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Feshbach resonance is a resonance for two-atom scattering with two or more channels, in which a bound state is achieved in one
channel. We show that this resonance phenomenon not only exists during the collisions of massive particles, but also emerges
during the coherent transport of massless particles, that is, photons confined in the coupled resonator arrays linked by a separated
cavity or a tunable two level system (TLS). When the TLS is coupled to one array to form a bound state in this setup, the vanishing
transmission appears to display the photonic Feshbach resonance. This process can be realized through various experimentally
feasible solid state systems, such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the
transmission line. The numerical simulation based on the finite-different time-domain (FDTD) method confirms our assumption
about the physical implementation.
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1 Introduction

Feshbach predicted many years ago [1] that when two nu-
clei are scattered within an open entrance channel, they may
enter the locally bounded state in the closed channel. If the
relative kinetic energy of the input particle is fine-tuned to
match the energy of the bound state, then the open channel
and the closed channel resonate, so that the scattering length
becomes divergent [2]. This resonance phenomenon is now
called Feshbach resonance, which has been found in many
physical systems over the years, such as the electron scatter-
ing of atoms [3], diatomic molecules [4] and ultra-cold atoms
[5–7] and Bose-Einstein condensates (BEC) [2,8]. These ex-
periments have helped to verify the simulation of various the-
oretical predictions in solid state systems [9], and in partic-
ular exemplifies the resonance phenomenon as a means for
adjusting inter-atomic coupling in realizing various quantum
phases ranging from BEC to BCS [10, 11].

On the other hand, the emergence of bound states appear-
ing in a continuum [13] has been studied [14] for various
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models [15–17] as a long-standing fundamental problem in
quantum mechanics. Quasi-bound states have been predicted
in tight-binding fermionic quantum wires [18] for localized
fermions and in the optical coupled resonator arrays [12, 19,
20] for confined photons.

Various applications have been found in quantum opti-
cal devices [21–23], including the conceptual design of the
single-photon transistor [24]. In retrospect, we ask if it is
possible to control the transmission exactly when the pho-
tons become bounded and unbounded through an external pa-
rameter viz., to implement an photonic version of Feshbach
resonance, or all-optical Feshbach resonance. The desired
resonance between the bound and the unbound states can be
found inside a pair of parallelly placed coupled resonator ar-
rays [12].

2 Model setup and bound states

In our model, as shown in Figure 1(a), the two arrays of cav-
ity are connected by a central cavity that acts as a quantum
controller, forming an H-shape system. We designate the up-
per array as Array A with the Hamiltonian
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Figure 1 The all-optical Feshbach resonance in the coupled resonator sys-
tem (a) with Array A and Array B, connected by a two level system or a
central cavity. (b) A quasi-bound state of a single photon in an array. (c) The
band structure of a spectrum for array α, α ∈ {A, B}, with a discrete level
above or below the energy band.

HA = ωA

∑

j

a†ja j +

(
JA

∑

j

a†ja j+1 + gAa0c† + h.c
)
, (1)

where the second summation describes the tight-binding hop-
ping of photons among cavities with the hopping coefficient
JA. a j denotes the annihilation operator of the bosonic mode
for the j-th cavity field and we assume that the mode fre-
quency ωA of each cavity field is identical. The last term is
the interaction between the central cavity C with single mode
frequency Ω and the zeroth resonator of Array A with cou-
pling strength gA. c† is the corresponding creation bosonic
operator for the central cavity. The lower array is designated
as Array B and as the Hamiltonian HB which is not different
from eq. (1) except the change of the bosonic mode operator
to b j, the hopping coefficient to JB, the mode frequency to
ωB and the coupling strength to gB. Then, the total model
Hamiltonian reads H = HA + HB + Ωc†c. For single pho-
ton transfer, the central cavity takes the role as that of a two
level system (TLS) with two levels |e〉 = |1〉 and |g〉 = |0〉. In
this sense our construction can also be implemented through
the circuit QED system [25] including two coupled super-
conducting transmission line cavity linked by charge or flux
qubit.

For Array A, the eigenstate is assumed as |ϕA〉 =∑
j uA,g( j)

∣∣∣g, 1 j, 0
〉
+uA,e |e, 0, 0〉 ,where only the excited state

of the central cavity and a single-photon excitation in one
of the cavities are included. Corresponding to the probabil-
ity amplitudes uA,g( j) and uA,e Array B takes similar states
with coefficients uB,g( j) and uB,e. To see whether there are
bounded single-photon states within their individual coupled
resonator array, we solve the discrete-coordinate scattering
equation

[E −ωα −Vα(E)]uα,g( j) = −Jα[uα,g( j + 1)+ uα,g( j − 1)] (2)

with eigenvalue E. Here the term

Vα(E) =
g2
αδ j0

E − Ω (3)

on the left hand side is contributed by the interaction between
the central cavity and the coupled resonator array. It appears
that Vα(E) is a resonate potential dependent of the eigenen-
ergy E. This δ-type potential forms a confining barrier to the
transportation of single photon in the coupled resonator array
and forms a bounded state of single photon, similar to those
proposed in refs. [19,20]. It has a singularity at E being equal
to the level spacingΩ, leading to a quasi-plane-wave type so-
lution [12] to eq. (2), uα,g( j) = Cα exp(−iκα| j|), where the
wave number is complex, κα = κα,R − iκα,I . The imaginary
part κα,I of the wave number admits a positive value and for
the non-zero coupling gα, results in a decay of the probability
distribution of single-photon states over the discrete spatial
coordinate j. The vanishing probability amplitude towards
the ends of the arrays, i.e. along with | j| → ∞, demonstrates
the existence of a bound state of a single photon, as shown in
Figure 1(b). In this system, the continuum band has a band-
width 4Jα and its paired discrete levels, denoted respectively
by Eα+ and Eα−, are gapped from either below or above, as
illustrated in Figure 1(c). In the conventional language of
atomic scattering, the continua of eigenenergies can be con-
sidered as open channels of multiple admissible energy states
in the continuous range ωα − 2Jα < E < ωα + 2Jα. Out of
this range, the energy states can only admit two discrete lev-
els that are associated with a non-real kα, representing closed
channels or bound states with energies

Eα± = Ω ± g2
α√

(Eα± − ωα)2 − 4J2
α

. (4)

The similar bound state equation can also be found in refs.
[15–17].

3 Resonate scattering

The scattering state |ϕ〉 of the two-chain system for single-
photon reads

|ϕ〉 =
∑

j

[
uA,g( j)

∣∣∣g, 1 j, 0
〉
+ uB,g( j)

∣∣∣g, 0, 1 j

〉]
+ ue |e, 0, 0〉 .

(5)
The amplitudes uA,g( j), uB,g( j)and ue can still be analyzed
through the time-independent Schrödinger equations, leading
to a pair of algebraic scattering equations similar to eq. (2).
The distinction of the case here lies in adding

Wα(E) =
gαgᾱuᾱ,g(0)

E − Ω (6)

on the right hand side with α= A or B. We have used ᾱ to
indicate the dual array relative to α.

We consider the particular cases that a single photon is in-
serted into Array A from the left. The state of this single
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photon in the array is then described by a plane wave, uA( j) =
exp(ik j) + R exp(−ik j) ( j < 0); S exp(ik j) ( j > 0). S and R
denote, respectively, the transmission and the reflection co-
efficients of the optical plane wave, indicating the scattering
of photon by the effective potential at the zeroth resonator in
the one-dimensional coordinate space. Meanwhile, the dis-
tribution amplitude for the single photon in Array B can be
quasi-plane-wave type, uB( j) = CB exp {−iκ| j|}, with a com-
plex wave number κ, and indicates a closed channel, identical
to that of the individually discussed case. The coupled scat-
tering equations give rise to our main result

(1 − S )
sin kJA

gA
=

sin κCBJB

gB
=

gAS + gBCB

2i(Ω − E)
. (7)

Therefore, the optical dual-channel resonance occurs when
there exists a solution of real k and complex κ to eq. (7) and
the eigenenergy E of the photon in Array A matches either of
the discrete energy levels EB± of Array B. The process is il-
lustrated in Figure 2 for two particular cases with E matching
EB+ in Figure 2(a) or EB− in Figure 2(b).

The criteria of the dual-channel resonance can be met if
the transmission coefficient S in eq. (7) vanishes. This con-
dition implies the circumstance where the incident photon in

Figure 2 The diagrams of the energy spectra of the single photon in Array
A and Array B. Two particular resonance cases exist for an incident photon
inserted into Array A: (a) The photon energy level in the band in Array A is
resonant with the upper discrete level in Array B; (b) the photon energy level
in the band in Array A is resonant with the lower discrete level in Array B.

Array A is totally reflected or scattered by the potential bar-
rier set up by the central cavity at position j = 0. It follows
from

S = − CB

gAgB

[
2JB (E −Ω) sin κ − g2

B

]
(8)

that the transmission coefficient vanishes when E = Ω −
g2

B/(2iJB sin κ), leading to a complex wave number κ as ex-
pected. The complete reflection in the open channel can
be understood as the divergence effect of s-wave scattering
length for the usual atomic Feshbach resonances in three-
dimensional space reduced to a version in one-dimensional
space.

As a function of the incident energy E, the transmission
coefficient

S =

⎧⎪⎪⎨⎪⎪⎩
FA(E)

FA(E)−G− (E) , E > ωB + 2JB,
FA(E)

FA(E)−G+ (E) , E < ωB + 2JB
(9)

is re-written in terms of Fα(E) =
√

(E − ωα)2 − 4J2
α for

α = A,B and

G±(E) =
g2

AFB(E)

(E −Ω)FB(E) ± g2
B

. (10)

The norm-squared reflection coefficient |R|2 = |1−S |2 is plot-
ted against the photon energy in families of varying level
spacing Ω and coupling constant gA of the TLS in Figure
3. The photon encounters two kinds of characteristic points
while propagating through Array A. The first one is an in-
differentiable turning point where S = 1 or E = ωB + 2JB.
The potential barrier becomes transparent and the photon is
completely transmitted because of the matching coupling be-
tween the TLS controller and the dual Array B. The second
one is the maximum point where the photon is fully reflected
when the transmission coefficient is vanishing S = 0. We
hence see the shifting of this peak while Ω is varied. The re-
liance on the coupling coefficient gA determines the width of
the peaking.

4 Numerical simulations based on finite-
difference time-domain approach

Next we numerically examine the feasibility of our theoreti-
cal prediction of a two-dimensional photonic crystal [26,27].
This artificial crystal is made up of a square lattice of high-
index dielectric rods of radii 0.2a, 0.1a and 0.05a, where a
is the lattice spacing. The artificial design consists of two
parallel waveguides of coupled defected cavity arrays linked
through a central defected cavity on the two-dimensional
photonic crystal, as illustrated in Figure 4(a). The two res-
onator arrays [28] are constructed with different frequencies,
inter-resonator tunneling constants, and coupling strengths
with the central cavity.
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Figure 3 Plots of the norm-squared reflection coefficient |R|2 against the
eigenenergy E of a propagating photon. Two tuning parameters are varied:
(a) the level spacing Ω of the TLS controller; and (b) the coupling coefficient
gA. Other parameters are JA = 1, JB = 0.5, ωA = 2, ωB = 1 and gB = 0.7.
The incident energy ranges from 0 to 4 and the continuum band for Array B
is set [0, 2]. The corresponding bound state energies are marked as Eb1, Eb2,
Eb3 in (a) and Eb in (b).

For this photonic crystal, the materials of all the rods are
assumed to be silicon, with a dielectric constant ε = 11.56,
and the background is filled by air. We make the simulation of
the designed structure with the finite-difference time-domain
(FDTD) method [29] in the freely available Meep code [30].
The steady distribution of Ez field for transverse magnetic
(TM) wave at a frequency ω0 = 0.3628 × 2πc/a is plotted in
Figure 4(b) which shows the magnitudes of the amplitudes.

The notice-worthy region is located at the center where the
highly-saturated colors indicate a localized bounded photon
from the lower waveguide. Moreover, the blank portion in
the upper waveguide indicates a completely reflected wave.
The numerical results show that the total reflection indicat-
ing Feshbach resonance, indeed occurs by accompanying the
formation of bound states. We point out that, though the nu-
merical simulation based on FDTD is classical essentially, the
weak light calculation can also reflect the single photon na-
ture with the intensity distribution illustrated in Figure 4(b),
which is only relevant to the first order coherence function.

Figure 4 An experimental protocol based on a photonic crystal made up
of silicon rods of radius 0.2a. (a) The setup of practical design: the upper
waveguide is implemented by removing a row of original rods and substitut-
ing them with a set of rods of radii 0.1a and spacing dUP = 4a. The lower
waveguide with 7a apart from the upper one is constructed by removing three
rods out of every five rods with lattice spacing dDOWN = 5a. The central cav-
ity is created by reducing the radius of three vertically-placed rods between
the two waveguides to 0.05a. (b) Plotting the steady electric field vector for
an incident wave of frequency ω0 = 0.3628 × 2πc/a with TM-polarization.

5 Conclusion

We have predicted an all-optical Feshbach resonance, which
emerges from a pair of these coupled resonator arrays cou-
pled in an H-shape fashion. It is shown that this resonance
phenomenon is associated with the existence of photonic
bound states in a TLS-controlled coupled resonator array. We
have also carried out an FDTD simulation of the system to
verify the validity of this prediction for the practical phonic
crystal. Essentially, the resonance phenomenon arises from
the dual-channel coupling between an unbound state in one
array and a bound state in the other. Its moment of occur-
rence is indicated by a total reflection of an incident photon
in the array. Our analysis of the resonant scattering process
made for the single photon case, does not rely on the pho-
tonic statistics. The prediction here is, therefore, applicable
to fermionic models, such as the electron transportation along
an H-shape array of quantum dots. For the case of multi-
ple photons transportation in the arrays, the Bethe-ansatz is
needed for the analysis [31]. Most recently, an analytical
approach based on the Lehmann-Symanzik-Zimmermann re-
duction [32] was demonstrated to be useful in studying the
multi-photon effects (such as the bunching and anti-bunching
phenomena) of scattering in the present setup.
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