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ABSTRACT

By further improving the method of g-deformed boson realization, the standard basis
is built for the typical subalgebra chains. When g is a root of unity, the irreducible and
indecomposable representations of quantum universal enveloping algebras (A4;-,)y and (C;)q
are constructed and their reduction structure and decompositions are analyzed.
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I. INTRODUCTION

The quantum group and the quantum universal enveloping algebra (QUEA) orig-
inate from the nonlinear physical problems associated with the Yang-Baxter equa-
tion (YBE)" ¥, Recently, their representation theories have attracted physicists and
b=13 The g-deformed boson realization® method
for QUEA presented by some authors independently™ ™ is a breakthrough in this
field. As a quantum correspondence of the boson realization (Jordan-Schwinger
mapping) for classical Lie algebras, this method is a powerful tool for constructing
the finite-demensional representation of QUEA. At present, it has been generalized
and applied to many areas™ ™. Our study mainly deals with the QUEA U si(l)=
(A;_),. We constructed all the symmetrized representations for the first time for
the case where g is not a root of unity (i.e. there is no integer p satisfying ¢g# = 1).
Our work can be regarded as a natural development of the previous systematic
work about Lie (supér-) algebrast6718],

mathematicians’ widespread attention

However, all the studies on the g-deformed boson realization failed to deal
with the case where g is a root of unity (9# =1, p=3,4,---). That is a case
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significant in physics™ ™1, possessing the characteristics specific for QUEA and is
quite unlike the case where 4 is not a root of unity. For the latter case all the
discussions can be basically regarded as a g-deformation of the theories of the clas-
sical Lie algebra. In this paper we try to develop a systematic method and a fun-
damental theory for the case where ¢ is a root of unity. For convenience, we
assume that U, (&) = (&), is a QUEA of a Lie algebra &, C the complex num-
ber field and End(¥V) the set of all the linear transformation matrices on the lin-
ear space V; Z={0,x1,+2,--.}; Z*={0,1,2,-+-}. Following Lusztig"", we sup-
pose p is an odd integer = 3 without loss of generality.

II. Tue ¢-DerorMED Boson Rearrzation or THE Typicar SuBarGEpra CHAINS

The g-deformed boson operators & = 47, 4;' and N;(i =1,2,-++1) which were
first introduced in Refs. [13—15] generate an associative algebra %,(l) over G
with unit and satisfy

4,48} = 8,q% + q7%a} 4,

aFar = arat, [N, af] = +6;4f, (1)
where g€ C. This algebra is called g-deformed boson algebra; its representation
theory has been systematically studied recently®. Corresponding to #,(!), the g-
deformed Fock space F ,(1) is defined as

{Im> = Imlsmz" : "ml> = &™a ™. ';é?-"'ll0>|di|0> = ﬁ:l0>
=0,i =1,2,---,l},
where m=(m,, m,,---,m;) is a point in the lattice point set Z*'.{(my, my,--*,m)=
m|my,my,-++,m € Z*}. Denoting the unit vectors in Z™ by
el(l) = (1’0’0""’0)’ ez(l) = (0’1’09""0)""’
el(l) = (0’0’0”' 1),

we have

| m) = [zi (n;Tn; + 1¢1)] |m=+e; (1)),

Nilm) = m;|m), (2)
The above equation defines a natural representation p,: #,(I)— End (F (1))

where [f] = (¢ — ¢7)/(q — q7") for any operator or number f; [f]—q—_)—l> fooItis
worth while to point out that the representation p, is irreducible when ¢? =1 for
any p(30) € Z; otherwise the representation o1 is indecomposable (reducible, but
not completely reducible) when g7 = 1.

In the sense of (2), regarding Z,(1) as a linear operator algebra on & (1),
we define a g-deformed boson realization B((&),):{x = B(2)|2€(<),} by a
1—1 homomorphic mapping B from the QUEA (&), to B,(&). Considering the
g~deformed boson realization of (4;_,), given in Ref. [14], we immediately get a

g~deformed boson realization for (C;);:
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H; = ﬁi — 1<7i+u (3a)
E;, =afa,, Fi=208,8, i=1,2,---,1—1, (3b)
E, = [2]7'4%, F,= —[2]7'4}. (e

H=N+1/2,

Using (2), it is verified by a direct calculation that H;, E; and Fi(j=1,2, )
defined by (3) indeed satisfy the basic relations of (C;),, namely, the g-deformed
commutation relations o

[His Ei] = aiiEi’ [Hi9 Fi] = _aiiFh

[HisHi] =09 (4)

LE,, F; =5,.M . ;<< ] — = g?
i» Fil ii 3 q; q(i < D, q q9

and the Serre relations
GGz, — (9 + ¢ — 1)GiGjyGj + Giy,Gi = 0,i < 1 — 1,

§<"1>"( [31,:1

[m]21[3 —mlg

(5>

=1
> 3:1"'GIG;"_1=0, G=F, E,

where
[m]l! = [m]t[m— 1]:' N '[2]1[1]1; [m]l = (’m—' ’-m)/(t - t_l);
ay =2, @ = 26;j— 8i,is1— Bij_1»
= —28 15 ;= —8i_ysiy ]=1,2,++-,1— 1.

It is observed from Egs. (3) and (4) that E;, F; and H(i = 1,2,---, k<<I— 1)
are closed under the g-deformed relation, i.e. they generate a subalgebra (Ay)qs(k<C
1—1). Thus, Egs. (3) give a realization of the subalgebra chain I:

(CaD(A41_)aD(A11)eD - - D(4;)e D (A4

In fact, since Ej, F;j and Hi(j = k,k+1,---,1— 1) generate subalgebra (C;_41,)q>»
there 1s another subalgebra chain II:

(C1)es2(C11)eD(€C11) ;2 + D(€35)aD(C)a.

The two subalgebra chains are fundamental from which one can determine other
subalgebra chains, such as the subalgebra chain III with branches:

(A4i)g = (Ai)g = o = (A1),
| (4i)g~> (e = -+ = (4
(€e—>(Ci)g—> -+ —> (C3)e— (Cz)q
(4;), = (47,5
where (A}),,(4Y),s+++ denote the different “embeddings” of (A4y), in (C)),, e.g.

(4)),, (4), and (4]), possess different sets of generators: {H,, E,, F,}, {H,, E,,
F,} and {H,_;, E;_,, F;_;}; “— " in A— B represents “O” in ADB.

Because there is no obvious finite dimensional invariant subspace in the repre-



No. 8 ¢-DEFORMED BOSON REPRESENTATIONS 947

sentation space F ,(I) of (C,), under the action of (Cy), (k=2,3,---), we will
not take the subalgebra chain II into account. For the basic subalgebra chain I, we
define the standard basis for ?q(l), which is denoted by number set (2;, A;_;s
++, 4;), so that the irreducible representations of (A;_1),y (Ai12)gs +++, (4,), are
respectively denoted by 2,,4;_,,°++,2,. Then, we can construct the finite dimen-
sional representations for each subalgebra in this subalgebra chain in a universal frame-
work, so that the representation of (A4;), constrained on (4;_,), is automatically
decompased.

III. RePRESENTATIONS OF SusarGeBra CuamN ror (C)),

From Egs. (2) and (3), we obtain
H;|m) = (m; — m;,) |m),
Eilm) = [m,]|m+ e, (1) — e.,(1)),
Film)=I[ml|m+ e () — (D)), i=1,2,---1—1,
Hilm) = (m + 1/2)|m),
E/lm) = [2]7'|m + 2¢(1)),
Film) = —121""[m; — 11[m]|m — 2¢,(1)),

which defines an infinite dimensional representation TI';: (C,),— End (F ,(1)).

l
m

(6>

Because (—1)*™ is invariant under the action of this representation, the represen-
tation is reduced to T'y = I'f@I'7 and the space decomposition is F (1) = F §(I)
@DF ;1) correspondingly:

1
m.

FD = {Im)e F, W= =13},
i"'.‘
F i) ={Imye F (DI(—1)T = —1}.

Because the discussion about & ;(I) completely parallels that about F;(1), we
will only discuss & F(l). Define the standard basis for F ;(I):

f(ll',)= “vl, Ay Ayttt ydiy— A4y 2-]_1!—1)9 J=10,1,2,---,

where 4 = (41,2, +,4) €2 and A4, =0, 1, 2,--+, iy for a given 1 (k= 2,
3,-++,) and we denote 2; = 2J, 1, = 0. Then, we have

Ef(A1T) = [Aiyy— 21/ + e (1 — 1)), (7a)
FfQAD) = [2; — 1,.1f(A — (U — 1) }J), (7b)
Hf(AD) = QQa; — Loy — 4iDfQAND, i=1,2,--+,01—1, (7¢)

EFAID) = (20741 + 1), Hif(19) = (27 — z,_l+%)f(w>, (7d)

Ff(A1D) = —[217'[2] — 0020 — 2y, — 11fQR]T — 1).

In order to explain the character of the standard basis, we first discuss the
case of g?3%1(p(20)€ Z), in which the representation I'f:(C;),—>End(F7(I))
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of (C,), defined by Eqs. (7a, b, ¢, d) is irreducible. Because J is invariant under
the action of I'f((4;.,),), VI

1
{fA1I) € F 3T = fixedJ} o {;ml, tigye ey m)| S my = 2,},
k=1

is an (4,_,),-invariant subspace, with an irreducible representation I'}/1"¥ on it. By
constraining I'} on the subalgebra (4,_,), of (C;),, the subalgebra decomposition
is automatically realized:

FH(4i), = 2 T8, Fi(g) = ) Vi, ,
J=0 J=0
In the same way, we may regard 1; as the label for the irreducible representation
ri‘e! of (A4¢_,), and
VR {f(A1I) [AgsAgs1s -+ <54y are fixed}

&= {fﬂ.k(l) = f}.k(lu e ’llg-l) = |my, my,--- ,mk_1>

k-1
= A AR |0) | D my =g or my = A — Ay = 1,2,k — 1}
i=1
is the corresponding invariant subspace. Then, we have the automatic decomposi.

tion of representation:

. Ly
A
Tk4-kl+l I(A ) =E r[kk]’
Lt B P
. LI
+ A
kaxll(A N =EV%U.
k-1 q J’k:—-ﬂ

Now, we turn to the discussion on the case in which q is a root of unity. In
this case, though the above results about the reduction and decomposition still
hold, the invariant subspaces are no longer invariant while the irreducible representa-
tions are no longer irreducible. This is because there exists an extreme vector
fCA|]) such that

Eif(A| D=0, Fi f(AlJ) =0, Ly — X =oap, ;€ Z
are satisfied for ¢ = 1, i.e. [ep]l = 0(a€ Z): About the reduction and decomposi-
tion of subspaces, we have

Theorem 1. There exists a (C;),-invariant subspace S;(j,e):

QDG — 2 =ap, JEZ'} (G=1,2,--+,1—1)
in F (). When 1 =2, there is not any invariant complementary subspace to S,(j,

@), namely, T} is indecomposable (reducible, but not completely reducible),

Proof.1) We first prove tha.t_S,(j,a) is an invariant subspace. To this end, we
define subspace W(j,k):{f(A[J) € F ;(1)|2jss— 2; =k} for k€ Z*, then §(j,0)=
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E w(j,k). It follows from (7a,b) that

k=ap
Ei+1f()-l-]) = [2js, — 1i+1]f()- + e;. (I — DN,
'Fi+1f(l”) = [1i+1 - 1i]f(l — ei+1(l—' 1)“)- (8)
We observe from Eqs. (7a,b) and (8) that for any f(A|J) e W(j, k)28(j, «)
Ei+lf(l|") € W(?; k =+ I)CS,(j, a)’
FifA11) e w(j, k + 1)T8,(i, a);
E:f(llJ) € W(]a k)csl(i’ a)9
F,-f(llJ)E W(79 k)csl(f.’ a)’ i~ j’ ]+ 1.
Because [1j4— ;] = [ap] = 0 for f(A|]) € W(j, ap),
Eif(Al]) = Finf(A|]) = 0.
Moreover, when R =oep+ 1, ep+ 2, ap+ 3-++ and f(A|1)e W(}, k),
E;fA|1NCW (s k — DTS, a),
Fi+1.f()'|J)CW(]-’ k'— I)CS,(]', a).
In conclusion, Vf(A|J) € §,(j, @), E;f(AlJ), Fif(A]J)€ 8], ).

2) We prove that there is not any invariant complementary subspace to $;(j,c).
In fact, if we assume that there exists an invariant complementary subspace
5,(j,a), then there exists a vector

v= > af@QlD+ D) &IQAD)

Ajp1—djap Xjg1—ij<ap
in §,(j, @) so that one of ¢is(€C) and one of &js(€C) are not zero at least.

Suppose that &, corresponds to a vector f(A|])€ W(j, k) such that 2:;,— A=k
is minimum. Then,

(Ei+1)a’_,‘t ¢ U(#O)CS,(]', a).
Because S,(j, @) is (C;),-invariant, (E;4,)** %v € §,(j, @). Thus,
Sl(j’ a)ﬂsl(]-’ a) = {0}

This conclusion and 8;(j, a)PDS,(j, @) = F #(I) implied by presumption are contra-
dictory. Then, Theorem 1 holds. Q. E. D.

A corollary about the properties of representation for (A4;),(k =1,2,--+,/—1)
immediately follows from Theorem 1.

Corollary 1. When q? =1, there exisis an (A,_,),~invariant subspace
SE”(J" a):{f(ll-]’)lliﬂ - l; =Zap, J = J}

in VY1 for fixed J. When I =2, there does not exist any invariant complementary
space to SY1(j, ¢); the representation I'{* is indecomposable.

IV. Fmite DiMENSIONAL REPRESENTATIONS OF (C,)q

According to the general theorem and corollary mentioned above, we will ana-
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lyse the representation I'y

Ef(n|]) = [20 — 6]lf(n + 1|J), Fif(n|J) = [a]f(n — 1]J),
Hf(n]|J) = 2(n — Df(n|J),

Hzf(nlJ)=(2J—ﬂ+%>f(nlJ), €

E f(n|J) = [217(n|J + 1),
Ff(n|0) = —[2J — nl[2J — n][2]17(n|J — 1)

defined by Eqs. (7) in detail where f(#|J) = ai"a7?7*[0) € F J(2)(n = 0,1,2,-,
2J for a given J). Noticing the two (C,),-invariant subspaces S,(1, 8):{f(n|J) €
F i) |n=pp}, 82, 0) {f(n|J)e F;3(2)|2) — 5= ap} and their sum Sy(af)=
8,(1, #) + $.(2, a) which is still a (C,),~invariant subspace, we have a theorem
about the finite dimensional representations of (C,),.

Theorem 2. The quotient space Qp(a, 8) = F 7(2)/8u(a, B) is finite dimen-

sional and its dimension is
dimQy(a, ) = - (epp* + o(ap) - 9(82)); (10)

where ¢(x) = 0 for even number x and o(x) = 1 for odd number x, 1. e., o(x)=
S A= (=D,
Proof. The basis for the quotient space Qp(e, #) can be chosen as
Fnld) = f(n|)DModS(e, 8), 02 —n<op— 1, 0<n<fpp—1,

For given 8p, n takes §p values: 0,1, 2,---, 8p — l; for each given n, n/2 < J<
«—21—(ap + n—1). Since J is a positive integer, J takes -;—(ap + o(ap)) values for
even number # and J takes %(ap—a(ap)) values for odd number n. Because there
are —;—(ﬂp+a(p‘p)) even numbers and -ZL(ﬂ’p— a(Bp)) odd numbers in the series

of number 0,1,2,---, 8p — 1, the number pair takes

- (Bp + 0(8p)) 5 Cap + a(epd) + == (bp — o(8p)) - (o2 — 5(ep))

- _;. (aﬂpz + U(ap)o‘(ﬂp)) = dilez(a’ (3)

values. . Q.E.D.

Representation (9), as the linear transformations on the space & ;(2), can in-
duce a finite dimensional representation I'y :(C,)q—> E,dQy(c,8):

gf(n|3) =T ()(nlJ) = gf(n]J), Vg €(Ca)q

on Qu(a, ), It shows that the actions of (C,); on Qu(a, #) possess the same
forms as that for Eqs. (9) except for the actions on the extreme vectors f(fp — 1]J)
and f(2J +1 —ap|J) (e, BE€ZT). For example, E,f(fp —1|J) =10, E,f(2J+ 1—
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ap|J) =10. When p=3 and a = f =1, we have a 5-dimensional representation
E,=E,;+ [2]E;,, E,= [2]_1(Ez.1+E5.4)s
Fi=E,; + [2]E;4, F,= —(E1,2+E._5),
H, = 2(E4,4'—E2.2)’ (11)

H, = ‘ZL (Em ~+ 5E,,; + 3E;3s + E4 + 5E;;5),

where E;; are such matrix units that (Eii)kl = 8;10i» fo] = 1,2,404,5

V. INnpecomrosaBLE RepreseNTATIONS OF (A,;)q4

According to Corollary 1, on the space VIM.{f1(4;,2,) = & 1a5% %1427 %|0)|1,=
0,1,-", 432, =0,1,---,1, for given 4,} we analyse the representation I'|"! of (A4,),:
Elfl(lnlz) = [12 - ll]fﬂ.(ll + l,lz)y Ezfl(ln l2) = [1 — lz]fz(lnlz + 1)’

Flfl(lnlz) = [4,1f:(% — 1,2,), szz(lnlz) =[2,— 11”1(1“12 — 1), (12)

Hlfl(ll’lz) = (211 - lz)fl(lulz)’ H2f1<1n12) = (212 — l)fﬂ(lu lz).

Now, we introduce the lattice diagram (Fig. 1) to describe the representation.
Here, the lattice point (4;y 4;) in the right triangle OAB denotes a weight vector
fi(a;s 2,); the up-, down-, right- and left-arrows denote the actions of E,, F,, E,
and F,, respectively. The three shadowed domains (Fig. 2) cut out by three lines
{22, — 2, =ap, L:4— 2, = Bp and I;:1, = vp(e, B, ¥ € ZT) correspond to three in-
variant subspaces S;(1,e):{fi(1:,2,)12, — 2, = ap}, S:(2,¢):{f1(Ass )2 — 2, = Bp}

and 8:(0,7):{fi(21,1,)|4, = 7p}, respectively. Their dimensions are D; = —;—(l —

§p + 1)(1 — 8p + 2)<8 = a,ﬂ,?’)_

A
b ’El
A N F E,
: 1p,
2
1
1 42 et A4V A2
Y A

Fig. 1

Becuase the cross of the invariant subspaces is Vstill an invariant subspace, we
can define the following subspaces
0= Ss(ly a)ﬂS;(Z, {9)083(0’ V),
0, = S(1, )N 8:(2, B), Qs = S:(2, BN S0, »),
Q.= SS(O’ V)ﬂS;(l, a)_
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i
L f 4 '

J.z R 12 lz

Fig. 2
According to whether Q; is {0}(s = 1,2,3,4), the invariant subspaces are classified
into six types corresponding to the following diagrams (Fig. 3).
When p=3 and N = 4, the 15-dimensional representation, as an example, is
written in an explicit form
E_l = EG.Z + E9.5 + E10,7 + El3.11 + [2](E7,3 + Eu.s + E14,12) + E15,149
Fy=E,s+ Es;+ Es;g+ Eqs + [21(Ez0 + Egu + Eg1) + Ep,55
E,=E; + Esyy+ Epu+ Euys + Esy + [2]1(Ess + Egp + Enw),
Fy= Eip+ Eus + Ecy+ B+ Enu + [20(Ess + Eng + Enn)s  (13)
H = —E,, —2E;3—3E4s—4Es;s + Es5— Eg s — 2Eg o+ 2E 50
G+ E; o+ 3Ep;s+ 2E 4+ Eg s,
H,~= —4E,, — 2E,, + 2E44, + 4E;5s — 3Ess — E,; + E;; + 3E,,
- 2E10,10 + ZEIZ,IZ - E13.13 + El‘.l‘o
It can be seen from its diagram representation that under the representation (13)

there are three invariant subspaces U,:{f.(0, 0), f.(0, 1), f.(1, 1)}, U,:{f.(0, 3),
f4(0, 4)9 f4(19 4)} and U3;{f4(3, 3)9 f4(39 4)9 f4(49 4)}.

VI. RerresenTaTIONS OF (A;)s aND THEIR Luszric’s EXTENSIONS

Using the g-deformed boson realization of (A4,);:

Ji=E, =&, J_=F, =éta, Jy;=H =N, —N,,
we obtaln a representation

Jifa(n) = % (A2 — 2] + AF DI }alnx1),
X (14)
Bifi(n) = 2n — A)f(n),

on the invariant subspace V'*;{f,(n) = a¢{"a;*"*{0)|n=1,2,---,2}, Because there
exist extreme vectors fi(ap) and fi(2 —Bp) (@, B€Z* and < A/p) such that
Jifa(a — Bp) = J_fi(ap) =10, there are two kinds of invariant subspaces V.
{fz(ﬂ'P -+ ”)in = 091929"'} and W%”:{fz(l —Bfp — k)]k =0,1,2,--+,1 — .BP}. Ac-
cording to the sense of VN W, we can give a complete classification for the rep-

resentations of (A4,), at gf =1,
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A 4
B
B
Q3
1 s |
4 1 h
2
L /|
/ A ‘ : A
N 2
0 A 0 0, A A
® 0F{0}(F1239) (0) 0= 037 04 {0} © Of 0= 04={0}
AI Al A| B
B B
Q3
o, A f
3 04
1 a I 1y 1,
1 12
I 1,
l A, Az Az
o . A 0 A 0 A
@ 0,=0,= 05{0} (£) 0,20 3=4{0] 0 2,={0}
Fig. 3

Theorem 3. Thke representation (13) of (A,)q has three types of reduced de-
compositions ar qf = 1. Type I: When ap— 12> 21— Bp, representation is inde-
composable for invariant subspaces V} and W, Type 11: When ap — 1 = 1 — 8p,
the represemiation is completely reducible; Type 1lI: When ap — 1 < 1 — 8p, the
representation is indecomposable for the invariant subspace VAW,

Proof: (i) For type I, due to VN WE! = {0}, the proof of Theorem 1 gives
the result in this theorem,

(ii) For type II, due to fi(ep — 1) =F.(2 —8p), we have Jifi(ap —1)=
J.fi(a — Bp) = 0, Because J_f;(ap) = 0, the chain of weight vectors f(0), f.(1),
coe falap — 1), f1(ap), - -5 fa(2) is broken down between fi(ap) and fi(ap — 1),
namely, Vi =V + wi! and VINWH = {0} or V¥ = VHDPWE, Accordingly,
the representation (13) is completely reduced,

(iii) For type III, there exists an invariant subspace VMINWR! = {f,(e, p),
Filap+ 1), -+, fa(h — Bp)}. A proof similar to that for Theorem 1 gives the
conclusion in this theorem. Q.E.D.

.

According to the above theorem, when p =3, we analyse some typical lower
dimensional representations of (A4,)q:

1) ‘ A=3. (J.= [2]E3,2+E4.3; J-—El.z+[2]Ez,3a
3 1 1 3 (15)
Jy=——E,,——E,;+—E;3;;+ —E,;
3 5 S 5 5 D 2 445
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2) 2 =4. {J+ = E;1+ [2]Ey3+ Es4y J_ = E,; + [2]E;s + Eus, (16)
Js= —2E,, — E;;, + E4s + 2E;;;
3) A=75; (J.= [Z]Ez.l + E3.4 + [2]E5.4 + Ec.s:
J—=E1.z+[Z]Ez.s+E4.5+[2]Es.6, (17)
3 1 3 5
J; = —';—El.l_'E‘E:,z—';—EJ.3+7E4,4+7E5.5+_2_E6-6;

4) A=26; JJ+ = [Z]Es,z + E4,3 + [Z]Es,s + E7,6:
J-=E1.z+[Z]Ez,3+[2]E4.s+Es.sy (18)
Js = ’_3E1,1 - 2Ez.z - Es,s + Es,s + 2E6.6 + 3E7,7.

The above representations are illustrated as the following Fig. 4 where the up-
and down-arrows denote respectively the actions of J+ and J_ on the weight vectors
fa(n), It can be seen from Fig. 4 that the representations (15) and (16) belong to
Type I and representations (17) and (18) to the Types II and III respectively.

— 1 /® fa @ 155 —— @
5
o fs @ 1)
2)

I3 fe(4)

3
— L —t— fe®

1 f42
f3() fe(2)

f 4D

fs () fo )

/30 fa(0) [0
4 s _— fe 0)

(a) A=3 (b) A=4 () A=$S d) \=6
Fig. 4

Now, we study the Lusztig’s extention of (A4,);, According to the PBW theo-

rem™ for (4;)gs V2 €(A4)g, x= D>, C,,,J2J"J; where the coefficients C,,, (m,

myn,r=0
ny, r €Z") are zero or complex numbers with finite norms. At present, we regard
_the base J2J2J; for (A4,)s as an operator on the representation space V of (A4,), and
then extend (A4,); to include x such that norms of C.... are infinite but » has fi-
nite limit on V, The extended (4,), is called Lusztig’s extention denoted by
(A4,)q, About (A4,); and its representations we have

Theorem 4. On the representarion space V' of (A4,),, the Lusztig operators
L. = ﬁfpl{(l/[ﬂ!)-’i}([?]! = [pllp—1]---[2]1[1]) have limits
P>
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Lt )={0, for n < p,
T afu(n — p)s for n=apta', a(€Z) =1, 0<A(€L)<p—1;
(19)
_ 0, for n>2—p,
L+f"<n)_{ﬁfl(n+p), fora—n=p0p+m, B(€Z) =1, 0<m(€Z)<p—1,

(20)
The Lusztig’s extention (A4,), is generated by Ji, J; and L. and representation (14)
of (A4,), is naturally extended to a representation of (A)g.

Proof. Using [n] = [ep + n'] = [#'] and lim ([apl/[p]) = a, and starting

q?-»l

from Eqs. (14), we can verify Eqgs. (19) by direct calculation. Using
pM(Ly) = Lim {(1/[p11)(p"M(J£))?},

qP—)l
we can extend the representation of (A4,), to that for (4,),, Q. E. D.

It is necessary to point out that representation (14) as a representation of (d)q
possesses reduction structure different from that for representation (14), a represen-
tation of (A4,)s, This is because Lx can mix the weight vectors fi(n) and fi(nk
p) respectively in different (A,)q-invariant subspaces. For example, in representation
(15), L.fs(0) = f(3). Thus, L, mixes two one-dimensional invariant subspaces
{f(0)} and {f5(0)} so that only {f5(0), fi(3)} is (4,) g-invariant. For the same
reason, (16)—(18) as representations of (A,); have respectively the invariant mixed
invariant subspaces {£00), (1), fi(3), fD}, {£5(0), £s(1), £5(2), --+,f5(5)}
(the whole representation space for (17)) and {f(0), f,(3),7:(6)}.

The general Lusztig’s extensions for (C;)s and (A4;)s are quite complicated and
we will write another paper on them.

We are graseful to Prof. Yang C. N., who instructed us 1o enmter the active
research field of the Yang-Baxter integrable systems and the relevant problems.
We also thank Prof. Takhiajian L. A. and Smirnov F.for many useful discussions.
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