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Abstract
BoseÈEinstein Condensation (BEC) of both the ideal and the weakly inter-
acting cold alkali gases conÐned by anisotropic harmonic oscillator poten-
tials is investigated in this paper. It is shown that the transition point is
shifted towards lower temperatures because of the trapped potentials, and
the speciÐc heat below the transition point is no longer proportional to
T 3@2. Expressions of modiÐed condensation temperature, internal energy
and the speciÐc heat are derived for the ideal trapped gases explicitly.
Moreover, the e†ect of interactions among the atoms on the transition
temperature is also given and discussed.

The recent observation of BoseÈEinstein Condensation
(BEC) in ultracold trapped alkali gases [1È3] have created a
wave of renewed interest in this phenomenon. BEC is a
purely quantum statistical phase transition, which is charac-
terized by a macroscopic population of the ground state
below the transition point Experiments on BEC demon-Tc .
strated that below (about a few microkelvin), severalTc
thousand atoms are found in the ground state. Because the
gases are dilute, in most textbooks of statistical mechanics,
e.g. [4], the theory of BEC is formulated for noninteracting
bosons in a three-dimensional box. This treatment has been
extended to power-law potentials by de Groot [5], Bagnato
et al. [6] who found that the transition temperatures and
the speciÐc heat depend on the shape of the potentials. BEC
in one- and two-dimensional systems is only possible for
sufficiently conÐning potentials [7È9]. All these investiga-
tions are based on the use of the thermodynamic limit and
the assumption that the ground state energy was negligible.
However, recent BEC experiments on alkali gases were per-
formed with Ðnite numbers of particles [1È3]. For these
relatively low numbers (about 109), the e†ects caused by the
above approximation are nonvanishing.

In this paper, we study BEC in anisotropic harmonic
oscillator potentials, because this kind of potentials is a
good approximation to the recent BEC experiments. We
will derive analytical expressions of the density of states for
a system of a Ðnite number of particles in an anisotropic
harmonic oscillator potential, a direct application of this
result to study BEC of atoms trapped in anisotropic harmo-
nic oscillator potentials is given, meanwhile the e†ect of the
nonvanishing ground state energy on BEC of atomic gases
in trap potentials is evaluated. We indeed Ðnd marked dif-
ferences from the usual treatments : the transition point is
shifted toward lower temperatures by the trap potentials,
the speciÐc heat below the onset of condensation is no
longer proportional to T 3@2, the e†ect of the ground energy
is nonvanishing, and the interactions between the atoms

increase or decrease the transition temperature, according to
whether the scattering length is negative or positive.

In order to express the density of states for a system of
ultracold atoms trapped in a potential, we consider a range
of parameters describing the BEC of atoms [3]. The poten-
tials for the centre-of-mass motion of a single atom in the
ground electronic state can be approximated as a three-
dimensional anisotropic harmonic oscillator potential with
frequencies in the y, z andu

y
\ 235, u

z
\ 410, u

x
\ 745 Hz

x directions, respectively. Because the trap potential forms a
Ðnite barrier, there are several thousand energy levels within
the trap. In these several thousands of energy levels about
109 sodium atoms are distributed, therefore, it is too low a
number to use the thermodynamic limit. Nevertheless, the
Ðnite number e†ects on BEC can be discussed in many ways
[10, 11]. In this paper, we discuss the Ðnite number e†ects
using the density-of-state approach [12]. The energy eigen-
values for an atom trapped in an anisotropic oscillator
potential read
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Under real experimental conditions the temperature is high
on the scale of the trap level spacing, namely, kB T ? +u

i
(i \ x, y, z). Therefore, within the canonical ensemble, the
partition function
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of such a system without interactions can be expanded as
follows :
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where, is the Boltzmann constant, and the con-b \ kB T , kB
tribution of the ground state was singled away for special
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treatment. On the other hand, by making use of

Q(b) \ ;
N

e~bEN \
P
0

=
e~bEo(E) dE (6)

the partition function can be calculated equally, where o(E)
is the density of states. Comparing with eq. (3), it is proved
that the density of states o(E) takes the form:

o(E) \ b0 ] b1E ] b2 E2 ] É É É (7)

This expansion cannot contain the terms Er with r being
negative or non-integer, since they become zero after com-
parison with the direct calculation given by eq. (3). Substi-
tuting eq. (7) into eq. (6), one can easily Ðnd :

Q(b) \ b0 b~1 ] b1b~2 ] 2b2 b~3 ] É É É (8)

Comparison of eq. (8) with the direct calculation (3) shows
that

b0 \ a0 , b1 \ a1, b2 \ 0.5a2 . (9)

There is an additional constant term in the density ofb0
states in comparison with the result of Grossmann [12]. As
we see below, this additional term will result in a shift of the
transition point.

Now, let us consider a system of N noninteracting bosons
such that the population of a state with energy isN(E

i
) E

i
given by the BoseÈEinstein distribution

N(E
i
) \ 1

eb(Ei~k) [ 1
. (10)

Here, we set the statistical weights corresponding to the
state k stands for the chemical potential, which isE

i
, g

i
\ 1.

determined by the constraint that the total number of par-
ticles in the system is N :

N \ ;
i

=
N(E

i
). (11)

Around the transition point, is a good approx-k ^ e0
imation with error and denote the ground state1/n0 (e0 n0
energy and ground state population, respectively). Using the
density-of-state approximation [10], eq. (10) can be rewrit-
ten as follows :

N \ n0 ]
P
Emin

= o(E) dE
exp [b(E [ e0)] [ 1

] nmin . (12)

Here, we single out the ground state population becausen0 ,
we are interested in BEC where the ground state plays a key
role. denotes the population of all the other states withnmin
energies below for the case of particles trapped in aEmin ,
cavity with volume N \ L3, takes a value which is atEmin
least 400h2/8ML2 [10] to avoid the error of converting from
sum to integral. Using eq. (7), we can obtain that

N \ n0 ] nmin ] 12a2
C

b~3C(3)f(3)
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] j ] ln (j [ 1)
BD
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6

(13)

where C(n) and f(n) denote the Gamma func-j \ Emin/e0 ,
tion and the RiemannÏs zeta function, respectively. The

ground state population can be determined by then0 Emin-
part of the r.h.s. of eq. (13), because remainsindependent n0

unchanged when the parameter is varied. Thus, weEmin
have :

n0 \ N [ 12a2 b~3C(3)f(3) ] a0 b~1 ln (be0) [ a1n2
6b2 . (14)

The Ðrst two terms in eq. (14) are just the results in the
thermodynamic limit [6], whereas the last two terms are
direct corrections of the Ðnite number e†ects. The correc-
tions depend on the ground state energy and the shape ofe0
the trap potentials.

If one introduces a temperature

T c0 \ 1
kB

A 2N
a2 f(3)C(3)

B1@3
, (15)

which denotes the critical temperature of an inÐnite number
atoms trapped in anisotropic oscillator potentials [6], then
the critical temperature for a Ðnite number of atomsTc
takes the form

Tc \ T c0
C

1 [ 1
3

b1
b2

n2
3

kB T c0
C(3)f(3)

] 2
3

b0
b2

ln (kB T c0 e0)
f(3)C(3)

T c02kB2
D

. (16)

The last term in square brackets is negative, since
Hence, for a Ðnite number of atoms trapped(e0/kB T c0) > 1.

in anisotropic harmonic potentials, the temperature at
which the BEC occurs is lower than To measure thisT c0 .
e†ects is in reach of current experiments [1È3]. Equation
(16) demonstrates that the tighter the conÐnement (larger

the lower the critical temperature.u
x
, u

y
, u

z
),

Generally speaking, the speciÐc heat is more interesting
from the experimental point of view, since the low-
temperature behavior of the speciÐc heat is generallyc

V
treated as the hallmark of onset of BEC. It is well known
that the speciÐc heat can be derived from the internal
energy, which is expressed by

bU \ n0 be0 ] bUmin

] b
P
Emin

= Eo(E)
exp [b(E [ e0)] [ 1

dE. (17)

The Ðrst term on the right-hand side is the ground state
energy, the second term stands for the energy of the other
state below the third term denotes the energy of theEmin ,
states above Substituting eq. (7) into eq. (17), oneEmin .
easily Ðnds

bU \ n0 be0 ] a2
2
C

b~3C(4)f(4) ] e02 j3
3b(j [ 1)

] e03(0.5j2 ] j ] ln (j [ 1))
D

] a1[b~2C(3)f(3) [ e02(0.5j2 ] j ] ln (j [ 1))]

] a0
b
Cn2

6
[ bEmin [ be0 ln [be0(j [ 1)]

D
. (18)

The j-dependent terms can be dropped, because j appears
only in the higher order terms [10]. In term, the speciÐcT c0
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heat below is given byc
V

\ (1/N)(LU/LT ) Tc

c
V

\ kB C(4)f(4)
Aa2

N
B2

C(3)f(3)
A T
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] 3kB[C(3)f(3)]5@3
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2
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A 1

N
B5@3A T
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] n3
3

kB[C(3)f(3)]1@3
Aa2

2
B1@3

a0
A 1

N
B4@3 T

T c0
. (19)

The last two terms on the right-hand side are caused by the
Ðnite number of atoms e†ect. It is thus absent in the ther-
modynamic limit [6]. At the onset of BEC, the relative
importance of the three distributions is about

in all current experiments1 : N~4@3a2~4@3a1 : N~4@3a2~5@3a0 ,
on BEC of atomic alkali gases, the number of atoms
trapped in a potential is at least 104, the frequency of the
oscillator potential is taken to be about 0.5 ] 103 Hz, there-
fore, the last two terms in eq. (19) can be dropped and the
T 3-law can be treated as a hallmark of the atomic BEC in
harmonic oscillator potentials.

It is worth noting that there are not only e†ects due to
the thermodynamic limit but also e†ects caused by the inter-
actions between the atoms. In the end of this paper, we will
discuss the e†ect of the interactions between the atoms on
the transition temperature in details. The atoms contained
in anisotropic oscillator potentials interact with one another
through binary collisions, which are characterized by the
s-wave scattering length a. Using the mean-Ðeld approx-
imation, the interaction energy between the atoms is cn(r)
proportional to the local density n(r) [6]. c denotes the
interaction constant which depends only on the s-wave scat-
tering length a at low temperature, c \ 2n+2a/M, where M
is the mass of an atom. Under the local density approx-
imation (LDA) [13], the density of the gas is given by

n(r) \ exp [[bV (r)]/j3 (20)

where is the thermal de Broglie wave-j \ +/J2nMkB T
length. V (r) stands for the trapped potentials. The LDA is a
good approximation when (i \ x, y, z) [14].kB T ? +u

i
Because the gas is weakly interacting, n(r) can be expanded
in powers of c. Retaining the Ðrst term, the density of states
takes the form

o(E) \ a0
A

1 ] 0.5
c

jkB T
B

] a1
A

1 ] c
jkB T

B
E

] 0.5a2
A

1 ] 1.5
c

jkB T
B

E2. (21)

In Ðrst order approximation, the e†ects of the interactions
between the atoms are only to modify the parameter in the
expression of o(E). The modiÐed results are equal to increas-
ing or decreasing of the frequency for the light Ðeld used to
trap the atoms, according to whether the scattering length is
negative or positive. Following the above procedure, the
transition temperature is given by

Tc \ T cc/0 [ c
j0

1
kB T c0

T cc/0,

j0 \ +
2nMkB T c0

(22)

where was represented by eq. (15), stands for theT c0 T cc/0
transition temperature for c \ 0. Equation (22) shows that if
the scattering length is negative, is larger than AsT c T cc/0.
expected, the correction is proportional to the ratio Inc/j0.
most textbooks of statistical mechanics, the problem of BEC
of imperfect Bose gases was discussed with the assumption
that the scattering length a is positive. For alkali atoms,
however, the problem is much more complex, since the
molecular potential curves which can typically support
many bound states are not known precisely. Some of the
atoms (e.g. cesium) are believed to have a positive a [15],
and others (e.g. lithium) to have a negative a [16]. In this
paper we show that binary collisions with negative a
increase the critical temperature. With the same procedure,
we can derive the speciÐc heat below the critical tem-
perature, the correction of the interactions between the
atoms to the speciÐc heat is also proportional to c/j0 .

In conclusion, we have discussed the BEC of atomic gases
trapped in anisotropic oscillator potentials, it was shown
that corrections due to the e†ect of Ðnite atoms and the
ground state energy are small, but observable. The tran-
sition point was shifted toward lower temperature in com-
parison with the case in the thermodynamic limit. The
T 3-law for the low-temperature behavior of may still bec

V
used to detect the onset of BEC.
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