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We present a fully quantum solution to the Gibbs paradox (GP) with an illustration based on a gedanken experiment with two
particles trapped in an infinite potential well. The well is divided into two cells by a solid wall, which could be removed for
mixing the particles. For the initial thermal state with correct two-particle wavefunction according to their quantum statistics, the
exact calculations show the entropy changes are the same for boson, fermion and non-identical particles. With the observation
that the initial unmixed state of identical particles in the conventional presentations actually is not of a thermal equilibrium, our
analysis reveals the quantum origin of the paradox, and confirms Jaynes’ observation that entropy increase in Gibbs mixing is only
due to the including more observables. To further show up the subtle role of the quantum mechanism in the GP, we study the
different finite size effect on the entropy change and show the work performed in the mixing process is different for various types of
particles.
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1 Introduction

More than one century ago, Gibbs [1] pointed out that, if the
entropy were not extensive due to the neglection of indistin-
guishability of particles, there would be an entropy increase
after two ideal gases from two containers at thermal equilib-
rium are mixed. On the contrary, the inverse process would
bring the system back to its original state and cause the en-
tropy decrease for the closed system. This apparently vio-
lates the Second Law of Thermodynamics (SLT). However,
for distinguishable particles, this inverse process would not
bring the system to the original initial state, and not violate
the SLT.

In many textbooks, e.g., ref. [2], the Gibbs paradox (GP) is
claimed to be solved by considering the indistinguishability
of particle in the view of quantum theory, and adding correc-
tion to the expression of entropy. This mixing process will
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bring no entropy change for identical particles, while addi-
tional increase for non-identical ones. However, this peda-
gogic explanation includes neither the internal properties of
particle nor a quantum peculiarity of the problem (e.g., non-
commutativity). On this aspect, we still do not understand
how the entropy changes disappear only when two gases are
the same, even though they can be arbitrary similar. In the
classical thermodynamic, it is always able to assumed the
substances empirically distinguished, however without defin-
ing how small their difference is. Thus, it is expected the
perfect resolution of the GP should be referred to the quan-
tum mechanics with intrinsic consideration of indistinguisha-
bility, even with internal variables of particles. This point
was considered by some authors [3, 4] by introducing the in-
ternal state phenomenologically, and the discontinues of en-
tropy change is avoided by utilizing another thermodynamic
quantity-work.

Another resolution was based on the recognition that the
knowledge of difference in particle types serves as informa-
tion, which enables extracting more work to compensate the
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entropy increase [5]. However how the internal state involve
in the mixing process is still unknown. On this sense, a fully
consistent quantum description of the GP, to our best knowl-
edge, is still lack, especially on the indistinguishability of the
particles based on the standard quantum theory, such as the
second quantization approach with symmetrizing wave func-
tions. Fortunately, the quantum thermodynamics (QT) [6–8]
has enlighten solutions to some paradoxes in thermodynam-
ics [9, 10], e,g, the Maxwell’s demon (MD) paradox [10–12]
with quantum Szilard engine. The QT may only concern the
few-particle system, which sometimes is efficient to reveal
the underlying principles and intrinsic mechanism.

In this work, we give a fully quantum solution to the GP
involving the symmetrization of wave function of identical
particles. We consider the mixing process of two particles
confined in an infinite square potential well, which is divided
into two sub-cells by a solid wall. Using the exact expres-
sion of the density matrix, we demonstrate explicitly that the
initial un-mixing systems in the conventional presentation of
GP are not in thermal equilibrium with respect to the whole
well. For the identical particles, we follow the standard ap-
proach of second quantization and correctly write down the
thermal equilibrium state of a un-mixing whole system by in-
cluding internal variables and symmetrizing wave-function.
This doing surprisingly restores the original version of GP
for both non- and identical particles (Boltzman particles, and
bosons/fermions) and solves the GP by showing the same en-
tropy changes. The detailed comparisons with the case ig-
noring internal state is made to explicitly explain the origin
of the paradox. For the cases with more particles, we also
demonstrate almost the same result except for a little differ-
ence between boson and fermion, due to the finite size effect.

2 GP with an infinite potential well

In thermal equilibrium, the most probable state of many par-
ticles in a container with two sub-cells of equal volume usu-
ally is the situation with each cell containing the equal num-
ber of particles. Thus, to show up the essence of the GP,
we firstly consider the two particle case, similar to the single
molecule case [13] for the Szilard heat engine in resolving
the MD paradox.

Let us model the whole container as an infinite high square
potential well V(x, l) (= 0 for x ∈ (0, l) and ∞ otherwhere)
to trap two particles (see Figure 1(a)). The well is initially
separated by the infinite high δ-potential, namely vδ (x − l/2)
with v → ∞. With the single particle eigen-wavefunctions
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Figure 1 GP modeling with two particles trapped in a one-dimensional squ-
are potential well of infinite depth with width l. (a) The ordinary potential.
The box is separated by a central δ-potential. (b) Different potentials trap
different colored particles where the colors characterize their internal states.
The mixing is realized by isothermally moving the barrier of each potential.

as the key point to resolve the GP as well as the MD para-
dox [10, 12].

To show this, we write down the thermal equilibrium state
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of two Boltzman particles with inverse temperature β and par-
tition function ZT. It includes not only the terms with
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in Figure 1(a), but also the terms with
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for
two particles in the same sub-cells. If the later terms were
ignored as in the conventional description of GP, the initial
un-mixing state used here would not be in thermal equilib-
rium, and thus could not correctly address the very problem
in GP correctly. For non-identical particles, we can actually
assert that one specified atom in the right sub-cell and another
in the left. As emphasized by Jaynes, the specified assertion
to distinguishable particles actually reduces the system’s en-
tropy. Such difference between non- and identical particles is
the very root of the GP. Based on this observation, we solve
the GP by introducing internal state to the identical particles
to restore the original GP in the next section.

3 Quantum description

In order to resolve the GP, we would make the situation with
equal number of particles in the both sub-cells be the thermal
state by referring certain prior information. It is possible for
non-identical particles since they could be subject to different
potentials. With the similar method, we can prepare the ini-
tial thermal state for identical particles with internal variable.
Using the “colors” to label the internal degenerate states, the
blue |b〉 and the red ones |r〉. Let the blue and red particles
be trapped respectively in the left and right sub-cells with the
Hamiltonian

H = p2/2M + |b〉 〈b|V(x, l/2) + |r〉 〈r|V(x − l/2, l/2), (2)

where the potential is shown in Figure 1(b). We assume
that the internal state of the two identical particle are differ-
ent. Obviously, this assumption assigns one bit information,
which brings the identical particle with the same initial un-
mixing state as non-identical one. Therefore, the Gibbs mix-
ing could causes entropy increase for both non- and identical
particles.
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The single particle eigen-wavefunctions of the present sys-
tem are
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their quantum statistics properties, the two-particle wave-
functions before the Gibbs mixing are symmetrized or anti-
symmetrized as:
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with the same eigen-energy EU−B(F)
nm = EL

n + ER
m. Here, the

sign plus/minus corresponds the boson/fermion case. These
eigen-functions determine the density matrix of this system
ρU−B(F) (for the explicit form see the SM), similar to eq. (1)
with the partition function ZU−B(F) =

∑

n,m exp
(

−βEU−B(F)
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)

.
The mixing process is carried out by moving the right side

of left potential to the position x = l and the left side of the
right potential to the position x = 0 isothermally, illustrated in
Figure 1(b). After the mixing process, two particles are con-
strained in the larger domain (0 < x < l). The single-particle
wavefunctions of this system then become
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trix ρM−B(F) with partition function ZM−B(F). The entropy
change in the mixing process is simply calculated by using
von Neuman entropy as ΔS B(F) = Tr

[

ρU−B(F) ln ρM−B(F)
] −

Tr
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]

.
We notice that the calculations about entropy change con-

cern only the eigen-energies, rather than the concrete form of
the wavefunction. However, the symmetry type of the wave-
function determines the counts of states to the partition func-
tion. For two non-identical particles with un-symmetrized
eigen-wavefunctions
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with the eigen-energies EM−N

nm = En +Em, we obtain the same
expression of the entropy increase ΔS N . Therefore, it is con-
cluded that the entropy changes in the process of mixing two
Bosonic, Fermionic and non-identical particle are the same,
namely

ΔS B = ΔS F = ΔS N . (4)

On this sense, GP is resolved.
It is also meaningful to compare the present results with

that without considering the internal state for Bosonic and
Fermionic particles. In our consideration, the initial un-
mixing state is a thermal state with all the three situations
in eq. (1). The mixing process is completed by removing
the central potential isothermally. The entropy change ΔS ′X
and work W′X = kBT

[

ln Z′U−X − ln Z′M−X

]

are calculated by
using the partition functions of un-mixing and mixed parti-
cles Z′U−X and Z′M−X with X = B, F,N. Here, we deal with
the usual setup in the conversional presentation of GP for
non-identical atoms, which is the same as that with internal

state. We refer the detailed analysis for different species to
Supplement Materials. One prominent feature is that both
entropy changes and work done for different species are dif-
ferent, while these are the same in the process above with the
correct considerations about internal state. We show these
differences in Figure 2. In Figures 2(a) and (b), the entropy
changes of identical particle approaches zero, while that of
non-identical particles is 2 ln 2. The discrepancy just recov-
ers the discontinuousness of entropy changes in conventional
presentation of GP. The similar difference in work extraction
is illustrated in Figures 2(c) and (d). In the present model, no
internal freedom is probed and no prior information is added
for identical particles. In comparison with the previous pre-
sentation of GP with internal freedom, we can conclude that
the discontinuousness is caused by the different start-point
between identical and non-identical particles.

To understand the above result, we recall the conventional
presentation of GP that the initial state of the identical parti-
cles is formally different from the non-identical ones, which
results in no entropy change for mixing identical particles.
To our understanding, the same entropy changes are restored,
solely by restoring the GP problem with the same start points
for the different types of particles. With this observation, we
conclude that the GP is rooted in the initial difference of un-
mixing state rather than the character of indistinguishability
of particles. It is also noticeable that we only utilize the quan-
tum definition of entropy, the von Neuman entropy, other than
any phenomenological presentations.

4 Mixing entropy and work of two particle sys-
tems

As for the quantum effect in our approach for GP, the fi-
nite size of the well induces many interesting phenomenon.
To explicitly demonstrate the effect, we take the Bosonic
case for example. In terms of the Theta function θ3 (0, q) =
1+2

∑

n qn2
, the partition functions before and after the Gibbs

mixing are expressed[ see Appendix ] as ZU−B = [θ3 (0, q) −
1]2/4 and ZM−B = [θ3

(

0, q1/4
)

− 1]2/4 respectively with the

parameters q = exp
(

−2βπ2
�

2/ml2
)

. The straightforward cal-
culation explicitly gives the entropy increase during the mix-
ing process as:

ΔS B = 2
(

β∂β − 1
)

ln
θ3 (0, q) − 1
θ3

(

0, q1/4
) − 1

. (5)

Using the duality of the Theta-function (− ln q/π)1/2 θ3 (0, q) =
θ3

(

0, exp
(

π2/ ln q
))

,we prove that θ3 (0, q) → 1/
√− ln q/π

in the high temperature limit T → ∞ or in the classical
limit L → ∞. With this observation, the classical result is
recovered as limL→∞ ΔS B = 2 ln 2 = ΔS classical.

Very quantum nature is the dependence of entropy change
on size of the trap and also on the temperature, illustrated
in Figure 3(a). The entropy change ΔS classical in the classi-
cal case is marked as gray-dashed line in Figures 3(a) and
(b). The entropy changes tends to the classical one ΔS classical
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as the trap size approaches infinite, presented in Figure 3(a).
This confirms our theoretical analysis given above. We also
show its dependence on the inverse temperature β in Figure
3(b). The entropy also tends to the classical case as the in-
verse temperature approaches zero (β→ 0), since the ther-
mal fluctuation compares well the discreteness of the energy
levels in the well. Finally, starting with the correct uses of
the eigen-vectors and -energies, we consider work done in
the mixing process as refs. [4, 5]. The mixing process is
performed isothermally, and the work just compensates the

free energy change, namely, WB = kBT [ln ZU−B − ln ZM−B],
which is the same for different species. This seemingly-trivial
observation also solves GP. We show in Figures 3(c) and
(d) the work done as function of trap size l and inverse tem-
perature β respectively. With larger trap size, the work ap-
proaches zero. However, it is not zero as temperature in-
crease. Similar behavior has also been observed in the inser-
tion process of SHE [10]. Theoretically, the work diverges
as
√

T as T → ∞. The detailed derivation is presented in
supplement materials.
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Figure 2 Entropy change in the process of mixing two atoms as a function of trap size l (a) with different inverse temperature β = 0.5 and inverse temperature
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5 Mixing entropy of 4 particle systems

To give prominence to the properties of quantum statistics,
we consider the mixing process of four particles. Initially,
there are two particles in each sub-cell. The internal states of
the particles in the right/left side are all blue/red. Its partition
function in thermal equilibrium is initially (see Appendix):

ZU−B(F) (N = 4) =
[

ZU−B(F)
2 (q)

]2
,

where ZB(F)
2 (q) = 1

2

[
(

Z1(q4)
)2 ± Z1(q8)

]

denotes the partition

function of a two-particle system confined in a square poten-
tial well with width l/2. For Z1(q) =

[

θ3 (0, q) − 1
]

/2, there
exist two limit results: in the quantum limit with low temper-
ature β/l2 → ∞,we have Z1(q) ∼ 2q; and in the classical limit
β/l2 → 0, we have Z1(q) ∼ 1/2

√− ln q/π − 1/2. Together
with the partition function (see Appendix) ZM−B(F) (N = 4) =
(

ZB(F)
2 (q1/4)

)2
after mixing, we calculate the entropy change

as:

ΔS B(F) (N = 4) = 2(1 − β∂β) ln
ZB(F)

2 (q)

ZB(F)
2 (q1/4)

. (6)

In the classical limit, we have liml→∞ ΔS B(F) (N = 4) =
4 ln 2. Indeed, when deviating from the classical limit or the
lower temperature, the entropy change displays the obvious
differences between boson and fermion.

If we mix identical particles without considering the
internal state, one must start from an equilibrium state
with partition function (see Appendix) Z

′
U−B(F) (N = 4) =

∑N
n=0 ZB(F)

n (q)ZB(F)
4−n (q), and that Z

′
M−B(F) (N = 4) = ZB(F)

4 (q1/4)
after mixing. In the classical limit, we obtain the entropy
change as liml→∞ ΔS

′
B(F) (N = 4) = 0. The results obtained

here can be directly generated for the arbitrary atom number
N.

6 Summary

We have resolved the GP in a fully quantum framework with
the correct presentations of the initial thermal states of the
working substances consisting of the particles with different
quantum statistical properties. Here, we utilize a standard
quantum description, the wave function symmetrization from
the second quantization of the particles with internal variable.
The key point is our finding that the problem in the para-
dox are rooted in the different uses (somehow misuses) of the
initial thermal state for identical and non-identical particles.
We use examples with two and four particles to illustrate our
comprehensive understanding for GP. We show that the en-
tropy change of identical and non-identical particles are the
same for two particle system, but the deference could only be
found as the finite size effect in the low temperature, or in the
cases with more than two particles.

Appendix

In this appendix, we provide the detailed calculations of the
article.

Appendix A Wavefunctions

The un-mixing single particle wave-function is listed as:
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the removing the central potential, the atoms can stay in the
whole area. The wavefunction is
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Appendix B Mixing process of 2 atoms

(1) With internal freedom
The Hamiltonian for the atoms with internal freedom is

written as:

H = |b〉 〈b| ⊗ Hb + |r〉 〈r| ⊗ Hr, (b1)

where Hi = p2/2m+Vi (i = b, r) is the corresponding Hamil-
tonian of the atom with internal state i = b, r. For this model,
the mixing is done by moving the right boundary of the left
potential to the right (x = l) and the left boundary of the right
potential to the left (x = 0). For the Bosonic case, the partion
function of unmixing two atoms is
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and Z1(τ) =
∑∞

n=1 τ
n2

is the
one-particle partition function and it can be related to the
Theta function by

Z1(τ) = [θ3 (0, τ) − 1] /2.

The partition function of mixed atoms is obtained similarly
as:

ZM−B = Z1(q)2. (b3)
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The results for Fermionic and non-identical atoms is the same
as that of Bosonic case. It is clear that q ∈ (0, 1) and ap-
proaches 1 as T → ∞ or l → ∞. The Theta-function has a
duality feature

√− (ln q) /π θ3 (0, q) = θ3
(

0, exp
(

π2/ ln q
))

. (b4)

With this equation, we explicitely get
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The factor exp
(

π2/ ln q
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is no more than 1 when T or l is
sufficiently large, which leads to
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Thus,
∞∑

n=1

exp

(

π2n
ln q

)

approaches 0 as T → ∞ or l → ∞ and

the aympotic behavior of θ3 (0, q) as T → ∞ or l→ ∞ is

θ3 (0, q) =

(

− ln q
π

)−1/2

[1 + o(1)] . (b7)

Using the above relationship, the classical limit can be ob-
tained as:

lim
l→∞
ΔS B = lim

L→∞

(

β
∂

∂β
− 1

)

ln

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√

Ml2

2βπ�2
− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√

2Ml2

βπ�2
− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

2

= 2 ln 2. (b8)

(2) Without internal freedom
In this section, we will discuss the mixing process of two

identical atoms without any internal freedom. In this situa-
tion, the two atoms has the probability to stay in the same
side of the chamber.

Bosonic Case The eigen-functions before mixing are
|ΘU−B

nm 〉RR = [|ϕR
n 〉1|ϕR

m〉2 + |ϕR
m〉1|ϕR

n 〉2]/
√

2, |ΘU−B
nm 〉RL =

[|ϕR
n 〉1|ϕL

m〉2 + |ϕL
m〉1|ϕR

n 〉2]/
√

2 and |ΘU−B
nm 〉LL = [|ϕL

n 〉1|ϕL
m〉2 +

|ϕL
m〉1|ϕL

n 〉2]/
√

2 for n � m and when n = m the eigen-func-
tions

∣
∣
∣ΘU−B

nn

〉

RR
=

∣
∣
∣ϕR

n

〉

1

∣
∣
∣ϕR

n

〉

2
and

∣
∣
∣ΘU−B

nn

〉

LL
=

∣
∣
∣ϕL

n

〉

1

∣
∣
∣ϕL

n

〉

2
.

The partition function is then derived as:

Z′U−B =

∞∑

n,m=1

(2 + δnm) exp
[

−2βπ2
�

2
(

n2 + m2
)

/
(

Ml2
)]

=
1
2

[

θ3
(

0, q4
)

− 1
]2
+

1
2

[

θ3
(

0, q8
)

− 1
]

. (b9)

After the mixing, the two-particle wavefunction are
∣
∣
∣ΘM−B

nm

〉

=
[|φn〉1 |φm〉2 + |φm〉1 |φn〉2

]

/
√

2 for n � m and when n = m
∣
∣
∣ΘM−B

nn

〉

= |φn〉1 |φn〉2. The partition function is

Z′M−B =

∞∑

n,m=1

1
2

(1 + δnm) exp
[

−βπ2
�

2
(

n2 + m2
)

/
(

2Ml2
)]

=
1
8

[

θ3 (0, q) − 1
]2
+

1
4

[

θ3
(

0, q2
)

− 1
]

. (b10)

Fermionic Case The function before mixing should
be anti-symmetrized as |ΘU−F

nm 〉RR = [|ϕR
n 〉1|ϕR

m〉2 −
|ϕR

m〉1|ϕR
n 〉2]/

√
2, |ΘU−F

nm 〉LL = [|ϕL
n 〉1|ϕL

m〉2 − |ϕL
m〉1|ϕL

n 〉2]/
√

2
with n � m and |ΘU−F

nm 〉RL = [|ϕR
n 〉1|ϕL

m〉2 − |ϕL
m〉1|ϕR

n 〉2]/
√

2.

Z′U−F =
∑

nm

(2 − δnm) exp
[

−2βπ2
�

2
(

n2 + m2
)

/
(

Ml2
)]

=
1
2

[

θ3
(

0, q4
)

− 1
]2 − 1

2

[

θ3
(

0, q8
)

− 1
]

. (b11)

After the mixing, the two-particle wavefunction are
∣
∣
∣ΘM−F

nm

〉

=
[|φn〉1 |φm〉2 − |φm〉1 |φn〉2

]

/
√

2 with n � m. The
partition function is

Z′M−F =
∑

nm

1
2

(1 − δnm) exp
[

−βπ2
�

2
(

n2 + m2
)

/
(

2mL2
)]

=
1
8

[

θ3 (0, q) − 1
]2 − 1

4

[

θ3
(

0, q2
)

− 1
]

. (b12)

Appendix C Mixing process of 4 atoms

(1) With internal freedom
At beginning, there are two blue atoms (whose internal

states are |b〉) in the left compartment and two red atoms
(whose internal states are |r〉) in the right compartment. Thus,
the initial partition function is

ZU−B(F) (N = 4) =
(

ZB(F)
2 (q)

)2
, (c1)

where ZB(F)
2 (q) denotes the connonical partition function of a

two-particle system confined in a square potential well with
width l/2. The explicit expression of ZB(F)

2 (q) is

ZB(F)
2 (q) =

1
2

(
(

Z1(q4)
)2 ± Z1(q8)

)

. (c2)

The concrete form of the un-mixing gas is rewritten as:

ZU−B(F) (N = 4) =
1
4

(
(

Z1(q4)
)2 ± Z1(q8)

)2

=
1
4

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(

θ3(0, q4) − 1
2

)2

± θ3(0, q8) − 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2

.

(c3)
After mixing, these four atoms are confined in a infinity high
square well with width l. The partition function is simply

ZM−B(F) (N = 4) =
(

ZB(F)
2 (q1/4)

)2

=
1
4

(

(Z1(q))2 ± Z1(q2)
)2
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=
1
4

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(

θ3(0, q) − 1
2

)2

± θ3(0, q2) − 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2

. (c4)

Therefore the entropy change is

ΔS B(F) =
(

1 − β∂β
)

ln
ZM−B(F) (N = 4)

ZU−B(F) (N = 4)
. (c5)

Using the property of Theta function, it is not difficult to show
that under the classical limit (T → ∞ or l→ ∞), the entropy
change tends to be 4 ln 2 for both Boson and Fermion sys-
tems.

(2) Without internal freedom
In this section, we discuss the mixing process which is the

same as the one in the last section except that the atoms con-
sidered here do not contain internal freedom. In this circum-
stance, the initial state is a mixing of 5 situations, i.e., the
n-th situation is that there are n atoms in the left compart-
ment while the others are in the right compartment. Thus, the
initial partition function is

Z′U−B(F) (N = 4) =
4∑

n=0

ZB(F)
n (q)Z4−n(q), (c6)

where ZB(F)
n (q) denotes the connonical partition function of

a n-particle system confined in a square potential well with
width l/2. The relationship between ZB(F)

n (q) and Z1(q) can
be found in Table 1.

After the mixing process, the system becomes a well con-
taining four identity atoms and the partition function is

Z′U−B(F) (N = 4) = Z4(q1/4)

=
1

24

(

Z1(q) + 3Z1(q2)2 ± 6Z1(q4)
±6Z1(q2)Z1(q)2 + 8Z1(q3)Z1(q)

)

. (c7)

This partion function can also be related to the Theta function
by the ways mentioned above. The entropy change during
this process is

ΔS
′
B(F) (N = 4) =

(

1 − β∂β
)

ln
Z′M−B(F) (N = 4)

Z′U−B(F) (N = 4)
,

Table 1 The relationship between ZB(F)
n (q) and Z1(q) for n = 2, 3, 4

n ZB(F)
n (q)

2
1
2

(

Z1(q)2 ± Z1(q2)
)

3
1
6

(

Z1(q)3 ± 3Z1(q2)Z1(q) + 2Z1(q3)
)

4
1

24

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z1(q)4 + 3Z1(q2)2 ± 6Z1(q4)

±6Z1(q2)Z1(q)2 + 8Z1(q3)Z1(q)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

which can also be proved that limL→∞ ΔS
′
B(F) (N = 4) = 0 by

using the property of the Theta function.
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