PHYSICAL REVIEW RESEARCH 3, 043220 (2021)

Optimal probabilistic distillation of quantum coherence

C.L.Liu

l'and C. P. Sun"2"

'Graduate School of China Academy of Engineering Physics, Beijing 100193, China
2Beijing Computational Science Research Center, Beijing 100193, China

® (Received 26 April 2021; revised 26 July 2021; accepted 9 December 2021; published 27 December 2021)

We complete the task of optimal probabilistic coherence distillation protocol, whose aim is to transform a
general state into a set of n-level maximally coherent states via strictly incoherent operations (SIO). Specifically,
we present the necessary and sufficient condition for the transformation from a mixed state into a pure-state
ensemble via SIO. With the aid of this condition and the simplex algorithm, we can accomplish the probabilistic
distillation protocol by presenting an analytical expression of the maximal average distillable coherence of a
general state and constructing the corresponding operation achieving this bound. Our protocol is a universal

protocol since it can be applied to any coherence measure.

DOLI: 10.1103/PhysRevResearch.3.043220

L. INTRODUCTION

Quantum coherence is an important feature of quantum
mechanics which is responsible for the departure between the
classical and the quantum world. It is an essential component
in quantum information processing [1] and plays a central role
in various fields, such as quantum computation [2,3], quan-
tum cryptography [4], quantum metrology [5,6], and quantum
biology [7]. Recently, the resource theory of coherence has
attracted a growing interest due to the rapid development
of quantum information science [8—10]. The resource theory
of coherence not only establishes a rigorous framework to
quantify coherence but also provides a platform to understand
quantum coherence from a different perspective.

Any quantum resource theory is characterized by two fun-
damental ingredients, namely, free states and free operations
[11-13]. For the resource theory of coherence, the free states
are quantum states which are diagonal in a prefixed refer-
ence basis. The free operations are not uniquely specified.
Motivated by suitable practical considerations, several free
operations were presented [8,9,14-20]. In this paper, we fo-
cus our attention on the strictly incoherent operations (SI0),
which were first proposed in Ref. [15]; in Ref. [16], it has been
shown that these operations neither create nor use coherence
and have a physical interpretation in terms of interferometry.
Thus the set of SIO is a physically well-motivated set of free
operations for the resource theory of coherence.

In resource theories, much effort has been devoted to study-
ing the distillation protocols. The distillation process is the
process that extracts pure resource states from a general state
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via free operations. For the resource theory of coherence,
various coherence distillation protocols were proposed. These
protocols can be divided into two classes: The asymptotic
coherence distillation and the one-shot coherence distillation.
The asymptotic coherence distillation of pure states and mixed
states by using free operations was studied in Refs. [15,21—
24]. To relax several unreasonable assumptions of the asymp-
totic regime, i.e., unbounded number copies of identical states
and collective operations, several one-shot coherence distilla-
tion protocols were proposed and explored [25-40].

Here we study the optimal probabilistic coherence distil-
lation, which is one of the one-shot coherence distillation
protocols. The aim of this protocol is to transform a given
coherent state p into a set of n-level maximally coherent states
via SIO. By optimal we mean that the average coherence
of the final ensemble is maximal. This protocol, inspired by
an entanglement distillation protocol in Refs. [41,42], was
first proposed in Ref. [34]. In that paper, with the help of
the /; norm of coherence, Torun et al. studied this coherence
distillation protocol for pure states. However, since we often
encounter mixed states rather than pure states, an immediate
question is how to extend this protocol to the mixed state case.

In this paper, we solve this problem completely by devel-
oping the optimal probabilistic coherence distillation protocol
in the mixed state case. To obtain this result, we present
the necessary and sufficient condition for the transformation
from a mixed state into a pure-state ensemble via SIO. With
this condition and the simplex algorithm, we then accomplish
the optimal probabilistic coherence distillation protocol by
presenting an analytical expression of the maximal average
distillable coherence for any state and constructing the cor-
responding operation achieving this bound. Our protocol is
universal since it can be applied to any coherence measure.

II. RESOURCE THEORY OF COHERENCE

To present our result clearly, we recall some elementary
notions of the resource theory of coherence. Let {|i )}f.’=1 be the
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prefixed basis in the finite dimensional Hilbert space. A state
is said to be incoherent if it is diagonal in the basis and the set
of such states is denoted by 7. Coherent states are those not of
this form. For a pure state |¢), we will write ¢ := |p)(@|. The
d-dimensional maximally coherent state has the form |¢) =
JLE >4, 1i) [9] and we will denote

W")=%;Ii), forl <n<d (1)

as an n-level maximally coherent state. The SIO is a com-
pletely positive trace preserving (CPTP) map expressed as
Alp) = Zfl{:l K, pK ;, where the Kraus operators K|, satisfy
notonly Y")/_, KfK, = I butalso K, JK; C TandK;TK, C
I for every K,, [15,16]. One sees by inspection that there
is at most one nonzero element in each column and row of
K, and K,, are called SIO Kraus operators. From this, it is
elementary to show that a projector is incoherent if it has the
form P, = )", |i)(i| and we will denote with P, a generic
strictly incoherent projector. A CPTP map is an incoherent
operation (I0) if each K, only satisfies K;I K, C I forall nu
[9]. A stochastic SIO [27], denoted as A (p), is defined as

L +
Zp.:l KoK,

As(p) = PR
Tr( Z;LL=1 K/LPK/L)

where K, K>, ..., K} satisfies Z;ﬁ:l K;KM <l
Clearly the state A (p) is obtained with probability
P = Tr(ZILL:l K,L,oK;). SIO correspond to the case P = 1.
We will use A(p) =2 li){ilpli){i| to denote the fully
dephasing channel.

A functional C can be taken as a coherence measure if it
satisfies the four conditions [9,16]: (C1) The coherence being
zero for incoherent states, (C2) the monotonicity of coherence
under SIO, (C3) the monotonicity of coherence under selec-
tive measurements on average, and (C4) the nonincreasing of
coherence under mixing of quantum states. Based on these
conditions, various coherence measures have been put for-
ward. Let us recall the relative entropy of coherence C, [9], the
{1 norm of coherence C;, [9], and the coherence rank Cg [15],
which will be used in this paper. Here C,(p) = S(Ap) — S(p),
where S(p) = —Tr(pIn p) is the von Neumann entropy (the
base of our logarithms being 2). The /; norm of coherence is
defined as C;,(p) =), 2 10ijl- The coherence rank Cg of a

pure state (not necessarily normalized), |¢) = Zle c;|i) with
c;i # 0, is defined as the number of nonzero terms in this
decomposition minus 1 [43], i.e., Cg(¢) = R — 1.

III. TRANSFORMATION CRITERION

The optimal probabilistic coherence distillation is con-
cerned with the transformation from a general state into a
special pure-state ensemble via SIO. We thus start by giving
the following theorem which provides the necessary and suf-
ficient conditions for such transformations.

Theorem 1. The transformation p — {p, [¢un)} can be
realized via SIO if and only if there is an orthogonal and
complete set of incoherent projectors {P,} such that, for all

W, there are
P,oP,
e dA i AQY 2
T, by = Ve AYn < Ll @

n

where 1, are pure states, p, = Tr(P,pP,), and p,, =
Pun/Pu-

Here let p and o be two states with their eigenvalues
being A; =2 Ay > ---2Ag) and (A} 2 A, > --- > A), re-
spectively. Hereafter we will take the eigenvalues of a state in
this descending order. Then, the majorization relation p < o
implies that there are Cy(p) := Z?:k Ai = Cu(o) := Z?:k IV
for all 1 <k <d—1[44] and we denote p < Y., p.py as
Ce(p) = Y, puCi(py) forall 1 <k <d — 1.

Proof. We first prove the if part of the theorem, i.e., if p
satisfies the conditions in Eq. (2), then we can transform p
into the ensemble {p,,, |¢,.,)} via SIO.

To this end, we act A{(-) = Zu P,(-)P, on p with {P,}
being an orthogonal and complete set of incoherent projectors.
After that, we obtain

Ai(p) = _PupPy =P putrn.
Iz Iz

where p, = Tr(P,pP,). Then, by using the condition
Ay, <Y, pnmA(pﬁn and the result in Ref. [18], which says
that the transformation from a pure state ¥ into an ensemble
{pn, ¢} can be realized via {K,}, which forms a SIO if and
only if there are Ay < ), pnA<p,f, it is direct to obtain that
we can always find some SIO {K}}, realizing the transforma-
tion from v, into {py;., |@un)}. Therefore, we can achieve the
transformation from p into {p,,, |@.,)} by first performing
{P.}, on p and then, according to the index u, performing
{K}*}, on it. This completes the if part of the theorem.

Next, we prove the only if part of the theorem, i.e., if p can
be transformed into the ensemble {p,,,, |¢,,)}5 via some SIO
{K!*}%, then p should satisfy the conditions in Eq. (2).

To this end, suppose the transformation from the state p
into the ensemble {p,,, |@u.)}} can be realized via {K/'}/.
It implies that there is a stochastic SIO Aﬁ"”}(~) which is
constructed by a subset of {K/} such that

AM(P) = Punun A3)

for all u,n, where p,, = Tr(Aﬁ,“”}(p)). From the result in
Ref. [38], which says that a pure coherent state |¢) can be
obtained from a mixed state p via stochastic SIO if and only
if there is an incoherent projector P with the coherence rank
of P pP being greater than or equal to that of |¢), we immedi-
ately obtain that it is the parts of p such that P pP being rank
one are useful in this transformation. This implies that each
¢un was obtained from these parts of p, i.e., the part such
that the rank of PpP is one. Then, it is direct to see that a
pure-state ensemble {p,.,, [¢.,)}" can be obtained from p via
a SIO {K!*} if and only if the same ensemble can be obtained
from some state,

p = ZPMP]P = @PMP/M )
T u

via the same {K}}, where {IP,} is an orthogonal and com-
plete set of incoherent projectors, p,, = Tr(IP, pP,), and each
P.pP, = pu, is rank one.
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FIG. 1. Optimal probabilistic distillation of quantum coherence.
This figure illustrates the protocol that transforms a general state
p into a set of n-level maximally coherent states |y") with n =
1,---,d viaSIO A(:).

Thus to realize the transformation from the state p into the
ensemble {p,,, |@un) 15 via {K}*}, we only need to consider the
transformation o — {puu, |¢un)}". The transformation from
P into {pyun, |@un)} via {K*} further implies that there are

K 1) (Wl KL = Pl uns (5)

where p;m = Tr(K,’,‘WM)(wMK,{”). Let the ensemble ob-
tained after performing {K}*} on [v,,) be {pp., |¢un)}n. Noting
that the transformation from a pure state ¥ into the ensemble
{pn, ¢n} can be realized via a SIO {K,} if and only if there are
Ay <Y, PnAgyY, we immediately obtain that, to realize the
transformation from p into the ensemble {p,.,, |@un)}* with
DPun = PuPnjp vVia {KF}, p should satisfy the conditions in
Eq. (2). This completes the only if part of the theorem.

IV. PROBABILISTIC COHERENCE DISTILLATION

With Theorem 1, let us move to consider the protocol of
the optimal probabilistic coherence distillation, which can be
formally defined as follows: Given a state p, the aim of the
protocol is to transform it into a set of n-level maximally
coherent states via SIO (as illustrated in Fig. 1), that is, we
want to accomplish the transformation

p 5 (p, [¥) 6)

with the coherence of the final ensemble {p,,|y")}, C =
>, PnC(Y™), as large as possible. Here, C is an arbitrary
coherence measure fulfilling (C1)—(C4).

Based on the result above, we present the protocol of ob-
taining Cpax(0) as the following three steps:

First, identify the pure coherent-state subspaces of p.

From Theorem 1, we note that it is the parts of p such that
PpP being rank one are useful in the transformation p —
{Pu> 1@u)}u. For the sake of simplicity, we call these parts
as the pure coherent-state subspaces of p. More precisely, if
there is an incoherent projector IP such that PpP = ¢ with the
coherence rank of ¢ being n > 0, then we say that p has an
n + 1-dimensional pure coherent-state subspace correspond-
ing to PP. Furthermore, we say that the pure coherent-state
subspaces with the projector P for p are maximal if the pure
coherent-state subspace cannot be expanded to a larger one

with a incoherent projector P’ such that P'pP’ = ¢’, ¢’ # ¢,
and P¢'P = ¢. The pure coherent-state subspaces of p can be
identified by using
_1 1
A= (Ap) 2 |pl(Ap)~2, (7
which was presented in Ref. [27]. Here, for p = Zii Pijl {Jl,
|p| reads |p| = Zij loijl1i){j| and (A,o)_% is the diagonal ma-

if pii7#0;
if pu=0.

0=

1
trix with elements (Ap),.* = {g i It can be shown
that P pP is rank 1 if and only if all its corresponding elements
of A are 1 [27]. From this, we can obtain that if there are
n-dimensional principal submatrices A, of A with all its
elements being 1, then the corresponding subspace of p is an
n-dimensional pure coherent-state subspace. By using this re-
sult, one can easily identify the pure coherent-state subspaces
of p. For a state p, let the corresponding Hilbert subspaces
of principal submatrices A, (w =1, -, U) be H,, which
is spanned by {[i{), [5), - -, |i5ﬂ)} c{I1),]2),---,|d)} and
the corresponding incoherent projectors be PP, with its rank
being d,,, i.e., P, = i) @)1 + 1551+ - + |i5ﬂ)(i5ﬂ|. Act-
ing {P,} on the state p, we then obtain the set {goﬂ}:‘f:l,
where ¢, have the form ¢, = (P, 0P,)/Tr(P,pP,). Let the
pure states corresponding to maximal pure coherent-state sub-
spaces be

m m
L LA ®)
Te(PyoPy)

Here, P! are the incoherent projectors corresponding to max-
imal pure coherent-state subspaces. Then, after acting the
incoherent projectors {IP'} on p, we obtain a set of pure states
@, with probability p, = Tr(P;'pP), i.e., there is

U u
Ap(p) =) PIoP) = D pue)- ©)
n=1 n=1
By Theorem 1 and the definition of {P}'} and {P,}, it is
straightforward to see that to obtain the optimal probabilistic
distillation protocol, we only need to consider the state p™ =
@;Zj:l pu@ys since general p' = (P, pup, can be obtained
from p™ via SIO.
Second, calculate Cpax (‘/’;T) using the simplex algorithm.
The results presented in the first step imply that, to obtain
anax(,o), we only need to calculate each Crnax (9021) since there

is Coax(p) = Z(;i{:l PuCrax (). To this end, we note that
there is a constraint in the transformation |¢;') — {p,, [¥")},
Le. @) = {pn, [¥")} can be realized via SIO if and only if

there are Ay < > p,Agp}. These conditions can be written
as Z?:l loi]? > Zle pu(2=ELY where | < n. This implies

n

that the problem of finding max((p;f) can be reformulated as
the following linear programming problem,

maximum ¢’ p

subjectto Ap<q, p=>0. (10)
Here, with the superscript 7 being transpose operation,
the vectors p and q read p= (p1,p2,...,ps)] and
q= (CI(A(p)v CZ(A(p)’ T Cd(Aw))Ti reSpeCtiVely.

The matrix A reads A:ZlgnLl_lm)(H and the

n
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c=(f(1), fQ2),---, f(d)T, where f(n) is the value of
[¥") under some specific coherence measure and it is direct
toobtain f(n) > fn—1)>=--- = f(2) > f(1) =0.

The optimization problem presented in Eq. (10) can be
efficiently solved by using the simplex algorithm [45], that is,
we can always obtain the maximum Cmax(‘ﬂu) = max, c’p.
Hence, we can present the analytical expression Crax(p) =
Z;u:l pufmax(wg‘) of p. Since the corresponding operation
achieving this bound can be constructed by Theorem 1, the
protocol presented here is universal. Here we consider the case
that nf(n) is convex, which is satisfied by various coherence
measures such as C, and C;,. The generalization to others
is straightforward. For these coherence measures, we obtain
the optimal solution as (see Appendix for further technical
details)

d

Cran(@f) =Y ilcil” —

i=1

i1 1) f (). (11)

Third, present Cinax (0) and the corresponding operation.

Let |g}) = Zld“l ci*li). The transformation lop) —
{pn, |[¥"™)} can be realized via the SIO A,()=
YU KEOKE,  where K= Jr(yr Wiy with

pd,i = dulcldlu |2 and Pn = n(|c,’f|2 - |C£f+1 |2) for n=
,d, — 1. With the aid of A,(:), we then obtain the
operation corresponding to the optimal distillation with
the form A() = @7]:1 Au(). As it is straightforward
to examine that Zi": K TKH =1y, and each K/ has
at most one nonzero element in each column and row,
A(-) is a SIO. Since we can transform p into " with
probability p, = Zu 1 Pu(m(|ct | — |cn"+l|2)) in the above
protocol, the max1ma1 average distilled coherence of p is
Conax(P) = X1 Y0 e ? = Ity PInf (n).

With the coherence measures considered here, i.e., nf(n)

is convex, we then summarize the above results as follows.
Theorem 2. For state p, let the state corresponding
to its maximal pure coherent-state subspaces be Ap(p) =

@;”:1 Pu¢,, - Then, the maximal average distillable coherence
of pis

dy
Crnax(p) = ZZpM (It > = Ich P)nf (). (12)

n=1 n=1

The corresponding SIO is

Uu dp.
A =EP (ZK,;%)K#), (13)
pn=1 \n=1

where K} = /22 (37 (’l) with py, =d |cd | and p, =
n(let > —|ch  1*) forn = l, <,d, — 1.

In particular, if the initial state is a pure one and the coher-
ence measure is the Cp, (p), i.e., f(n) = C;,(¥") = n — 1, then
we can obtain the results in Ref. [34].

V. FURTHER DISCUSSIONS

Before concluding, we give the following remarks concern-
ing the above distillation protocol.

The first is the irreversibility of the distillation protocol
above. Here, irreversibility means that we cannot convert a
state into another and then recover the original state with
certainty. We can see the irreversibility of this protocol from
two aspects. On the one hand, when we consider the pure state
case, the irreversible was presented by using C;, [34]. On the
other hand, we obtain that, for a mixed state p, there is another
source of irreversibility result from y := (p — @M Pus,)-
From Theorem 1, we see that this part is completely con-
sumed in the above distillation protocol. It is not hard to
show that a state p is reversible in this protocol if and only
ifp=6p . Pugu with each ¢, being an n-level maximally
coherent state.

The second is the relation between distillable states in the
protocol here and the distillable states in asymptotic regime
via SIO. We say a state p is distillable in the protocol here if
any n(> 2)-level maximally coherent state can be obtained
from it with nonzero probability. A state is distillable in
asymptotic regime if we can distill pure coherence from it
[22-24]. It is proved that a state is distillable in the asymptotic
regime if it contains any rank-one submatrix with its coher-
ence rank greater than or equal to 1. By Theorems 1 and 2, itis
direct to obtain that the set of distillable states in the protocol
here and the set of distillable states in asymptotic regime are
identical.

The third one is that there is an operational gap between
IO and SIO in this distillation protocol. To show this, let us
consider the state [47]

0

1 1
A A
o= 4 45 25
=1 __L 1 0
i G AR 1
45 245 4

It is straightforward to examine that there is not an incoher-
ent projector P such that the coherence rank of P pP is greater
than or equal to 1. From Theorem 1, we cannot obtain any "
(n > 2) with nonzero probability from it via SIO. However,
this is not the case when we consider 10. To see this, let the
operation be A(-) = K; (-)Kf + K2(~)KT, where

4 3
5 0 0
o 0 L =Z
K = V55|,
0O 0 O 0
0O 0 O 0
3 4
-5 5 0 0
o o0 -1 L
K, = NN
0 O 0 0
0 O 0 0

By acting A(-) on p, we obtain that A(p) = 2. This
means that C(p)max > f(2) > 0. This example implies that
10 are stronger than SIO when we consider the above distilla-
tion protocol.
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VI. CONCLUSIONS

In summary, we fully characterized the optimal probabilis-
tic coherence distillation protocol, whose aim is to transform
a coherent state into a set of n-level maximally coherent
states via SIO. To this end, we have presented the necessary
and sufficient condition for the transformation from a mixed
state into a pure-state ensemble via SIO. With the aid of this
condition and the simplex algorithm, we could accomplish
the optimal probabilistic coherence distillation protocol by
presenting an analytical expression of the maximal average
distillable coherence for a general state and constructing the
corresponding operation achieving this bound. Interestingly,
our protocol can be applied to any coherence measure. Our
protocol provides a practical protocol for efficient quantum
coherence manipulation of mixed states.
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APPENDIX

Here we give the details of obtaining Cpnax (¢,)in Eq. (11).

To this end, we first convert the optimization problem in
Eq. (11) into its standard form. This means that we trans-
form all the constraint conditions in Eq. (11) into equalities
by introducing slack variables p;, > 0 with d + 1 < s < 24,
i.e., transform a;p; + apps + -+ aiapas < Cr(Agp) into
ajp1 +appy + -+ aggpa + ps = Ce(Agp) with the aid of
Ds, where pg > 0. The problem in Eq. (11) can be then re-
expressed as

. 1T/
maximum ¢ Pp

subjectto Bp'=q, p’ >0, (Al)

TABLE 1. Initial table of the linear programming problem in

TABLE II. The table with p,1, p2, Pa+3, - - , P24 being the ba-
sic variables and py, ps+2, p3, - - - , pq being free variables.

by by by -+ by b1 batz bayz - by q
pas1 1 0 —% Zf;d -2 0 - 0 q—2q
pp 0 1 % XL 0o 2 0 - 0 2
pats 0 0 3 % 0 0 r -0 q3
pa 0 0 O 1 o 0 0 - 1 qa
c 0 0 c Ca 0 2 0 0 2¢,

where the vector ¢ = (f(1), f(2),---, f(d),0,0,---,0)7,
the matrix
1 1 1 1 1 0 O 0
o 1 2 =1 0 1 0 0
o 1 s
B=|0 0 3 v 0 0 1 0],
0 0 0 L0 0 0 1
(A2)
and p’' = (p1,p2,---, Pds Pd+1> - , p2a)T. The standard

form in Eq. (11) can be further converted to the Table I. In
Table I, b; is the j-th column of the matrix B in Eq. (11), the
leftmost column indicates the original variables, the next 2d
columns contain the coefficients for the d original variables
and d slack variables, and the right most column is the con-
stants g;.

We first take the variables py+1, - - - , pag as basic variables,
which presented in the leftmost column and the remaining
variables py, - - -, pg as free variables. A feasible solution of
Eq. (A1) is a vector p’ fulfilling both Bp’ = q and p’ > 0.

As the first step of the simplex algorithm, we set the basic
variables to pyy; = ¢q; fori=1,---,d and set all the free
variables to p; = 0. It is obvious that the value of the objective
function is O at this time. Next, by carrying out Gaussian
elimination, we can generate a new feasible solution from
the old one by replacing a basic variable with a free variable
while preserving the nonnegativity of the solution [46]. For
example, if there is ¢; > 2¢,, we can then transform p, from a
free variable into a basic variable and p,, into a free variable.
Then, by direct calculation, we obtain Table II. In Table II
there are ¢c; = —f (i) + (51) f(2) withi =3, -+ , d.

Eq. (11) with pg41, - -+, pas being basic variables and py, - -- , py TABLE III. The final table with py, - - - , p; being basic variables
being free variables. and py41, - -+ , pag being free variables.

b, b, b; -+ by b1 bays bays - by q by by by --- by by bir bayz -0 by q
Pd+1 1 1 1 1 1 0 0 --- 0 ¢q pp 10 O 0 1 2 1 e 0 O
Pz O ! 2 20 1 0 - 0g pp 0 1 0 0 2 4 .0 O
pass O 0 % % 0 0 1 - 0 ¢ ps 0 0 1 0 0 0 3 e 0 Qs
D2 0 0 o .- 5 0 0 0 - 1 qu pa 0 0 O 1 0 0 0 d Qy
c  —f)—-f2 —-f3 - —fd 0 0 0 --- 0 0 c 0 0 0 - 0 cyp1 Cayr Cip3 - Ca  Q
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We note that the basic variables become
Pd+1,> P2, Pd+3, -+ » P2a- The value of the objective function
then becomes 2¢,. The procedure continues until all elements
ciwithi=1,---,2d — 1 of the last lines are nonnegative,
which is a sufficient condition for obtaining the maximum
value in Eq. (11) [45]. Suppose nf(n) is convex, which is
satisfied by various coherence measures such as C, and C;,.
The generalization to others is straightforward by using the
similar method. For the problem in Eq. (A1), let us consider
a special case where pp, p2,---, ps are turned into basic
variables. By direct calculation, we then obtain Table III.

In Table III, there are cyq; = (i —2)f(i —2)+if(i) —
20-Df—1) and Qi = biw+nqi + bia+i+nqi+1 +
biatiy2)qiv2, where bty =1, by = —2i, and
bia+iy2) = i. Here, b;; corresponds to the i-th element
of the vector b;. With these relations, we then obtain
pi=0i =i(lcil* = lcis1|*).  Since there are cyqi =
(=2 fG—-2)+if(i))—2(—fGi—1)>0 for all
i=1,---,d, we then obtain the optimal solution, i.e.,

d
Cran(@) =0 =c"p =) i(lcil” = i) f (). (A3)

i=1
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