31 nK to guarantee r = 0.5, 1, 2 for the red,
blue, and purple lines, and the cutoff γcutoff = 9, 5, 3 for the
red, blue, and purple dashed lines respectively. The approx-
imate solution describes the decoherence process quite well
for the low temperature case, where only a few Bessel func-
tions are contributing to the oscillating behavior of the deco-
herence factor.

For the relatively high temperature case, such as r < 1,
eq. (39) is valid to describe the decoherence process. The
exact decoherence factor obtained from eq. (34) and the ap-
proximate decoherence factor in eq. (39) are shown in Fig-
ure 4(b) with solid lines and dashed lines, respectively. The
parameters are the same as the ones used for Figure 4(a). The
decoherence processes for short timescales can be described
quite well by eq. (39), while the long-term behavior deviates
from the approximate solution because of the linear depen-
dence of the energy difference we assumed in eq. (38). For

γ > 1, the multi-period contributions introduce oscillating
behavior into the decoherence factor.

Besides the temperature, the decoherence time can be ex-
tended by adjusting other parameters such as the particle
number N, spring constant κ, radius of the ring container R,
and the particle mass m. The numerical calculation directly
based on the exact solution is shown in Figure 5. The basic
parameters are chosen to be N = 80, T = 10−5K, κ = 10−13

N/s, R = 1 µm, m = 4mp where mp is the mass of the pro-
ton. From Figure 5(a)–(e), the evolutions of the decoherence
factor are depicted for different particle numbers N, temper-
atures T , spring constants κ, radii of the ring container R,
and particle masses m. The spontaneous decoherence oc-
curs at first, and it is possible for the decoherence factor to
rebound to a relative large value at a later time. In some
cases the rebound can reach a value of almost 1, as shown
in Figure 5(b). Such a rebound of the decoherence factor re-
sults from the contributions from different periods shown in
Figure 3(d), which possibly cancel each other and eventually
prolong the decoherence time. If we define the decoherence
time as the time before the first possible rebound, it is ob-
viously extended when decreasing the particle number and
the temperature, or increasing the spring constant, the ring
container radius, and the particle mass. Intriguingly, if the
linear mass density η = N/2πR is kept unchanged and the
particle number increases just as shown in Figure 5(f), the
decoherence time is extended instead of shortened when only
the particle number is increased, as shown in Figure 5(a). It
implies that the spontaneous decoherence does not occur at
the thermodynamic limit.

5 Conclusion

We studied the spontaneous decoherence of coupled har-
monic oscillators confined in a ring container, where the
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Figure 4 (Color online) Decoherence factor obtained by the exact solution (solid lines) and the approximate solution (dashed lines) based on eq. (37) (a) and
eq. (39) (b). The parameters are chosen to be N = 80, κ = 10−13 N/s, R = 0.5 µm, m = 40mp. The temperatures are, respectively, T = 483, 121, 31 nK to
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Figure 5 (Color online) Evolutions of the decoherence factor for different (a) particle numbers N, (b) temperatures T , (c) spring constants κ, (d) radii of the
ring container R, and (e) particle masses m. For (f), the particle number N and the ring container R are increased simultaneously in order to keep the linear
mass density η = N/2πR unchanged. The basic parameters are chosen to be N = 80, T = 10−5 K, κ = 10−13 N/s, R = 1 µm, m = 4mp, with mp the mass
of the proton. Basically, the decoherence time is extended for smaller particle numbers, lower temperatures, stronger spring constants, larger ring containers,
and heavier particles. If the linear mass density η = N/2πR ≈ 9.55 × 106 m−1 is kept unchanged and the particle number increased, the decoherence time is
extended instead of shortened when only the particle number is increased, as shown in (a). It implies that the spontaneous decoherence does not occur at the
thermodynamic limit.

nearest-neighbor harmonic potentials are taken into consid-
eration. Without any surrounding environment, the quantum
superposition state prepared in the relative degrees of free-
dom gradually loses its quantum decoherence. We study the
spontaneous decoherence existing as in a closed multiparticle
system where the symmetry is not broken.

The multiparticle system we study actually possesses
U(1) ⊗ CN-symmetry. The Hamiltonian can be divided into
the center-of-mass motion part and the relative motion parts.
The harmonic potentials between the oscillators are periodic
because of the ring configuration. Then, nontrivial boundary

conditions emerge to guarantee the single-valuedness of the
wave function, which eventually results in the total energy
spectrum not only depending on the excitations of the rela-
tive motion, but also on the total momentum corresponding
to the center-of-mass motion. The consequence of the non-
trivial boundary conditions is an additional phase factor in
eq. (15), which is actually equivalent to introducing a gauge
field to the relative motions. There is a thin spectrum of the
total momentum that contributes to the decoherence process.
If the center-of-mass motion is not condensed to the state with
a single momentum, spontaneous decoherence occurs in the
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superposition states of the relative motions. Since there is no
environment or symmetry-breaking field, the decoherence in
our model is definitely spontaneous.

This spontaneous decoherence is interpreted as the gauge
coupling between the center-of-mass and relative degrees of
freedoms. The paradox that the information represented by
the coherence is always lost in a closed system can be ex-
plained by the infinite degrees of freedom of the center-of-
mass motion acting like a heat bath. Certainly, the roles of
the center-of-mass motion and the relative motions can be
switched. With proper initial preparation, the degrees of free-
dom of the relative motions can be regarded as the thermal
bath as well, and eventually cause the decoherence of the
states prepared in the center-of-mass motion. In particular,
the spontaneous decoherence is completely missing at the
thermodynamic limit because the nontrivial boundary con-
ditions become the trivial Born-von Karman boundary con-
dition. Our investigation shows that a thermal macroscopic
object with certain symmetries has a chance to for its quan-
tum properties to degrade even without applying an external
symmetry-breaking field or a surrounding environment.
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Appendix

Appendix A1 Wave vector solutions

To obtain the wave vectors q = (q1, q2, . . . , qN−1)T, we need
to solve eq. (22). Here, I = (1, 1, . . . , 1)T and L = 2πR is
the perimeter of the ring container. The matrix M in eq. (22)
is determined by the Fourier transformation as eq. (4). Both
the explicit forms of M for odd and even N can be written
together as:

M =
√

2
N

 A B

A∗ B∗

 . (a1)

Taking the odd N case as an example, the block matrices are,
respectively,

A =


C1

C2
...

C N−1
2


, A∗ =


C N−1

2

C N−3
2
...

C1


, (a2a)

B =


S 1

S 2
...

S N−1
2


, B∗ = −
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2
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, (a2b)
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with row vectors

Cn =
[

cos (nϕ) cos (2nϕ) · · · cos
((

N−1
2

)
nϕ

) ]
, (a3a)

Sn =
[
− sin

((
1
2 + n

)
ϕ
)

sin
(
2
(

1
2 + n

)
ϕ
)

· · · (−1)(
N−1

2 ) sin
((

N−1
2

) (
1
2 + n

)
ϕ
) ]
, (a3b)

(n = 1, 2, . . . , N−1
2 ) and ϕ = 2π/N. According to the identities

N−1
2∑

n=1

cos (n jϕ) = const. (a4)

for any j = 1, 2, . . . , N−1
2 and the fact that the wave vectors

q = (qA, qB)T can be divided into two parts according to the
dimension of the block matrices, the only possible solution
is qA = (q, q, . . . , q)T and qB = (0, 0, . . . , 0)T. Therefore,
eq. (22) can be simplified as:

qL

√
2
N

N−1
2∑

n=1

cos (nmϕ) +
2πn
N
= 0, (a5)

from which we find the solution q =
√

2n√
NR
.

The same procedure can be applied to the even N case,
and the solution is a little different from the odd N case:
qA = (q, q, . . . , q, q/2)T and qB = (0, 0, . . . , 0)T.

Appendix A2 Effective gauge fields on relative

motions

The total momentum actually plays the role of an effective
gauge field on the relative motions. Starting from the wave-
function obeying the Floquet theorem, eq. (17), the original
Schrodiger equation for the k-th relative motion

Hkχk (Xk) = ϵkχk (Xk) (a6)

can be transformed into the Schrödinger equation of the peri-
odic part as:

Heff
k uk (Xk) = ϵkuk (Xk) , (a7)

with the exactly same eigenenergy ϵk. Here, the effective
Hamiltonian is obtained by a unitary transformation of the
original one as:

Heff
k = e−iqk Xk Hkeiqk Xk

=
(Pk + ~qk)2

2m
+
κ

2

(
2 sin

πk
N

)2

X2
k . (a8)

Apparently the wave vector qk shifts the momentum of the
relative motion, which is equivalent to a U(1) gauge field.
Since the wave vector qk linearly depends on the quantum
number n as well as the total momentum P0, such gauge fields
on the relative motions result exactly from the nonzero total
momentum of the system.

Appendix A3 Energy spectrum of the periodic

harmonic oscillator

The Schrödinger equation of the k-th relative motion given in
eq. (26) is described by a periodic harmonic oscillator with
periodicity

χk

(
Xk + LMk

1

)
= eiqk LMk

1χk (Xk) . (a9)

The basic idea to solve the energy spectrum in a periodic po-
tential is solving the Schrödinger equation in a period and
its adjacent period; then, the wavefunctions at the interface
of these two periods should satisfy the continuity condition
eq. (27).

The wavefunction of the k-th relative mode is the linear
combination of the two degenerate Kummer or confluent hy-
pergeometric functions [38]:

fe(Xk) = exp
−ξ2k X2

k

2

 1F1

[
1
4

(1 − 2
~ωk
ϵk);

1
2

; ξ2k X2
k

]
, (a10a)

fo(Xk) = ξkrk exp
−ξ2k X2

k

2

 1F1

[
1
4

(3 − 2
~ωk
ϵk);

3
2

; ξ2k X2
k

]
,

(a10b)

with frequencies ωk = 2
√
κ/m |sin (kπ/N)| and ξk =√

mωk/~. Here, the subindices e and o represent the even
and odd parities, respectively. In contrast to the eigenen-
ergy of the regular harmonic oscillator, the eigenenergy of the
periodic harmonic oscillator ϵk is no longer an integer mul-
tiple of the frequencies ~ωk. Consequently, the wavefunc-
tion of the k-th relative modes within the coordinate range
Xk/LMk

1 ∈ [−1/2, 1/2] is assumed to be

χk(Xk) = A fe(Xk) + B fo(Xk) (a11)

with undetermined coefficients A and B. Thus, in the next
period Xk/LMk

1 ∈ [1/2, 3/2], according to eq. (a9) the wave-
function can be written as:

χk(Xk + LMk
1) = eiqk LMk

1
[
A fe(Xk) + B fo(Xk)

]
. (a12)

The continuous conditions require both the wavefunction and
the derivative of the wavefunction to be continuous, as shown
in eq. (27). Since the coefficients A and B cannot be zero
simultaneously, the determinant of the coefficient matrix of
{A, B} should be zero:∣∣∣∣∣∣∣ fe(− l

2 ) − eiθk fe( l
2 ) fo(− l

2 ) − eiθk fo( l
2 )

f ′e (− l
2 ) − eiθk f ′e ( l

2 ) f ′o(− l
2 ) − eiθk f ′o( l

2 )

∣∣∣∣∣∣∣ = 0 (a13)



Z. R. Gong, et al. Sci. China-Phys. Mech. Astron. April (2018) Vol. 61 No. 4 040311-13

with l = LMk
1, θk = qkl, and f ′(a) ≡ d

dX f (X)
∣∣∣
X=a. Finally, we

can obtain the constraint for the energy ϵk as:

fo

(
l
2

)
f ′e

(
l
2

)
cos2 θk

2
+ fe

(
l
2

)
f ′o

(
l
2

)
sin2 θk

2
= 0, (a14)

where we have used the parity of the functions fe (X) and
fo (X) to simplify eq. (a13). Whether the energy spectrum
depends on the total momentum or not depends on θk , 0.
Obviously, for those relative motions with k > N/2, their
energy spectrum is independent of the total momentum, and
thus have no contribution to the decoherence process.

The energy spectrum ϵk = (nk + 1/2) ~ωk depends on
both the phase factor θk and the dimensionless parameter ξkl,
which is shown in Figure a1. In Figure a1(a), the dimen-
sionless parameter is chosen to be ξkl = 5 and the particle
number is N = 100. The energy spectrum definitely depends
on the phase factor θk = qkl. For those relative motions with
qk = 0, the energy spectrum is only determined by the di-
mensionless parameter, which is in turn determined by the
geometry of the ring container and the spring constant. How-
ever, for those relative motions with qk =

√
2n√
NR
, the energy

spectrum not only depends on the total momentum now, but
also forms a group of thin spectra when the total momentum
chooses its possible values. In Figure a1(b), the phase factor
is chosen as θk = π/2 and the particle number is N = 100. By
confining the particles to a smaller ring container via decreas-
ing ξkl, the energy spectrum deviates greatly from the energy
spectrum of a standard harmonic oscillator. When ξkl ≫ 1,
the energy spectrum almost coincides with the standard one,
which means the effect of the phase factor is also suppressed
for a larger ring container or weaker spring constant.

We rewrite eq. (a14) as:

tan2 θk
2
= −F (l, ϵk) (a15)

with

F (l, nk) =
fo( l

2 ) f ′e ( l
2 )

fe( l
2 ) f ′o( l

2 )
. (a16)

To obtain the approximate energy spectrum, which depends
linearly on the total momentum, we expand eq. (a15) in the
vicinity of the phase factor θk =

(
1
2 + µ

)
π and ξkl & 1. In this

sense, the approximate energy spectrum is obtained as:

ϵk (n, α) =
(

1
2
+ α′ + δk (n, α)

)
~ωk, (a17)
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Figure a1 (Color online) (a) Energy spectrum nk versus phase factor
θk. The parameters are chosen to be N = 100, ξkl = 5; (b) energy
spectrum nk versus the periodicity ξkl. The parameters are chosen to be
N = 100, θk = π/2. The black dot-dashed line, blue dotted line, red dashed
line, and magenta solid line represent the first four eigenstates of the periodic
harmonic oscillator. The energy spectrum definitely varies with θk, implying
the dependence of the total momentum. Moreover, the periodic harmonic
oscillator becomes a normal one when ξkl ≫ 1, regardless of θk.

where α′ is the solution of F (l, α′) = −1, α = 0, 1, . . . is a
non-negative integer number and the deviation

δk (n, α) = g0 (α) + g1 (k, α) n (a18)

with coefficients

g0 (α) = −1 + F (l, α) + (−1)µ (1 + 2µ)π
G (l, α)

, (a19a)

g1 (k, α) = (−1)µ 2π
Mk

1

G (l, α)

√
2
√

N
, (a19b)

and function G (l, α) ≡ d
dnk

F (l, nk)
∣∣∣∣
nk=α′

is the derivative of
the function F (l, nk) .
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