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Abstract 
By invoking the use of a space-spin coupling transformation, the exact 
Schrodinger evolution wavefunction is fortunately obtained for a neutron 
moving in a helical magnetic field. This result just enjoys the effect of 
Berry’s phase or its induced gauge field in Bitter-Dubbers experiment as its 
limiting case with strong field. It is also predicted from the exactly- 
dynamical analysis that a pulse of polarized neutrons with monotonous 
momentum will be split into two pulses with different momentum shifts 
accompanying the spin-down and spin-up states respectively. 

1. Introduction 

It is well known that the features of processing neutrons in 
an external magnetic field can serve for the verification of 
some theoretical predictions in quantum mechanics. Recent- 
ly, the polarization of neutrons in a helical inhomogeneous 
magnetic field [l] and in a slowly-changing magnetic field 
[2] has been used experimentally to test Berry’s remarkable 
discovery [3] in modern quantum theory. For the case of 
the helical magnetic field in Bitter-Dubbers (B-D) experi- 
ment [l], the geometrical phase effect can be understood in 
terms of Berry’s phase in a moving frame of reference along 
with the neutron [ 11 or the Aharonov-Bohm (A-B) phase of 
induced gauge field [4] through the adiabatic approx- 
imation or Born-Oppenheimer (B-0) approximation 
respectively [SI. Notice that the above-mentioned approx- 
imations can work effectively only for an extremely cold 
neutron that moves slowly enough, so that the adiabatic 
condition is satisfied. It is natural to question whether the 
solution to the problem can be obtained even for the case 
without adiabatic approximation, that is to say, whether we 
can find an exact solution of the Schrodinger equation for 
the neutron in an helical magnetic field. Such a solution is 
much appreciated to test the validity of the B-0 approx- 
imation quantitatively. 

To solve this problem, we consider a more conventional 
problem in parallel with the above-mentioned one. For the 
case of a slowly-changing magnetic field, if the field changes 
harmonically, the Schrodinger equation can be solved 
exactly according to the Rabi rotation [ti] and hereby the 
Berry’s phase appears in the adiabatic limit of the exact 
solution with a very strong field [7, 81. Notice that this case 
is time-dependent but not space-dependent. For the space- 
dependent case, the exact solution is also expected to be 
found for the precession of neutrons in a harmonically- 
inhomogeneous (helical) magnetic field. Fortunately a 
space-spin coupling transformation can be found to 
separate the transformed Hamiltonian into two commuting 
parts, each of them can be solved exactly. This is the key 
point to the present studies. 

2. Exactly solution for spin-4 

In the helical external magnetic field 

271 B(z) = B [sin 8 cos (kz) ,  sin 8 sin (kz), cos 81, k = - 
L 

where L is the length of the domain of B(z), the Hamiltonian 
of a single neutron for the B-D experiment is 

where r~ is the Pauli matrix, g the coupling constant and 6 
the z component of momentum satisfying 

[jj, 21 = ih 

To diagonalize r?, we introduce a unitary transformation 
@(e) with space-spin coupling 

@(i) = exp (-i$Ea,) (2) 
in the solution 1 I)) = @(i) I x )  of the Schrodinger equation 
r? 1 I)) = E I I)). It is not difficult to prove that I x )  satisfies 
an effective Schrodinger eigenequation by an effective 
Hamiltonian 

A @: hZk2  
H e  = - + - + ho [cos aa, + sin aa,] 2m 8m (3) 

where 

h k f ,  
mgB sin 8 * 

ctga = ctga@J = ctg8 - 

Because the coordinate operator i does not appear in the 
above effective Hamiltonian 8, , f i e  is obviously diagnalized 
in the momentum representation. It immediately follows 
from this fact that the eigenstates of r?, are 

sin (u)/2 
-cos ( 4 2 )  

which correspond to the eigenvalues 

+ ho = Eg f ho, 
BZ h2k2 E -2+- 
2m 8m - * -  

(7) 

respectively. They are two-fold degenerate for & p .  
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If a neutron with the space wavefunction 

I #@)) = so) I P> dP 

is initially polarized in the spin-up state 

I t> = (3, 
the initial condition for the total wavefunction is 

I W)> = s dP$(P) I P> 0 I t >. 

For the effect Schrodinger equation 

a 
at ih - I x(O> = H e  I x(tD 

governed by H ,  , this condition can be expressed as 

I N ) >  = W + ( 4 1 4 W ) )  

then, 

P ,  = 1 - 2 sin’ ab sin’ wbt 

where 

(13) 

In the adiabatic case that the Rabi frequency oo = qB/2h is 
much higher than the frequency w1 = pk/m = vk of varying 
of magnetic field B(z) “seen” by the moving neutrons, the 
terms of order Ui(w,/oo), ( I  2 1) in the amplitudes and the 
terms of order Ok(o,/wo), ( k  2 2) in the oscillating phase can 
be neglected. In this adiabatic case, we have 

(9) 

) I +(PI I’ dP. 
pk cos 8t 

P,(t) 31 1 - 2 sin’ 8 Jm sin ( i g B t  - 
- m  2m 

(14) 

For the case of plane wave with 4(p) = 6(p - p o )  and 
t = 2nm/kpo, eq. (1 1) becomes 

1 

where 
Here, the phase - R  cos 8 in addition to the dynamical 
phase 4gBt is just the Berry’s phase. It can also be regarded 
as the A-B phase f A,  dx,  of the induced U(1)-gauge poten- 
tial 

K From this initial condition, the evolving wavefunction is A, = - COS 8, A,  = 0, A,  = 0. 
written immediately L 

I $ ( t ) )  = dp exp (-isbt/h) $ ( p )  cos2 - exp (-iw‘t) 

4. Generalization and discussion 

In the last section, we first point out that the analysis of this 
paper can be directly generalized to the case of arbitrary 
spinj 2 4. In this case, the Hamiltonian is 

fi = 

where J  ̂= (jl, j 2 ,  j 3 )  is the angular momentum operator. 
The space-spin coupling transformation is 

W(z) = exp (- ikz$,/h) 

and the corresponding effective Hamiltonian is written as 

H e  = 

where 

[( 

(11) 

Notice that the object of attention is the momentum shift 
accompanying the spin states. This fact means that the pulse 
of the polarized-up neutrons will become two pulses, one of 
which has spin-down and a momentum shift by an amount 
hk and another one spin-up with unchanged momentum. 

) a’ 
2 

s 
+ sin’ - exp (iw’t) I p )  0 I T) 

+ i sin a’ sin (o‘t) I p + h k )  0 I 1) . 

(17) 
6’ 

1 
-k 9Bb) * J 2m 

(18) 

(19) 
6’ k’Jt 
2m 2m 

3. Meaning of solution and adiabatic limit 

Now, let us first consider the meaning of solution (9). Using 
eq. (S), we compute the polarization of neutron at time t 

+ - + hR[cos p J ,  + sin BJ,] 

hR = hQ@) = gB cos 8 + - p ,  = Tr (6, I IC/(t)><W) I) 
through the helical magnetic field. Explicitly, we have 

P ,  = dp I&) l’(1 - 2 sin’ a’ sin’ ( o ’ t )  dp. s 
Notice that the nonlinear term is proportional to J :  appear- 
ing in eq. (20). We cannot analytically obtain the explicit 
solution for the Schrodinger equation governed by H e  eq. 
(20) for a given arbitrary spinj. This analytical solution are 
only written fo some smallj. However, it is very convenient 
to use this effective Hamiltonian to obtain the adiabatic 

This is the central result of this paper, which can be com- 
pared with experiment and still holds even for the non- 
adiabatic case in an alternative experiment with fast 
neutrons. If the initial neutron is a plane wave, i.e. 

$@I = S(P - Po) 
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approximation solution. In the adiabatic limit, we can From eq. (4), we can see that only when 
ignore the terms (h2k2/2m)/hR and obtain the approximate 
Hamiltonian 

H e  = ij2 + hR(cos PJ, + sin P J x )  

hkp, h2k2 
- + - = g B  cos 8 

m 2m 

a resonance transition with frequency gB will happen. The 
first term of the above expression is the Doppler shift and 
the second term is related to the recoil of the particle in the 

2m 

-igJ 
(20) helical magnetic field. -- - a’ + hR exp ( y ) J Z  exp t.> 2m 

with 

ctgP = ctge,  R N gB 1 - B,hk cos 8). ( mgB 

Roughly, the effective dynamical phase 

i j z  hkt 
m 

Rt = MgBt  - M - COS e 

includes the geometrical phase Mn cos 8 for the magnetic 
quantum number M .  

Finally, we use the exact solution (1 1) and its corollary to 
show how the Doppler effect appear for the resonance tran- 
sition. If the initial state of a neutron is spin-up with definite 
momentum p, ,  we can have the probability finding the 
neutron with spin-down: 

P ( l )  = sin2 a( p ,  + y) sin2 [ w( p ,  + F)t]. 
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