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Abstract 
In this paper the evolution of a quantum system driven by a non- 
Hermitian Hamiltonian depending on slowly-changing parameters is 
studied by building an universal high-order adiabatic approximation 
(HOAA) method with Berry’s phase, which is valid for either the Hermitian 
or the non-Hermitian cases. This method can be regarded as a non-trivial 
generalization of the HOAA method for closed quantum system presented 
by this author before. In a general situation, the probabilities of adiabatic 
decay and non-adiabatic transitions are explicitly obtained for the evolu- 
tion of the non-Hermitian quantum system. It is also shown that the non- 
Hermitian analog of the Berry’s phase factor for the non-Hermitian case 
just enjoys the holonomy structure of the dual linear bundle over the 
parameter manifold. The non-Hermitian evolution of the generalized force 
harmonic oscillator is discussed as an illustrative example. 

1. Introduction 

Since Berry’s phase factor (BPF) was discovered in evolu- 
tion of a quantum system with adiabatically-changing 
parameters [ 13, a few methods studying non-adiabatic evol- 
ution of a quantum system driven by a Hermitian Hamilto- 
nian depending on slowly (but not adiabatically)-changing 
parameters have been presented in connection with BPF‘s 
[2-51. In these methods, the high-order adiabatic approx- 
imation (HOAA) method was proposed by this author for 
the first time [4] and has been used and developed for many 
cases [6-121. However, none of these studies has been con- 
cerned with a kind of important quantum system, the 
quantum open system that possesses a non-Hermitian (nH) 
Hamiltonian. This paper will be devoted to the gener- 
alization of the HOAA method for such a nH quantum 
system. 

In fact, though the Hamiltonian for a closed quantum 
system, which is usually considered as a basic object in 
quantum theory, must be a Hermitian operator, many theo- 
ries, such as the Fock-Krylov theorem [13], show the prob- 
ability to apply the nH Hamiltonian for those quantum 
phenomena with dissipation, decay and relaxation [14, 151. 
Recently, many practical problems including the multi- 
photon ionization, the supermode free-electron laser and the 
transverse mode propagation in an optical resonator C16- 
191 have been concerned with the use of nH Schrodinger 
equation and nH Hamiltonian correspondingly. Since the 
occurrence of a BPF or its analog may be established when 
something in the considered system is varied, it is natural to 
generalize the concept of BPF for nH quantum system. 
More recently, some authors made this generalization and 
applied it to concrete physical problems [20-213, but their 
studies were only focused on the adiabatic case that the 
parameters change so slowly that transitions between any 

two (quasi-) energy levels do not happen. In this paper we 
especially emphasized the non-adiabatic evolution df the nH 
quantum system and the geometry of the nH analog of 
BPF. 

The paper is arranged as follows. In Section 2, using a 
similarity transformation of the nH Hamiltonian, we build 
an universal formalism of the HOAA method for the nH 
quantum system. It is also available to the Hermitian 
quantum system. In Section 3, we explicitly analyse the con- 
ditions under which the lowest order approximation, 
namely the adiabatic approximation, can work well. We 
also compare our results with that obtained with the bi- 
orthonormal state method [20-211 in the adiabatic case. In 
Section 4, we apply the general result to a simple toy model 
- the nH forced oscillator to show the usefulness of our 
analysis. In Section 5, we show that the nH analog of BPF 
appearing in an adiabatic evolution of nH quantum system 
are non-unitary holonomy group element for the dual 
bundles over the parameter manifold. In the further studies, 
we will provide more applications of this generalized HOAA 
method to some physical problems. 

2. Generalized HOAA method for nH quantum system 

Let us begin by setting some notations. The Hamiltonian of 
the quantum open system we consider as follows is a nH 
operator 

% = %(t) = %[RI = %[R(t)] 

that depends on a set of slowly-changing parameters 

R = R(t) : (R,(t), WO, * Y R,(t)). 
We now assume that &’(t) is diagonalizable at each instant 
t ,  i.e., there exists a similarity transformation 

U(t)  = UCR] = U[R(t)] 

such that 

rEl(t) o ... o 1 

where the “quasi-energy levels” 

&k(t) = &k[R], k = 1, 2, ..., N 

may be complex and U(t)  is not unitary correspondingly. 
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In order to write these solutions in an explicit form, we Let 

I w> = I W)> 
be a solution of the nH Schrodinger equation 

ih - I Y(t)) = &'(t)I Y(t)). 

The equivalent wavefunction I Wt) )  must satisfy an equiva- 
lent Schrodinger equation (ESE) 

(2.2) 
a 
at 

(2.3) 
a 

ih at I W)> = &'e@) I Wt)), 

with the equivalent Hamiltonian 

&',(t) = &'&) - ihU(t)-' - (2.4) 
a 

at 

Separate &',(t) into two parts, the diagonal part 

&',(t) = SJt) + diagonal part of -ihU(t)-' [ at 

and the off-diagonal part 

V(t) = off diagonal part of -ittU(t)-' [ 
Then, 

&',(t) = &'o(t) + V(t). 

Later on we will show that the diagonal part Xo(t) 
governs an adiabatic evolution of the nH quantum system 
while the off-diagonal part V(t) governs the non-adiabatic 
transitions among the quasi-energy levels. In fact, since V(t) 
completely vanishes when &' is independent of time t and 
&' = S ( t )  = %[RI is a smooth function of R(t), we can 
regard V(t) as a perturbation when &' or R depends weakly 
on time, i.e., R(t) changes with t slowly enough. 

Based on the above decomposition of S e ( t ) ,  we can use 
the standard time-dependent perturbation theory to solve 
the ESE (2.3), obtaining an approximate series solution 

I WO> = I @O(t)>  + I @'(t)> 

+ I @2(t)) + * + I a'@)) + ' * ' . (2.5) 

Here, the lth order solution I @'(t)) is determined by 

ih - I @ O ( t ) )  = &'O(t) 1 @'(t)); 

ih 5 I@'(t)) = Ho(t) I @'(t)) + V(t) I @'-'(t)). 

a 
at 

a 

I = 1, 2, ... . (2.6) 

Because the above equations of the Ith order solution 
I @'(t)) only concerns (I - 1)th order solutions I @'-'(t)), we 
can get approximate solutions of each order starting from 
the zeroth order: 

use the eigenstates 

I 1>=  [I, 12) = ~ 1 ,  ..., I N  - 1) = [I, 
of S o ( t )  with the corresponding eigenvalues 

En(t) = &At) - h?n(t), 

where the additional term to the quasi-energy 

will be proved to be the nH analog of Berry's phase. Then, 
each order solution 

N r 1 rt 1 

follows from eq. (2.6) immediately. Here, the coefficients 
c!,(t) satisfy 

C,O(t) = ( n  I CD(O)> = ( n  I U(o)-' I w9), 

x exp [ i cq,, ,,,(s) ds]C!,-'(t') dt', (2.10) 

where 

Notice that the difficulty that the eigenstates of &' are not 
orthogonal to each other due to non-Hermiticity of &' has 
been avoided in the above discussion by a trick building the 
ESE (2.3) to find the perturbation V(t). This is the key to 
our studies in this paper. 

3. Adiabatic approximation and comparison with the 

In this section our first focus is on the adiabatic conditions 
that the zeroth order (adiabatic) approximation can well 
approach the true evolution of the nH quantum system. 

biorthonormal state method 

Consider the int 

9 = (nl  V(t') l 
x exp { i Re [[con+ Js) ds]] dt' 

appearing in the first order approximation 

x l < n  I V(t') I m )  exp [ i la,,, ( I  s) ds dt'. 
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Here, we have separated the damping factor 

and the oscillating factor 

If the latter oscillates so fast that the conditions 

hold for m # n, the integral 4 tends to zero. This statement 
can be proved by integrating 4 by part. Then, we get so- 
called adiabatic conditions (3.1). When they hold for a nH 
quantum system, we can ignore the higher-approximation 
solutions I cDl(t)), (I = 1, 2, . . .). 

To compare our analysis with the biorthonormal state 
method in Refs [20,21] in the adiabatic case, we define 

I 4 n ( t ) >  = I 4nCR1) = u(t) I n > ,  

I Xn(t)> = I xnERI> = Cu(t)-’It In>* (3.2) 
Obviously, they are the eigenstates of X(t) and X(t)’ 
respectively with the eigenvalues E&) and E:@). Using the 
completeness relation and the orthonormal relations of 
states 1 n )  (n = 1, 2, . . . , N ) :  
N 

I n) (n  I = I (unit operator), ( n  I m) = dm, n ,  
n = l  

we immediately get the generalized completeness relations 
N N 

C I x n ( t ) > ( # n ( t )  I = I4n(t)>(xn(t) I = I (3.3) 

(4m(t)xn(t)> = (xm(t) I $At)> = dm, n (3.4) 

n = l  n =  1 

and the biorthonormal relations 

In terms of the biorthonormal basis ( 1  #,,(t)), I x,(t)>}, we 
reexpress the high-order approximations of the nH 
quantum evolution as 

m N  

(3.5) 

with the coefficient equations: 

c,O(t) = ( x n ( 0 )  I “(O)), 
N f  

~ ( t )  = - 1 <xn(t’) I bm(t‘)> 
m = l  0 

x exp [ i [a,,, ,(s) ds]C;-’(t’) dt‘, (3.5‘) 

for I = 1, 2, 3, .. . . Here, the nH analog of Berry’s phase is 
rewritten as 

Correspondingly, the adiabatic conditions (3.1) are rewritten 
as 

Now, let us consider the adiabatic evolution of an instan- 
taneous eigenstate of X(t) under adiabatic conditions. If the 
system is initially in the state 

I WO)) = u(t = 0) I n> = I 4 n ( O ) ) ,  

it will evolve into 

where 

Q ( t )  = ~ , ( t )  - - ~,(t’) dt‘. x 
The above eq. (3.8) manifests that the adiabatically-evolving 
state is always an eigenstate of the instantaneous Hamilto- 
nian X(t) if the initial state is such state at t = 0. This is the 
quantum adiabatic theorem for nH quantum systems, which 
is quite similar to that for the Hermitian case. It shows the 
quantum number labelling the quasi-energy level to be an 
adiabatic invariant. Since y&) and e,(t) are usually not real 
due to the non-Hermiticity of X(t) ,  the damping factor 
exp [ - Im Q,(t)] causes the adiabatic decay of the state. 
Especially, when ~, ( t )  is real, the decay only results from the 
nH-analog of BPF and is a purely geometrical effect. In the 
next section an example will be used to illustrate this situ- 
ation. 

When the adiabatic conditions (3.7) are broken, there may 
appear transitions from an instantaneous eigenstate I 4,,(0)) 
to others I dn(t))  for m # n. From eqs (3.5) or (2.5, 2.9, 2.10), 
we obtain the transition probabilities 

1 I rt 

or 

x exp [ i lot’--, &) ds] dt’ 1’ 
x exp { -2 Im [qt)]}. (3.9) 

Therefore, we reach the statement mentioned in section 2 
that the diagonal and off-diagonal parts respectively 
describe the adiabatic evolution and the non-adiabatic tran- 
sitions for the quantum system. Notice that Berry also dis- 
cussed the geometrical phase effect in non-adiabatic 
transition in connection with the non-Hermiticity due to the 
complexification of time [22]. 

4. Example: generalized force harmonic oscillator 

Now, let us apply the above general analysis to a simple 
model - the generalized forced harmonic oscillator. The 
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time-dependent Hamiltonian for this model is Taking into account the translation transformation 

X(t) = &'[a, fl  = hco(ata + Bat + aa) (4.1) 
where a = a(t) and /3 = B(t) are slowly-changing complex 
parameters, the constant w is real, a and at are respectively 
the creation and annihilation operators for a boson state, 
which satisfy 

[a, a'] = 1. 

For the usual forced harmonic oscillator (FHO), there is a 
constraint a = /?* and the corresponding Hamiltonian is 
Hermitian. However, here we make a generalization to 
remove this constraint so that the Hamiltonian (4.10) is 
non-Hermi tian. 

Using the translated boson operators 

= at + a, A(B) = a + /? (4.2) 
obeying the same boson commutation relation as the above 

CA(B), 44'1 = 1, 
we rewrite down the Hamiltonian (4.1) as 

&'(t) = &'[a, f l  = hw[A(a)tA(B) - ap]. 

Based on the above expression for &'(t), we immediately 
obtain the instantaneous eigenstates of &'(t) = &'[a, B] 

with the eigenvalues 

en@) = &,[a, B] = (n - a#?)hw. 

Here, the translated vacuum state I qj?)) obeys 

A(P)Io(B)> = 0, or alO(B)> = - PI O(m 

I o(B)> = cz, I o>, (4.4) 

that is to say, 1 qb)) is a coherent state 

where IO) is the usual vacuum state satisfying a IO) = 0 and 
CZ,# is to be determined by the biorthonormal conditions. 
According to the above analysis, we can finally write the 
explicit form of 1 4.(t)) 

(4.3') 

where 

1 I k >  =-[a'] '10),  f i  
is the k boson state. 

* [a ,  BY = &CB*, =*I, 
we easily obtain the dual vectors I xn(t))  to I #,,(t)): 

I x , @ D  = I x,Ca, 83) = I a*, a*]> 

Noticing 

as the eigenvectors of &'[a, 83' with the corresponding 
eigenvalues en['*, a*] .  Then, the biorthonormal conditions 

( X n ( t )  I 9 m ( t ) >  = am, n 

define the biorthonormalization coefficient 

cZ, = exp (- 4.8). 
Physica Scripta 48 

etaate-'" = at + 5, 

a - 5, (4.5) e - t a t  = 

t E complex field C 

we get the U(t)-operator expression of the biorthonorma1 
basis {I 4 m ( t ) > ,  I x n ( t ) > }  

I 4 n ( t ) >  = I 4 n I R l )  = U(t)  I n>, 

I x n ( t ) >  = I xnCRI> = CU(t)-'It In>, 

where the U(t)-operator 

~ ( t )  = U[a ,  f l  = exp ( - f a g )  exp (-Bat) exp (- aa) 

diagonalizes the Hamiltonian &'(t), i.e., 

U(t ) - 'X ( t )U( t )  = Roa'a. 

(4.6) 

(4.7) 

Now, let us discuss the evolution governed by the nH 
Hamiltonian (4.1). To this end, we first calculate 

= &kSm, n -  1 - J;1+188m. n +  1 

+ - B k I S m ,  n *  

Then, we obtain the nH analog of BPF 

~ X P  C i ~ n ( t ) l  ~ X P  Ci~(t)l 

= exp { i [ [ a 8  - Bk](t') dt'} 

(4.9) 

where C is a curve {R(t)} in a four dimensional parameter 
manifold 

M : ( R = ( ~ , B ) = ( Q 1 , ~ z , B 1 , 8 7 ) 1 ~ = ~ 1  +iaz,B=B1 +iBz) 

where al, a z ,  B1 and Bz are real. Because the factor eiyn(t) is 
independent of the quantum number n, the adiabatic evolu- 
tion 

N 
I Wt)> = e''(') ( x n ( 0 )  I v(0)) e-incor I 4 n ( t ) >  

n = l  

N 

( X n ( O )  I Y O ) )  e-incot I 4 n ( t ) >  (4.10) = - e - u t )  eie(t) 

n =  1 

is accompanied with a global geometrical factor with the 
oscillating part eie(t): 

@(t) = Re [ ~ n ( t ) l  = j 

and the damping part e-'-('): 

CBlkz - Bz - az 81 - a182Xt') dt' i l  
il r(t) = ~m CY~(~)I  = C B Z  6 2  - Bib, - a2 8 2  + a181I(trI dtf* 

Notice that, when a(t) = /?(t)*, the BPF of a coherent state 
for FHO in Ref. [23] is given once again as a special case of 
eq. (4.9). 

For the case with large quantum number n or rapidly- 
changing parameters a(t) and B(t), the adiabatic conditions 

& ~ a ( t ) ~  c- r ( r )  1 .  I b(t) 1 ,-r(t) 1 (4.1 1) 
w w 
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do not hold and we need to consider the non-adiabatic 
effects caused by the first order approximation at least. If 
the system is initially in a state I c$~(O)), the initial conditions 

cp(0) = 8 n , k ,  CL(0) = 0, for 12 1 

leads to the first order approximate solution 

I yl(t)) = ~e-r(t)ei[e(t)-(r-I,orl 

x lh(t ')e-iat '  dt' I l(t)) 

+ 

x [S(t')ei-. dt' I 4 k +  l(t)>. 

e - u t )  ei[e(t) - (k + l ) m t l  

(4.12) 

The probabilities of the transition from I $,(O)) to I &(t)) 
(n = k - 1, k + 1) are 

I rt f Z  + (k + l)e-zr(t)l J &)eiat' dt J d n , k + l .  (4.13) 
0 

Obviously, the selection rule for such a transition is 

A n =  + 1  or -1, 

in the first order approximation. 

(4.14) 

5. The nH-analog of BPF and holonomy in dual line fibre 

For Hermitian quantum systems, Simon recognized that the 
BPF is precisely the holonomy in a Hermitian line bundle 
defined by the adiabatic evolution. The adiabatic evolution 
can be interpreted as a parallel translation in such a bundle 
[24]. Now, a question naturally arises for the non- 
Hermitian case: what is a geometrical interpretation of the 
nH analog of BPF? The answer will be given in this section. 

Let M be the parameter manifold formed by the param- 
eters R = (RI, R,, . . ., R3. A line bundle defined by the nH 
Hamiltonian X[R] is 

bundles 

Fn = {(R, Io~CRI>)IXCRIIO~CRI) = & ~ C R I I ~ ~ C R I ) , R E M I *  

Its fibre space is a one-dimensional linear space 

V ,  : {I  gnCR])> = eie['] I 4nCRI) I 
where OCR] is a real function depending on R}. 

Over the same base mainfold M, the dual bundle F,* is 
defined by 

F,* = {(R, I0,*CRI>) I 3fCRI' I O,*CR1> 

= &,*[RI I CCRI>, R E MI, 

where the fibre space 

V,* : {I a,*[R]> = eie'['l I x,,[R]) 1, 

where e'[R] is a real function depending on R}, 

is the dual space of V,  and Ix,[R]) is the dual element to 
I 4nCR1>, i.e., 

(xnCR1 I 4 n C R I )  = d m ,  n *  

Since the quantum number n, labelling an eigenstate 
I4,[R]) of the instantaneous Hamiltonian %[RI, is an 
adiabatic invariant, we can assume that 

I an(t)> = I anCRI> = CnCR1 I4nCRI) 

is an evolution state in adiabatic case. Now, let us show that 
the holonomy group elements of Fn(F:) is the nH analog of 
BPF for the adiabatic evolution while { I  o,(t)) I t E [0, 
({I a*,(t)) I t E [0, n}), as a curve in Fn (F:), is a horizontal 
lift of the curve C: {R(t) I t E [0, TI} on the base manifold 
M. To this end we consider a decomposition of a tangent 
vector 

where the vertical part along the fiber is 

x C~CRI) I 4 . ~ ~ 1 )  ( 5 4  

and the horizontal part orthogonal to the fibre is 

(5.3) 

A parallel-translation implies 

(5.4) d" 
(XnCRI I ;i; I = 0, 

which results in a one-form equation 

dCnCR1 + (xnCR1 I d4nCRI)CnCRI = 0. 

Its solution 

C,(t) = C,[R(t)] = e'""'') 

(5.5) 

just gives the nH analog of BPF again. 
For a cyclic evolution that R(0) = R(T) and C is a closed 

curve, the complex phase yn(T) in the nH analog of BPF can 
be expressed as a closed path integration 

yn(T) = ~ ~ C C I  = b.131 (5.6) 

of a complex potential one-form 

ACRI = i(XnCR1 I d4nCRI). 

Similarly, on dual Bundle F,* , the parallel-translation 
condition 

Physica Scripta 48 



398 C.-P. Sun 

results in the dual nH analog of BPF with the geometric 
phase 

d 
T n ( t )  = i S ’ ~ ~ ~ [ R ( O I  I ;It; I x n [ ~ ( t ’ ) l >  dt’. (5.7) 

0 

Obviously, the nH analog exp [iy,(t)] and its dual 
exp [iT,,(t)] occurring in the adiabatic evolution are holo- 
nomy group elements on the line bundle Fn and its dual F: 
respectively. Except for the effect of dynamical factors 

the adiabatic effect in quantum evolution are equivalent to 
the parallel-translation on the line bundles F, and its dual 
F,* . This is a circumstance similar to that for the Hermitian 
quantum system. 
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