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Abstract 

By invoking the Rabi rotation technique, the Schrodinger wavefunction of 
a neutral particle with a magnetic moment and a high-spin is exactly solved 
in a harmonically-changing magnetic field. This result is then applied to 
illustrate what the accuracy of the quantum adiabatic approximation is 
exactly and how the non-adiabatic transition vanishes in accompaniment 
with the appearence of Berry’s geometrical phase. The discussion of this 
paper verifies C. N. Yang’s point of view about the generalization of the 
quantum adiabatic approximation in connection with Berry’s phase. 

Because of Berry’s remarkable discovery [l], a number of 
theoretical and experimental investigations have been 
focused on the geometrical and topological behaviours of 
the quantum mechanical system with time-dependent 
parameters [2]. As Berry showed, if the frequency of varia- 
tion of its Hamiltonian is small enough in comparison with 
its natural transition frequency, so that the adiabatic condi- 
tions hold, the system always remains in an instantaneous 
eigenstate of the time-dependent Hamiltonian for the whole 
process of evolution and a geometrical phase, the Berry’s 
phase, appears in addition to the dynamical phase of the 
Schrodinger wavefunction for the system. Notice that 
Berry’s proof about this conclusion is based on the quantum 
adiabatic approximation method (QAAM) [3-51. 

Considering that the Berry’s phase was ignored in the 
original QAAM (see the standard texts of quantum mecha- 
nics [4, 51, one (CPS) of the authors developed the QAAM 
in connection with the Berry’s phase and the treatment of 
the non-adiabatic effects for many cases [6-101. However, 
we have to point out that only very little is well known at 
present about the quantitative validity of the original 
QAAM and its generalization. One of the purposes of this 
paper is to test the accuracy and validity of the QAAM 
through an exact solution to the Schrodinger equation of a 
neutral particle with a magnet and a high-spin in a 
harmonically-changing magnetic field. Such a solution is 
obtained by generalizing Rabi’s rotating framework tech- 
nique, which was proposed for the case of spin-1/2 [ll]. 
Another purpose is to consider C. N. Yang’s insight on the 
QAAMs with and without Berry’s phase [12] in terms of 
this exact solution of the Schrodinger equation. In Yang’s 
point, the QAAM incorporating Berry’s phase was con- 
sidered as an approximation of next order while the original 
QAAM without Berry’s phase is thought as that of lowest 
order. 

Consider a neutral particle with a magnetic moment and 
arbitrary spin j in a harmonically-changing external mag- 
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netic field 

B = B(t) = Bo (sin 8 cos ot, sin 8 sin ot, cos e), 

t i = t i ( t ) = p B ( t ) * j  

(1) 

where 8 is constant. Its Hamiltonian, 

= pBo(J,  sin 8 cos ot + J, sin 8 sin wt + J, cos e), (2) 

is written in terms of the angular momentum operators ,? = 
( J ,  , J ,  , J,). Here, the time-dependent magnetic field rotates 
around the z-axis with a constant frequency o, and a con- 
stant angle 8 with respect to the z-axis. The Schrodinger 
equation governed by such a Hamiltonian is time- 
dependent and thus it is difficult to solve it exactly. 

However, a straight-forward physical consideration 
teaches us to transform into a moving framework of refer- 
ence rotating along with the motion of the magnetic field, 
B(t). In such a frame of reference, one should “see” a time- 
independent Hamiltonian. This idea is motivated by Rabi’s 
work [ll] for spin-1/2, although it was not stated explicitly 
by Rabi himself. Since the case of spin-1/2 is associated with 
the two-dimensional representation of angular momentum, 
we naturally invoke quantum rotation transformation in 
angular momentum theory to deal with the quantum 
dynamics of high-spin precession in a 2j + 1-dimensional 
representaton for arbitrary j. The main difference of the 
present mathematical derivation from that in the case of 
spin-1/2 is to use the operator computation instead of the 
2 x 2 matrix computation for spin-1/2. 

Let us invoke a transformation: 

(3) ~ , ( ~ t )  = e-’JzWfi 

to the rotating frame of reference for the wavefunction, 
I $(t)) ,  governed by the original Hamiltonian, H(t) ,  the 
rotated wavefunction 

I M)> = R z ( 4 ’  I W)> (4) 

is easily proved to satisfy an effective Schrodinger equation : 

with the effective Hamiltonian 

1 a 
- ih at 

H, = R,(wt)’H(t)R(ot) + - R(ot)’ - R(o t )  

= o , [J ,  cos a +  J ,  sin a] (6) 
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where 

PBO sin a = - sin 8, 
0 0  

A=- 
@, ’ 

oo(n)2 a; = ( P B , ) ~ ( I  - 2n cos e + ~ 2 ) .  (7) 
Obviously, the effective Hamiltonian, H, , “seen” in the 
rotating framework of reference has not explicit time- 
dependence. So we can solve its evolution in this frame of 
reference. 

In fact, using the rotation operator 

R,(#) = e-i-’~a/” (8) 

HR = Ry(a)wo J ,  R,(a)+. (9) 

li, 4 4 )  = R,(a) U, m>, m = j ,  j - 1, . . . , - j ,  (10) 

one can rewrite H, in the following form: 

Then, it is not difficult to prove that the eigenstates 

are the rotations of the standard angular momentum basis 
lj, m), which correspond to the eigenvalues 

Em = mhw, , ( 1  1) 
respectively. 

Therefore, if the initial state of the system is I$(O)) at 
t = 0, then the exact wavefunction follows from eqs (9)-( 1 l), 
directly : 

I $(t))  = 1 (jm(a) I $(O)) e-imwor e-iJsmt’” lj, m(aD 
m 

= (jm(cr)l $(O))d;,,,,(a) e-i(moo+”w)t lj, m’). (12) 
m, m’ 

Here, the d-function 

d;’,., m(a) = ( j ,  m’ I I j ,  m) 
in angular momentum theory has been used explicitly. 

Let us use the above exact solution (12) to test the 
QAAM. If the system is initially in an instantaneous eigen- 
state of H(O), 

I $(O)) = e-iJye/”l j ,  m = M )  

= CO, m’(a) I e-iJye’A l j, M ) l j ,  “(a)) 

= Ed;’,,, 

m’ 

- a)  lj, m’(cO>, 
m’ 

the exactly-solvable solution (12) is specified as 
j 

I $( t ) )  = d;’,,M(e - a)d’,, m,(a) e-i”oot-imwr lj, m> 
m , m ’ = - j  

a 
E FEm, (cos --, sin i) e-im‘wot-imwt lj, m>. (13) 

m, m’ 

Notice that d’,, ,,@) here is the linear combination of (cos /.3/ 
2)’ (sin /.3/2)‘ (k ,  I = 0, 1 ,  2, . . .). If the variation of B(t) is slow 
enough, then A = w/pB,  is so small that the deviation of a 
from 8 is of the order O’(w/pB,), i.e., 

(14) sin a = [ I  + 2 cos e - 0 2 ( A ) ]  sin 8. 

This is because eq. (7) results in 

00 = pBJ1 - I COS 8 + 0 2 ( I ) ] .  

Now, we are just in the position to exactly see how the 
adiabatic approximation appears. Since it is required for a 
real evolution that q t )  must be changed by a finite differ- 
ence in a sufficiently-long time, T ,  e.g., B(t) is traversed by a 
period, i.e., w T  = 211, we cannot neglect all terms of the 
order A = w/pBO in expression (13). Using eqs (13) and (14), 
one formally writes 

lj, m>. (16) ,-ipm‘BoT i[wT(m‘ccaB-m)] eim’wTO1(l) e 

Notice that 

1 F E  ,,,, (cos I, sin I) e-im’aOT = d,,AO) j e-iMwoT. (17) 

Taking a reasonable limit by letting 1 = w / p B ,  approach 
zero but letting UT remain of a finite value, one has 

m’ 

where 

lj, M(8, T ) )  = e-iJzwT/A e-iJ@/sIj, M )  (19) 
is just an instantaneous eigenstate of H ( T )  at time t = T .  
Physically, this limit means that a very strong magnetic field 
is changed with a finite frequency. The result can also be 
given by the generalized QAAM. Here, 

V ~ T )  = - M ~ T  cos e (20) 
is a Berry’s geometric phase in addition to the dynamic 
phase mpBT. 

It is pointed out that, in the original QAAM, there does 
not appear the Berry’s phase v d T )  in eq. (18). This is 
because it neglects all terms of the order O’(A) = 
O’(o/muB,) both in the coefficients F E  and the oscillating 
phase Two(w/pBo)  in eq. (16). (Notice that F;, .s  are the 
component amplitudes of the wavefunction.) But a reason- 
able Q A A M  should only neglect terms of the order O’(A) in 
the amplitudes but not that in the phase To,(w/pB,) for 
oscillation. The above discussions just enjoy Yang’s point 
on Q A A M  [ 1 2 ] :  The original Q A A M  without Berry’s phase 
can be regarded as the lowest order approximation while 
that with Berry’s phase as an approach of next order. The 
recent experiments on Berry’s phase have partiality for the 
latter since the former ignores too much of the practical 
problems. 
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