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ABRSTRACT

The g-deformation of Verma theory for the Lie algebra is studied in this paper. The
indecomposable representations and the induced representations of quantum universal envelop-
ing algebra sl4(3) are constructed on the g-deformed Verma space and the quotient spaces
respectively. We put stress on the discussion of the case in which ¢ is a root of unity. Using
the new representation constrained in the subalgebra sl;(2), we systematically construct
the new series of solutions (Yang-Baxter matrices) for Yang-Baxter equation without spectral

parameter.

Keywords: quantum universal enveloping algebra, Verma module, indecomposable

representation, Yang-Baxter equation.

I. IntrRODUCTION

The Yang-Baxter equation (YBE) plays a crucial role in the problems of non-
linear integrable systems and its studies have become one of the most active research
fields in mathematics and physics'’. The works of Drinfeid and Jimbo et al. show
that the solutions of YBE are associated with the representation theory of quantum uni-
versal enveloping algebras (also called quantum algebra for short). In this way the
standard solutions have been obtained by making use of the finite-dimensional irredu-
cible representations of quantum algebra'”. Other class of solutions different from
the standard ones were obtained from the generalized Kauffman diagrame technique®.
They are called the non-standard solutions and are still related to the representation
of quantum algebras'’. So it is necessary to further develop the representation theory

of quantum algebras.

The purpose of this paper is to obtain new type representations of quantum alge-
bra s1,(3) through the quantum generalization of the Verma theory for the Lie alge-
bra. The representations obtained here are different from various irreducible repre-
sentations given in Refs. [6—10]. By using them and the universal R-matrix, a new

*Project supported in part by the National Natural Science Foundation of China.
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series of solutions for the YBE without the spectral parameter (braid group relations)
is constructed. It is worth pointing out that the method for constructing representations
of s1,(3) and si,(2) explicitly in this paper can be generalized to other quantum
algebras.

In this paper we put stress on the discussion of the case where ¢ is a root of
unity, i.e. ¢ = 1. For convenience, we assume that p = 3,5, 7, -1, We denote the
associative algebra (C-algebra) over the complex number field C generated by x,, y;,
...(,’= 1,2,3'--N) by C<x.-,y,-"'li= 1,2,---N>,a.ndZ= {0’ +1, +2, ---},Z+=
{091:2:"'}’ °+={1,29"'}. '

II. Quantum Verma Mobpuie ror $/,(3)
The generators EFf and H; (i = 1, 2) of quantum algebra s/,(3)-= C(E; = E},
F;=E;, H;|i = 1,2) satisfy the g-deformed commutation relations
{[HH Eit]= :}:ZE?Q [Hiv E;t]= iniQ (i#fl)9 (1)
[H,, Hk] =90, [EuF.(] =&,[H;], iJs kh=1,2;
and the Serra relations
(EFYEf — (¢ + ¢ DEFEFEF + Ef(EF) = 0,i = ,i,] = 1,2, (2)
where we have defined [f]1 = (¢ — ¢ /(g — ¢7).

Considering that Ef and EF respectively correspond to the simple root @, and a,
of the classical Lie algebra 4, under the classical limit ¢g— 1, we define the ele-
ments of s/,(3) corresponding to the third positive root o, + a7

Ef = EfEf — qEfEf, Ef = E;, Es = F,,
Then, it follows from the g-deformed PBW theorem™ that the basis for s/,(3)is de-
termined by

{EMETETsH:HzF1\F2F 3| n;ym;, s € Zr,myn(i =1,2) = 1,2,3,5,5,=1, 2},
Let [1) be an extreme vector (the lowest weight vector) such that
H:|a) =4;12), Fi[a)=10, i=1,2,

The equations A(H;) = 1,€ C(i = 1,2) define a weight function 1€ &€* over the
Cartan subalgebra &€ = C(H,H,), Under the action of s/,(3),|1) generates a linear
spaces V(1) = sl,(3)|2):

Spaﬂ{fz(m,ﬂ,/() = ETE}Es “-)Imﬂhke Z+}.

This space is called g-(deformed) Verma space, on which the g-(deformed) Ver-
ma representation p*':s/,(3) — end(V(1)): o*(g)fs(m, n, k) = gETEJE}|1)(Vg€ sl,
(3)) is naturally carried. Using the basic relations (1) and (2), we explicitly write '
these representations:

Hif(m,n, k) = Q2m —n + k + Ahi(m, n, k),

Elfl('”? n, k) = fl(m + 1, n, k),

Flfl(”" n, k) = qll[k]fl(m’” + 1,k — 1)
~{milm—1—n+k+2,1film— 1,8, k)

(3a)
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Hzfl(m, n, k) = Qn—m + k + lz)f}.(”‘,ﬂ,k)a
Ezfl(m’ 7, k) = q""fz(m,n + l,k) - q"”’l[m]fl(m - l,n,k + 1)’ (3b)
F.fi(my ny ) = gt[nll1 — 4, — nlfs(m, n — 1, k)
— ¢ klfa(m + 1,8, k— 1),
Due to the representation (3), V(1) can be regarded as an s/,(3)-left module. We

call it the quantum Verma module or ¢-deformed Verma module.

When g is not a root of unity (gf =1, Vp¢€ Z*), all the conclusions about repre
sentations (3a),(3b) are quite similar to the classical case (g =1):

(1) If — A4, 8Z% or —1,8Z"%, representations (3a), (3b) are irreducible.

(i1) —2;€Z*(i = 1,2) and 1; or 4, 0, the representations (3a),(3b)are inde-
composable. In this case, 4 = (1;, 4,) is called dominant integral weight. However, if
g is a root of unity, the problems in the cases (i) and (ii) appear very complicated
and we will obtain some new solutions for YBE in this sense.

ITII. REPRESENTATIONS ON 1HE INVARIANT SuBsPACES AND (QQUOTIENT Spacks

In this section we analyse the reduction of the g-Verma space when ¢ = 1 and
1 is a dominant integral weight. To this end, we try to find an extreme vector |[M)
€ V(1) such that

Fi|M>=09 HEIM>=Mi|M>’i=1925 (4)
where we require that M = (M, = M(H\),M, = M(H,)) € &€* is a dominant inte-

gral linear function “larger” than 2, that is to say, M,—2,>0 or M, > 1, for
M, = 2,, Then the standard cyclic module

Su = s1,(3)|M) = span {ETESYE;|M)|m,n,k€Z*}
generated by |1) is a non-trivial invariant subspace.
In the weight space VIM;, M,l: {|x) e V() [H;|x) = M;|x)i = 1,2} we make

an ansatz:

min(a,B

(M) = 3 Cifsla—k,6—k,k) CyeC, (5)
k=0
where the non-negative numbers

a=-§‘(2M1+M2—'211—'lz),ﬂ=~:71,—(2M2+M,—le—‘ll)

are the parameters of V[ M,,M,], Substituting (5) into (4) and using (3), we obtain
two recurrence relations about C;. The requirement that the two relations must be
identical results in three classes of Cy. Accordingly, we obtain three extreme vectors:

IM(1)> = fl(l — 2, 0, 0)9
IM(2)) = f1(0, 1 — 2,),
2=k =1 &
MG = 3 LI Wrg™is — 1= — illi + 2, — 2}

k=3~-2y, ti=3-1,
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Xf(z—7«x_lz*k92_‘ll_‘lz—k9k)- (6)

The corresponding weights are M(1) = (2 — 2,2, + 1, — D),MQ)= A, + 1, — 1,
2—4;) and M(3) = (2 — 2,,2 — 1,) respectively. Because Sy and Sy are still the
invariant subspaces of V(1) and they are the largest normal subspaces generated by
El"% and El™, the quotient space V(2)/(Syw + Suw) is finite-dimensional. When

g* =<1, p(x) will induce finite-dimensional irreducible repfesentation on it. Such
representations corresponding to the case of Lie algebra can be described by the Gel-
fand’s basis. A detailed discussion on it can be seen in Refs. [10,11].

Now, we study the representation on the quotient space Q(2) = V(1)/J(1) =
span{fa(m, n, k) = fi(m, n, k)modJ(1) |m k€ Z* ,n = 0,1,2,---, —2,} correspond-
ing to invariant subspace J(1) = span{fi(m,1 — 4, + n,k) |m,n, k € Z*}, This repre-
sentation is .

Hlfﬂ.(m, ny, k) = (Zm —n+k+ ll)fl(m’ ”,k),
El]—cl(m, n, k) = fl(m - 1,n, k)’ (73)
Flf;_(m,n,k) = 6(_12 —1— ”)qh[k];l(ms" + 1,k — 1)
— [mllm — 1 —n+k + L,1fi(m — 1,n,k),
Hzfl(”” ny k) = Qn—m+k+ lz)fl(m’ ny k),
Ezfl(m’ n,k) = 6('—12 —1—= ﬂ)q_"'fx(m,ﬂ +1, k)
— g " mlfi(m — 1,n,k + 1), (7b)
szfA(m, ny k) = g[n1[1 — 4, — n1fi(m,n — 1,k)
— g4 kIfa(m + 1,nk — 1),
where 8(x) = 0(x < 0) and O(x) =1 (x =0),

It can be seen from (7a) and (7b) that the quotient module »(2,) = Q(1)]1,=
0/8[2,] = span{F(m, k) = fs(m, 0,k) |1,-0 mod S[2]|0<<m + k<< — 2} is finite-
dimensional and the dimension is

dim(d,) = % (1 — 1) — 1), (8)

where the s/,(3) is the left module. Q(1) |1, can be regarded as an invariant sub-
module S[ll]:{;l(m9 o, k) Im + k =1— Z1}-

The quotient representation on =(1,) is
HF(m, k)= Qm+k + 2)F(m, k),
EF(m,k) =0(—1 — 1 —m —k)F(m + 1,}%), (9a)
F\F(m,k) = [m]l[1— 2 —m— kIF(m,k— 1),
H,F(m, k) = (k—m)F(m, k),
E;F(m, k) = —q ' [mIF(m — 1, k + 1), (9b)
E,F(m, k) = —qlR1F(m + 1, k — 1),

It can be proved that this representation is irreducible when —21,&Z%, and
gt =1,
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IV. Representations ofF s/,(3) at Roor or Uniry

When ¢ is a root of unity, equation gf = 1 leads to [ep] =0 (Va€Z) and
there exist extreme vectors f, = f(a,p, e,p, asp)(a, ey, a3 € Z7) satisfying

Hif, = {Qa; — a, + a3)p + A1} s

Hyf, = {QQey — o, + a3)p + L}l

Fif,=0, i=1,2,
Under the action of s/,(3), each vector f, generates an invariant subspace §* = §(a,,
@y @3) = span {fo(m, n,k)|m = ap, n > a,p, k = asp}, The corresponding quotient
space Q° = Q(a,, oy, ;) = V(1)/8% = span{w(m, n, k) = fi(m, n, k)modS°} is finite-
dimensional and its dimension is dimQ® = g,ze;p. On Q*, the Verma represen-
tations (32),(3b) induce a finite-dimensional representation. The action of this repre-
sentation on the base w(m, n, k) is formally the same as that of Verma representa-
tion on the base f,(m, n, k), Thus, we need not write it here.

Now, we study the representation with two labels at ¢ = 1, Because g =1,
F\F(p, k) = E,F(B,p, k) = F,F(m, B1p) = 0(B,s B, m, k€ Z*) and thus there exist

two invariant subspaces:
U(B,) = span{F(m, k) € =(2)) {m = Bip},
U(B,) = span{F(m, k) € =(2,) |k = By},

when (8 + B)p < —2y, UB)NU(R) = {0}, i.e. U(F) NU(B,) is a nontrivial invar-
iant subspaces. On U(f,), U(8,) and U(8) NU(B,), the representations (9a),(9b) will
define various subrepresentations.

For example, when 1, = 3p and p =3, U(1)NU(2) is a 10-dimensional invar-
iant subspace. On its ordered basis {F(3,3),F(4,3),F(5,3), F(6,3), F(3,4), F(4,
4),F(5,4),F(3,5),F(4,5),F(3,6)}, we explicitly write this representations as
H, — diag(18, 20, 22, 24, 19, 21, 23, 20, 22, 21),
H, = diag(3, 3, 3,3,4, 4, 4,5, 5, 6),

Ei= e, + 3, + €43+ €55 + €76 + €90y

10
EZ = _q—l(es,z + [2166,3 —+ €3s,6 + [2]39'7 + elo’g), ( )
F,= —[2]e;3 — €56 — [21%e6,, — [2]es,s,
F,= —q(e,s + €56 + e, + [2] e + [2]es9),

where ¢;; (i,7=1,2, -+, 10) are the matrix unit so that (ei,idu = 8B

In fact, it can be proved that the representations (3a), (3b), (7a), (7b), are inde-
composable when ¢? = 1,and the representation (g, a, b) is also indecomposable when
—4, > p. All the proofs for the indecomposable properties of representations are

given in Appendix.

V. REPResENTATIONS OF SuBaLGEBRA $I,(2)

Now we study the infinite-dimensional representation I=p |51, (2) of s1,(2)
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which is obtained by restricting representation p*' of s/,(3) on its subalgebra
s1,(2) = C{E,, F,, H;), In fact. Eqs. {3a) have given its explicit expression.
Because the sum n + % of the labels n and % for fi{m, n, k) is invariant under
the action of s[,(2), W(N) = span{fs(m, n, k)|n + k= N} for a given N€Z" is
an invariant subspace with the basis Xy(m,s) = fa(m,s,N—s) (s=10,1,2,---, N). It
follows from (3a) that an infinite-dimensional representation of s/,(2) is defined by

-

HIXN(m9 S) = (Zm —2s+ N+ ll)xN(my -“)’
E Xy(m, 5)=XN(’"+19 )y (11)
FXy(m, s) = gM[N — s1Xy(m, s — 1)

— [mllm + N—1— 25 + 2, 1Xy(m — 1,5).

Now we analyse the properties of representation (11). Because [¥;p] =0 (i=I,
2,v; € Z"), there exist three kinds of invariant subspaces:

W.(N, ») =span{Xy(m, N—»p —s)|s=0,1,--- ,N—vp,meZ'},
W,(N,»,) = Span{xN(J’zP -+ m,S) |m,sé€ Z+}’
Wi(N, v,) = W.(N, ») NW,(N, v,),

Because W,(N, »,, »,) is an invariant subspace of W, (N, »,), the quotient space
On(vys ) = W(N, »)/Wi(N, »,, »,) = span {Xy(m, s) = Xy(m, s) mod Wi(N, »,,
v)im=0,1,-+,»p—1,s=0, 1, 2, ---, N—»p} is finite-dimensional and its
dimension is dim@y(v,, »,) = (¥;p — 1) (¥,p — 1). On Qx(»,, »,), the representation
(11) induces a finite- dimensional representation as follows:

HXZy(m,s) = Qm— 25+ N + 2)Xy(m, s),
EXy(m,s) =6(wp—2—m)Xy(m + 1, ), (12)
FXy(m,s) = ghIN — s1Xy(m,s — 1) — [m1lm — 1 + 1,

— 2s + N1Xy(m — 1,5),

when », or », 22 2, this representation is indecomposable.

We study the representation with single label as follows. Denote the basis for
W(0) by ¢(m) = X(m, 0) and let p = —2,( =0), Then we obtain a representa-
tion of s/,(2) on W(O):

Hip(m) = (2m — p)o(m),
Eip(m) = &(m + 1), (13)
Fip(m) = [m]l1 + g —mlp(m— 1),

In fact, the above representation is just the representation of s/,(2) on its own Ver—
ma spaces and its properties have been discussed when u is an integer™. Now, we

discuss the case where x is not an integer.

Because Fip(ap) = 0(a€ Z*),&¢ (a, p) = span{¢p(ap + n)|n€ Z*} is an sl,(2)-
invariant subspace. On the corresponding quotient space Q7 = W(0)/& (a, p) =
span{p; (M) = ¢(J + M) mod (e, p)IM=J, J—1, -+, —J} for given J =
1/2(ap — 1), representation (13) induces a finite-dimensional representation & U/,
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Hips (M) = (2(J + M) — u}dps(M),
Exp)(M)=6(J—1—M)p/(M), (14)
Fio(M)=1J+Mllp+1—J—Mle;(M— 1),

This representation includes an arbitrary complex parameter g independent of the di-
mension of the representation. This is the key to the construction of new R-matrix.
When o == 2, like representation (13) this representation is indecomposable.

VI. Tue New Tyre Yanc-Baxter MAaTrICES

According to Drinfeld™, the R-matrix (Yang-Baxter matrix)
By — Pp[z,1®p[lzl(@) = P . RMa
satisfies the parameter-free Yang-Baxter equation (braid group relation)

(RQDUIQRMN(R*QI) = (IQR*)(R*QI)(IQR), (15)

It is constructed in terms of the universal R-matrix & = Z e,Qe* and the repre-

P
sentation p! (1; = pu,»,4,i = 1,2) of quantum algbra #,(g){e,,¢’|a = 1,2, --c},
P is such a permutation operator that P(x,Qx,) = »,®x,(Vx; € V1*1), Because the
representations used in the previous works were irreducible, the obtained R-matrices
are limited on number, and can be expressed in terms of g — C — G coefficients™.

We call these R~matrices standard ones.

In the following, we use the new type representation (14) of s/,(2) and the uni-
versal sl,(2)-R-matrix:

o

: - :
R = gHheHy2 Z (1— g (¢"*E Qg FViF,)rgnn 0 (16)

n=0 [”]!
to construct new type R-matrices. Here, although g4, as a cyclic parameter, is not
continuous, these new solutions still contain the continuous parameter similar to ¢ in

the standard R-matrices due to the arbitrary parameter . The new type R-matrix
is defined by

Rivi = 5 UNQ F UM) € End(Q3D0). (7
and
R b1, (MD®b1,(M2)) = 3 (R, (M) b1,(My)
My M)
gives an explicit expression for R/i):

172 +2M —u)(2) M,
— 1/2(2 2
(R]]]z) — q /2( ]] 1 W2),+2M, )6 S

+ 6(M, — M, — 1)q1’2(M2 — M;)(3M;
—3M;+J1+M1—“J:—M2)

7
M +M, R
1

Btne kI_IO {lgo+ M, — &+ 1 — g, — M, + k1, (18)
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;

M . : g .
,. shows that the new R-matrix (18) still satisfies “weight conser-
2

The §-symbol 6:1‘:
vation” (label conservation) and enables R-matrices to possess the diagonal block
structure. The symbol 6(M, — M} — 1) enables R-matrices to possess the “quasi-trian-
gle” structure. Let ¢t = ¢'™* and w = ¢ — 1. It is observed that the R-matrices given
by (18) include the continuous parameter # and the cyclic parameter w. Therefore,
when p is not an interger, the new R-matrices given by (18) do not reduce to the

-

standard solutions.

For example, when p =3, J,=J,=1, we obtain a 9 X 9 R-matrix: R" = diag.
block (A4;,A4,,A;) as follows.

[+ 0 0 wh™t w0
A=10 1 t—z', 4,=| 0 w?i! 0 ,
|0 0 1 0 0 wi?
[ ¢ wr?P—1 G— D)1 — wt™)
A,=10 wr ! T (— 1Y) . (19)
| 0 0 !

This is a new solution different from the standard ones. Using the extended Kauff-
mon diagram theory, we can directly check that R'" defined by Eq. (19) indeed
satisfies the YBE.

The representation theory of quantum algebra at ¢# = 1 has been well discussed
more recently"? " ,but the concrete method constructing the representations in explicit
form is built in this paper. This method can be used for s/,(n) (n 2>=3) and the re-
sults will be published elsewhere.

Apendix
The Proof for the Indecomposable Properties of Representations

The representations (3), (7a),(7b), (9), (11), (12), (13) and (14) are usually
indecomposable. This conclusion can be universally proved by the following proposition.

Let V = span{v(m) = v(mymyy---m|m;€¢Z*,i=1,2, ---,1} be a representa-
tion space for an associative algebra A. The basis »(m) is graded by a quasi-positive

M
integral linear function L(m) over Z*'. Accordingly, V = >, V™, V¥ = span {v
N=20
A

(m)|L(m) = N} where M may be infinite. Define W1 = Z VN then we have

N=K/
Proposition. For a given k€ Z*, if Wt is ar A-invariant subspace in V and -
there exists b€ A such thar by(m) € WiHY for any y(m) € o™V and k' € 7, then the
representation of A over V is indecomposable (reducible, but not completely reduci-
ble),
Proof. Assume V are completely reducible, then there exist an invariant comple-
mentary space W) such that

V = wiigQw, (A1)
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In this case, there must be a vector ¥ = ¢, 4 v, in W 50 that v,(30) € Wk <
k— 1) and v,(x0) € Wi Due to the conditions for the proposition,

bRy IC WA papy i+ L1 al

that is to say, there exists a non-zero vector b8 tu(m).

bV ky(m) € witl. (A2)
Because of (d4,), W* is invariant, i.e.
oY ty(m) € W, (A3)

However, (A1) implies that WX N\ W = {0}. Because (A1) and (A2) imply that
WRIN W = {0}, the contradictory appears. Then the proposition is proved.

Now we apply the above proposition to representation (12). The graded struc-
ture of V(1) is

@

V) =D Vi),

n=0

V[n]('l) = Span{f(m,n,k)lm, ke Z+}.
It follows from (12) that the subspaces '

whttl = J(3) = Zn_: V() = span {f(m,d; + 1 + n,k)|m,n, k€ Z*}

A=1-2

is sl,(2)~invariant. Making use of the following proporties of
Wit = 3 Vi),
"=}

FollQycwittt, E, R )ycw iy,

we prove that the representation defined by Eq.(12) is indecomposable,

The authors are grateful 1o Prof. Yang C. N. for his suggestion. Sun C.P. thanks
Prof. Wu Z. Y. and Dr. Xue K. for their helpful discussions.
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