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Shortcuts to isothermality are driving strategies to steer the system to its equilibrium states within finite
time, and enable evaluating the impact of a control promptly. Finding the optimal scheme to minimize the

energy cost is of critical importance in applications of this strategy in pharmaceutical drug tests, biological
selection, and quantum computation. We prove the equivalence between designing the optimal scheme and
finding the geodesic path in the space of control parameters. Such equivalence allows a systematic and

universal approach to find the optimal control to reduce the energy cost. We demonstrate the current
method with examples of a Brownian particle trapped in controllable harmonic potentials.

DOI: 10.1103/PhysRevLett.128.230603

Introduction.—Boosting a system to its steady state is
critical to promptly evaluating the impact of a control
[1-10]. In biological systems, the quest to timely evaluate
the impact of therapy or genotypes posts a requirement to
steer the system to reach its steady state with a considerable
tunable rate [1-5]. In adiabatic quantum computation, the
task of solving the optimization problem is converted to the
problem of driving systems from a trivial ground state to
another nontrivial ground state. The speedup of the
computational process needs to steer the system to the
target ground state in finite time [6—8]. These quests to tune
the system within finite time while keep it in equilibrium
are eagerly needed.

Shortcuts to isothermality were proposed as finite-time
driving strategies to steer the system evolving along the
path of instantaneous equilibrium states [11]. The strategy
has been applied in reducing transition time between
equilibrium states [12-14], improving the efficiency of
free-energy estimation [15], constructing finite-time heat
engines [16—-18], and controlling biological evolutions
[4,5]. The cost of the finite-time operation is the additional
energy cost due to irreversibility posted by the fundamental
thermodynamic law. Minimizing such a cost is in turn
relevant to optimize the heat engine [19-21] and recon-
struct the energy landscape of biological macromolecules
[22-24]. A question arises naturally, how to find the
optimal control protocol to minimize the irreversible energy
cost in shortcuts to isothermality.

In this Letter, we present a systematic approach for
finding the optimal protocol to minimize the energy cost. In
Fig. 1, we show the equivalence of designing the optimal
control to finding the geodesic path on a Riemannian
manifold, spanned by the control parameters [25-29].
In turn, the powerful tools developed in geometry are
adapted for solving the optimal control protocol. Our
scheme is exemplified with a single Brownian particle in
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the harmonic potential with controllable stiffness and
central position.

Geometric approach.—The system is described by the
Hamiltonian H,(X,p.A) =, p?/2+ U,(X, p,4) with
the coordinate X = (x;,x,,...,xy) and the momentum
p = (p1,pa2, ..., py)- It is immersed in a thermal reservoir

with a constant temperature 7. /T(t) = (1,4, ..., Ayy) are
time-dependent control parameters. For simplicity, we have
set the mass of the system as a unit. In the shortcut scheme,
an auxiliary Hamiltonian H (X, p,t) is added to steer the
system evolving along the instantaneous equilibrium states
of the original Hamiltonian H,, in the finite-time interval =

(a) Phase space (b) Geometric space
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FIG. 1. The equivalence between designing the optimal control
protocol and finding the geodesic path in the parametric space.
(a) The evolution of the system controlled by the shortcut scheme.
An auxiliary Hamiltonian H, =A1-f is added to steer the

-

evolution along the instantaneous equilibrium state peq(4(¢)) of
the original Hamiltonian H,. Designing the optimal control
protocol normally requires minimizing the energy cost in the
shortcut scheme. (b) The geodesic path in the equivalent geo-
metric space. We can convert the designing task into finding
the geodesic path in the geometric space with the metric

9w =7 Zi<apifﬂap,fb>eq'

© 2022 American Physical Society


https://orcid.org/0000-0002-5083-8130
https://orcid.org/0000-0002-7207-969X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.230603&domain=pdf&date_stamp=2022-06-10
https://doi.org/10.1103/PhysRevLett.128.230603
https://doi.org/10.1103/PhysRevLett.128.230603
https://doi.org/10.1103/PhysRevLett.128.230603
https://doi.org/10.1103/PhysRevLett.128.230603

PHYSICAL REVIEW LETTERS 128, 230603 (2022)

with boundary conditions H,(0) =H ,(7) =0. The dynami-
cal evolution under the total Hamiltonian H = H, + H, is
described by the Langevin equation as

o= OH
l_api’
pPi= —8—%—}’3614'5[(1)’ (1)

where y is the dissipation rate and EE (&1, &, ..., Ey) are
random variables of the Gaussian white noise. The evolu-
tion equation of the system distribution p(X,p,t) =
6(x —X(1))s(p — p(r)) for a trajectory (X(2), p(t)) is
described by the Liouville equation as O, =
>0y, (xip) +0,.(pip)]. By averaging over different
noise realizations () and a given initial distribu-
tion P(x(0), p(0)), we obtain the evolution of the observ-
able probability distribution P(x,p,t)=(p(x,p,1)) =

JIPEDID[p(0)] 7 [x(2), p(1)|6(x—=x(1))6(p = p(2)) as [30]

8P7 0 (0OH 0 (OH OH y@zP
E‘Z[‘a@(a—m”) tom (P50 ) oot
(2)

where f=1/(kgT) is the inverse temperature with the
Boltzmann constant kg. Here, .7 [X(t), p(¢)] is the proba-
bility of the trajectory (X(¢), p(7)) associated with a
noise realization E(l) and the given initial distribution
P(X(0), p(0)) [31,32]. The exact definition is presented
in Supplemental Material [30]. To ensure the instantaneous
equilibrium distribution

P(R, 1) = Poy(%, p, 3) = SID-HERD] - (3)

the auxiliary Hamiltonian is proved [11] to have the form

H, (% p.1) =1 f(X p.1) with f(Z. p, 1) satisfying

Z azfﬂ 0f, 0,00, f,] _dF _ov,
I@p op; Ox;  'ox;| dA, 04,
(4)

where F = —f~" In[[dXdp exp(—fH,)] is the free energy.
The boundary conditions are presented explicitly as
2(0) = (z) = 0.

The cost of the energy in the shortcut scheme is

evaluated by the average work W= ( [dt0,H)z g [33-36],
explicitly as

y 2
W= AF+,Y :/dt//d)?dﬁ<%—za> Pur (5)
A i

where AF = F (1(1)) -F (Z(O)) is the free energy differ-
ence. We remark that there is only a partial derivative to
momentum in Eq. (5) due to the vanishing probability
Py (X, D, 7) for the large momentum p. A detailed deriva-
tion of Eq. (5) is presented in Supplemental Material [30].
To consider the finite-time effect, we define the irreversible
work W,, = W — AF, which follows

of (‘9fu>
Wi = d/1 ) K , 6
72/ ! <8Pl 8171' eq ( )

yuvi

with ( = dXdp[-]Pey. It follows from Eq. (6) that the

1ntegrand scales as 772 through reducing the time s = t/1,
which results in the 1/z scaling [25] of the irreversible
work, i.e., Wy, o 1/7. Such a 1/7 scaling, predicted in
various finite-time studies [20,37—-46], was recently veri-
fied for the ideal gas system [47] at the long-time limit. It is
worth noting that in the shortcut scheme the current scaling
is valid for any duration time 7 with no requirement of the
long-time limit [25,27,43,48,49].

In the space of thermodynamic equilibrium states
marked by the control parameters A, we define a positive
semidefinite metric

_ Ofu 0f,
S _yzl:<apl api>eq’ (7)

whose positive semidefiniteness is proved in Supplemental
Material [30]. This metric induces a Riemannian manifold
on the space of thermodynamic equilibrium states, in which
the distance of a shortest curve connecting two equilibrium
states is characterized via the thermodynamic length

[25,27-29.48] as L = [ dt ZW
lower bound of the irreversible work W, as

;Iﬂ/'lbgﬂy. It provides a

Wip 2 = (8)

which is obtained by using the Cauchy-Schwarz inequality
[27]. The lower bound is reached with the optimal control

scheme Z(r) (0 <t < 1), determined by the geodesic
equation

A+ Thdyde =0, (9)

with the given boundary conditions 1 (0) and z(r) Here, the
Christoffel symbol is defined as T =3 >_,(97"),,(95, 90+
0, 9x — 0;,9,). For the case with the single control
parameter A(), the analytical solution [28] for Eq. (9) is
obtained as A(r) = [A(z) — A(0)]g(A(1))~"/ [z dr g(A(r))",
withg = y((0,f )2>eq. For the case with multiple parameters,
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the shooting method is an available option which treats the
two-point boundary-value problem as an initial-value prob-
lem [50]. See Supplemental Material for details about the
shooting method to our problems [30].

The strategy of current formalism_is shown in Fig. 1.
First, we obtain the control operators f (X, p, 4) in Fig. 1(a)
by solving Eq. (4). Second, the metric g,, in Fig. 1(b) for
the parametric space is calculated via Eq. (7). Finally, the
optimal control is obtained by solving the geodesic
equation in Eq. (9). The current strategy provides an
effective approach to find the optimal control to minimize
the energy cost, i.e., the total work done during the
shortcut-to-isothermal process. The strategy is illustrated
through two examples with one or two control parameters
as follows.

Brownian motion in the harmonic potential.—The
Brownian particle is trapped by the one-dimensional breath-
ing harmonic potential with tunable stiffness A(¢) under the
Hamiltonian H,(x, p,4) = p?/2 + A(t)x*/2. Its auxiliary
Hamiltonian was derived in Ref. [11] as H,(x,p,t) =
Af(x, p.A) with f = 1/(4y2)[(p — yx)? + Ax%]. The metric
in Eq. (7) in this case reduces to [30]

A+7?
9= 3 -
dypA

(10)

And the lower bound of the irreversible work is
reached by the protocol satisfying the geodesic equation

4+ 29,9/ (29) = 0. The solution

fenlt) = +§(7;(m_‘" ; f/f 2L

offers an optimal protocol to minimize the energy cost in the
shortcut scheme. Here, m, = 1/1(0) + y*/[24(0)] and
n, = 1/4(0) + 72/ [24(0)] = 1/(z) = 1*/[24(x)] are con-
stants for single control-parameter case. And the irreversible
work of the geodesic protocol (GP) reaches its minimum
wmin — [12gdt = n2/7, which is consistent with the
lower bound given by the thermodynamic length

L = [71/2*gdt = n, through the relation W™ = £2/z.

Underdamped Brownian motion with two control
parameters.—We consider a Brownian particle moving
in the one-dimensional harmonic potential with
Hamiltonian H,(x, p, A) = p*/2 + 4,x*/2 — A,x. The aux-
iliary Hamiltonian for the shortcut scheme takes the form
[30] H,(x, p,t) = ,24:1 Aufu(X, P, A1, Ay) with

= (p = yx)* + Ay x° _@+ <7/12 Ay >

p rx
= ——_——, 12
f2 PRy (12)

-

The metric in Eq. (7) for the control parameters 4 is
obtained as

Ly Tk
_ (4/%% + 4pi3 + P P ) (13)
_rh z
A g
The geodesic equation follows
. B +22
i - 1(}’2+ 1)20’
20"+ 4)
s 20k (PP 424

A 223(r* + A1)

with the boundary conditions (0) and A(z).

The optimal scheme can be obtained by solving equa-
tions above using a general numerical method, i.e., the
shooting method [50]. Here, we first solve these equations
numerically to provide a general perspective on our
scheme. With the initial point A(0), we choose an initial

rate Z(O—I—) and solve the geodesic equation with the Euler
algorithm to obtain a trial solution 1™ (z). Newton’s method

is utilized for updating the rate E(OJr) to reduce the distance

between the trial solution /Tm(r) and the target point Z(r)
In the simulation, we have chosen the parameters

A(0) = (1,1), i(r) = (16,2), kT =1, and y = 1. The
geodesic path for the optimal control is illustrated as

A9 (1) (triangles) in Fig. 2.

A XGPR(t)
15+t A Agp’“(t) - .
X§P2(2) PR
Gy
<0 == =) P
S I ) P
L d
’/
5 L
L N
e T T A
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FIG. 2. Geodesic protocols for the control with two parameters.
In the simulation, we have set the temperature and the dissipation
rate as kzgT =1 and y = 1. The parameters change from the
initial point 4(0) = (1,1) to the final point A(z) = (16,2). The
triangles represent the numerical geodesic protocol 7k () while
the solid lines represent the analytical geodesic protocol IGP‘”(t).
The dashed lines represent the linear protocol I““(r). The
numerical geodesic protocol (triangles) coincides well with the
analytical geodesic protocol (solid lines).
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FIG. 3. The irreversible work of the geodesic protocol (black
solid line) and the linear protocol (blue dashed line). The black
solid line represents the lower bound given by the thermodynamic
length, i.e., Eq. (8). The irreversible cost given by the geodesic
protocol is lower than that from the linear protocol.

Fortunately, the analytical geodesic protocol for Eq. (14)
can be obtained as

i _Wb /1?
1= —A\/57
T A +7
A
f:mbt/r+nb, (15)
1

where wy = —[23/1 +72/4 +In(y/1 +¢y*/A = 1) =
In(\/1+ 77 /2 + DI mp=[2(2)21(0)=22(0)4, (z))/
[41(7)2;(0)], and n, = 4,(0)/4,(0) are constants. In Fig. 2,
we show the match between the optimal control obtained

from the numerical calculation ZGP'"(I) (triangles) and the

analytical solution ZGP‘“(t) (solid lines). For the compari-

son, we also show the protocol of the simple linear
control "™ (¢) = [A(z) — A(0)]¢/z + A(0).

To validate our results of optimization, we plot the
irreversible work W, as a function of duration 7 for both
the geodesic path and the simple linear control in Fig. 3.
The geodesic protocol results in a lower irreversible work

than that from the simple linear protocol Z““(t). The black
solid line shows the analytical results WMt = £2/z,
where the thermodynamic length £ is calculated as

L= fg di Z/w \/j“ﬂ’.lvg;w = \/W%,/(“'ﬂ}’) + )/Wl%7 and the

blue dashed line represents the irreversible work of the
linear protocol [30]. Figure 3 shows that the geodesic
protocol can largely reduce the irreversible work, which
therefore proves our findings about the geometric property
of the control-parameter space in the shortcut scheme. Our
findings simplify the procedure of finding the optimal
control protocol in the shortcut scheme by applying the
tools of Riemannian geometry.

Conclusions.—In summary, we have provided a geo-
metric approach to find the optimal control scheme to steer
the evolution of the system along the path of instantaneous

equilibrium states to reduce the energy cost. The proven
equivalence between designing the optimal control and
finding the geodesic path in the parametric space allows the
application of the methods developed in Riemannian
geometry to solve the optimization problem in thermody-
namics. We have applied our approach into the Brownian
particle system tuned by both one and two control
parameters to find the optimal control for reducing energy
cost. Analytical results have verified that the geodesic
protocol can largely reduce the irreversible work in the
shortcut scheme. Our strategy shall provide an effective
tool to design the optimal finite-time control with the
lowest energy cost.

Our results demonstrate that the optimal control with the
minimal energy cost to transfer the system between
equilibrium states is to steer the system evolving along
the geodesic path. Once the initial and final equilibrium
states are given, the geodesic path is determined by the
geodesic equation (9) for the given system. The dynamics
of the system is covered by the metric g,, in Eq. (7) without
the need to treat the system on a case-by-case basis. An
intuitive determination of the performance of the controls is
allowed with the proportional relation in Eq. (8) between
the minimal energy cost and the square of the length of the
geodesic path.
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