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A central challenge in quantum computing is to identify more computational problems for which
utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical

scheme to tackle the quantum optimal control problem. We show that the most computationally demanding
part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input,
can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries

to and receiving answers from the quantum simulator, classical computing devices update the control
parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in
experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in

optimizing state preparation without involving classical computation of the large Hilbert space evolution.
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Quantum computing promises to deliver a new level of
computation power [1]. Enormous efforts have been made
in exploring the possible ways of using quantum resources
to speed up computation. While the fabrication of a full-
scale universal quantum computer remains a huge technical
challenge [2], special-purpose quantum simulation can be
an alternative [3—5]. Quantum simulators are designed to
imitate specific quantum systems of interest, and are
expected to provide significant speed-up over their classical
counterparts [6]. In recent years, quantum simulation has
found important applications for a great variety of compu-
tational tasks, such as solving linear equations [7,8],
simulating condensed-matter systems [9], calculating
molecular properties [10,11], and certificating untrusted
quantum devices [12]. However, in view of experimental
implementation, most of the proposed algorithms have
hardware requirements still far beyond the capability of
near-term quantum devices.

Recent advances towards building a modest-sized quan-
tum computer have led to emerging interest in a quantum-
classical hybrid approach [13-15]. The underlying idea is
that by letting a quantum simulator work in conjunction with
aclassical computer, even minimal quantum resources could
be made useful. In hybrid quantum-classical computation,
the computationally inexpensive calculations, which yet
might consume many qubits, are performed on a classical
computer, whereas the difficult part of the computation is
accomplished on a quantum simulator. The major benefit of
this hybrid strategy is that it gives rise to a setup that can have
much less stringent hardware requirements.

In this Letter, we propose a hybrid quantum-classical
method for solving the quantum optimal control problem.
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Normally, the problem is formulated as follows: given a
quantum control system and a fitness function that mea-
sures the quality of control, the goal is to find a control that
can achieve optimal performance. The importance of the
problem lies in its extraordinarily wide range of applica-
tions in physics and chemistry [16]. However, current
numerical approaches suffer from the scalability issue as
they involve computation of the many time propagations of
the state of the controlled system, which can be infeasible
on classical computers for systems of large dimensions
[17]. To address this computational challenge, we develop
hybrid quantum-classical versions of gradient-based opti-
mal control algorithms [18]. We show that, given a reliable
quantum simulator that efficiently simulates the controlled
quantum evolution, then under certain reasonable condi-
tions this simulator can be used to efficiently estimate both
the fitness function and its gradient. Additionally, a
classical computer is employed to store the control param-
eters as well as to determine the search direction in each
iteration according to the gradient information that it
receives from the simulator. Working in such a quantum-
classical manner, there can be expected a significant saving
of memory cost and time cost and hence an enhancement of
the ability of solving the quantum optimal control problem
for large-sized quantum systems.

The proposed hybrid scheme is amenable to experimen-
tal implementation with current state-of-the-art quantum
technology. Here, we also report a first experimental
realization of the scheme on a nuclear magnetic resonance
(NMR) system. The experimental results show excellent
performance of our method in obtaining high-quality
optimal control solutions.
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Theory.—To start, we briefly describe the quantum state
engineering problem. Consider an n-spin-1/2 quantum
spin system, which evolves under a local Hamiltonian
Hg =Y % H,. Here, each of the L terms H, acts on a
subsystem containing at most a constant number of spins.
Such a form of Hamiltonian can be efficiently simulated
[19] and can describe a variety of quantum systems,
e.g., the quantum Ising model and the Heisenberg
model. Suppose the system is manipulated with a trans-
verse time-varying magnetic control field u(r) = (u,(7),
uy(t)):t€[0,T]. Let o,, o,, and o, denote the Pauli
operators, then the control Hamiltonian reads H(t) =
Sor (uy(1)o% + uy(t)ot), in which 7 is set as 1 and the
gyromagnetic ratios are not written explicitly. The control
task is to steer the system between states of interest in the
Liouvillian space. Normally, we need a fitness function to
give a performance metric of the control. To this end, a set
of operators P, = {P;}{ 4! ={l.0,.06,.0,}®", with I
being the 2 x 2 identity, is introduced. It constitutes an
orthonormal basis of the state space: Tr(PP;)/2" = &, for
k,j=0,...,4" — 1. Thus, any state can be represented as a
vector with respect to P,,. Let the system’s starting point be
pi and the targetbe p = > ¢ x, P, where S is the index set
for s. As we are considering closed system engineering, p;
should be unitarily convertible to p. Now the state-to-state
transfer task is formulated as the quantum optimal control
problem [18],

max  f[U(T)p;U(T)", p| = Te[U(T)p;U(T)" - p)/2",

s.t. Ur) = —i(HS + i (u,(t)ok + L@(t)af,)) U(r),

where U(0) = I®" and f, the fitness function, is expressed
as a functional of the input control u(z) and may possess
many local extrema. Except for relatively small systems
with two or three qubits [20,21], analytically solving the
problem for generic Hy is difficult.

Generally, one must resort to numerical investigations,
and the most favored approach is to employ gradient-based
optimization methods. A gradient-based algorithm gener-
ates a sequence of iterates u©@ 41 . which starts from a
designed trial input or even simply a random guess, and
stops when a certain termination condition is fulfilled [22].
The move from one iterate (%) (g 2 0) to the next follows
the line search strategy

u(q""l) = u(q) + (x(q)p(q>’ (1)

that is, it first fixes a search direction p("> and then
identifies a move distance a'?) along that direction. The
computation of p(9) makes use of information about f and
the gradient Vf at current iterate (7, and possibly also

information from earlier iterates. The step size a'? is
chosen such that a sufficient increase in f can be acquired.
The algorithm succeeds if the sequence f(u(?)), f(u(M), ...
converges to a desired local extremum. There exist various
types of gradient-based algorithms, which are classified
based on the method used for determining the search
direction. For example, the known gradient ascent pulse
engineering (GRAPE) [18] algorithm finds local extrema
by taking steps proportional to the gradient, while con-
jugated gradient [23] and quasi-Newton methods [24]
would search along other gradient-related directions that
allow for faster convergence speed.

Here we develop a hybrid quantum-classical framework
for gradient-based optimal control. It would be convenient
to cast the ideas in terms of the standard oracle-based
optimization model [25,26]. Consider an oracle function
O:u — {f(u),Vf(u)} which, when queried at any point
u, gives the corresponding value of f and Vf. Obviously,
constructing such an oracle O represents the most computa-
tionally resource-consuming part of the optimization pro-
cedure, and we propose to realize it with using a reliable
quantum simulator. The simulator does not necessarily
have to be universal. For instance, it can just be provided by
the controlled system itself [27-29]. The simulator works
with a classical computer that stores the control variables
and records all iterative information if necessary. Our
hybrid scheme consists of successive rounds of control
updates; see Fig. 1. For each round the classical computer
first sends the current point u to the oracle O as input,
meaning that it is posing a query, and then, according to the
answer of O, it executes a line search subroutine so as to
decide at which point the next query should be made. Here,
the query is encoded in control pulses and the answer is
extracted through quantum measurements on the final state
of the simulator.

So far we have not mentioned the convergence properties
of the optimization. Gradient-based algorithms may get
trapped at suboptimal points. Yet research shows that,
under certain conditions, most of the control landscapes are
trap free and convergence to an optimal solution is usually
fast [30]. In our hybrid quantum-classical scheme, the only
change is that we use quantum resources to implement the
oracle function O. Therefore, the convergence properties
will remain unchanged as long as our quantum simulator is
sufficiently trustable.

Now we explain how the oracle O is quantumly
constructed. We use the number of experiments needed
to compute O as a complexity measure of the method.
Running the numerical optimization requires that the
control field be discretized. Let the pulse u(¢) be divided
into M slices with each time slice being of constant
magnitude and fixed length 7 = T/M. In consideration
of memory cost, M should be polynomially scaled. The mth
slice control u[m] generates the propagator
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FIG. 1. (a) Hybrid quantum-classical approach to gradient-

based optimal control iterative algorithms, wherein the quantum
simulator is combined with classical computing devices to jointly
implement the procedure of optimal control searching. Here, p;,
is the input state, p,, is the output state, double-lined arrows
signify quantum information, and M represents quantum meas-
urement. (b) Schematic diagram of an NMR based implementa-
tion of the quantum-classical hybrid optimal control searching.
The sample consists of an ensemble of spins and serves as a
quantum processor. Query is encoded in input radio-frequency
(rf) control pulse and the answer that the sample generates is
extracted from observing the free induction decay (FID).

U, = exp {—i {HS + z": (u,[m]o* + u},[m]of;)] r}.

k=1

For notational brevity let Uy? denote Un, Ups1Up,,

where m, > m. So the final state is p, = UYp,U}'". We,
hence, have the following expression for f:

f = Tr(ﬁf/_))/zn = szTr(prs)/Z". (2)

SES

It can be readily seen from the equation that, rather than full
tomography of final state, f can be directly measured with
|S| experiments. That is, for the sth experiment we first
initialize our simulator at p;, then simulate the system
evolution under control # and then measure the final state
with basis operator P,. After this, we sum up all the
measurement results according to Eq. (2) and hence obtain
an estimation of f.

Next, let us see how to compute the 2M-dimensional
gradient vector g = Vf = (g.[m], g,[m]), where g,[m] =
Of | Ou,[m] (a = x or y). To first order approximation, it is
evaluated as [18]

Galm] =Y Tr(=icUM. | [ok, Utp;UT|UM, ) /27, (3)
k=1

The approximation is good if 7 is sufficiently small. Note
that for any operator p, there is

ok p] = i[Réi (g)pR’; @T ~ R (— §>pR§ (— gﬂ
(4)

in which R (£7/2) is the +7/2 rotation about the a axis on
the kth qubit. The essential point is that we can compute the
commutator by means of local qubit rotations. Substituting
Eq. (4) into Eq. (3), one gets that

n

9alm] =7 Z [Tr(pi7p) — Tr(ps™p)l/2".  (5)

where pi" = Uyl Re(£1/2)UT pi(Uy Re(£2/2)UT)'.
Therefore, to obtain the mth component of g,, we perform
2n experiments: we (i) sequentially take out an element
from the operation set {R&(+x/2)},_, ., and insert it
after the mth slice evolution; (ii) measure the distances of
the final states with respect to p, and (iii) combine all the
measurement results according to Eq. (5). A quick calcu-
lation shows that in each round of iteration in total 4nM|S)|
experiments are needed to perform gradient estimation.

Summarizing the above derivations, we conclude that in
total we need to perform (4nM + 1)|S| experiments on the
quantum simulator to estimate f and g. It is interesting to
seek instances for which our scheme can be qualitatively
advantageous over conventional approaches. Obviously,
that target states possessing exponential number of nonzero
components require also that many measurements to take.
This implies that, to ensure the whole process be feasible,
we have to restrict consideration to a specific kind of target
states. An important fact in quantum computing says that,
to build up quantum operations out of a small set of
elementary gates is generically inefficient [1]. In other
words, there are overwhelmingly many states that are
complex in the sense that they take the exponential size
of a quantum circuit to approximate. Therefore, it makes
sense if we restrict ourselves to relatively less complicated
states, for example, those which admit sparse representa-
tion with respect to some basis, where the basis fulfils the
condition that measurement of any of its elements con-
sumes only polynomial resources. In the present setting, we
will be interested in |S|-sparse states under basis P, with
|S| < |P,|. Despite the problem simplification, from the
practical side they are undoubtedly still difficult tasks at
the current level of large-system control technology. The
sparsity assumption drastically reduces the time cost for
physically implementing O and, consequentially, the great
chance of our hybrid quantum-classical approach to pro-
vide significant speedup.
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Experiment.—We choose the fully '3C-labeled crotonic
acid as our test system, on which we demonstrate the idea
of using the sample to compute its own optimal control
pulse. The sample consists of four carbon nuclei and five
proton nuclei, in which the methyl protons Hs, Hy, and Hs
are chemically and magnetically equivalent and hence
are indistinguishable; see Fig. 2(a). Therefore, the nine
physical spins map onto seven addressable qubits, where
one of these qubits is obtained from the subsystem of
methyl spins. Experiment is carried on a Bruker Avance 111
400 MHz spectrometer at room temperature. The
system Hamiltonian takes the form Hg = Y7, Q0% /2 +
Ty Ik jalzfoé /2, where Q is the precession frequency of
the kth spin, and Jy; is the coupling between the kth and jth
spin; see Supplemental Material [31] for their values. To
describe states of the nuclei, we use deviation density
matrices, that is, the traceless part of the density matrices
up to an overall scale [32]. Our goal is to create state
p = olo’ciolcl6867, which is the largest multiple-spin
correlated operator that can be directly observed from the
spectrum. Observation is made on C, because all the
couplings are adequately resolved. Our experiment is
divided into two parts: reset and preparation.

In the reset part we return the system to a fixed initial
state p;, which has to be unitarily equivalent to p. So the
system’s equilibrium state is not considered because it has
different spectra with that of p. Although there are many
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FIG. 2. (a) Molecular structure of crotonic acid. (b) Pulse
sequence scheme for our multiple-quantum coherence generation
experiment. The gray part is designed to reset the system back
into p;, and the preparation part is an approximate circuit (in
which cw: continuous wave; G,: gradient pulse along z axis;
| =—18° and ¢, = 82°) aimed for making the transform
pi = p- (c) Iterative results for our system. Here u,. and u,
denote the controls obtained by searching on a classical computer
and on the sample, respectively. (d) NMR spectrum of p after 10
times of iteration under the observation of C,. It is placed with
the simulated ideal spectrum of target state p together for
comparison.

candidates, we choose p; ¢ for convenience of obser-
vation. Figure 2(b) shows our initialization sequence
design. First, we apply a continuous wave (cw) on the
proton channel. Because of the steady state heteronuclear
Overhauser effect (NOE) [33], provided that the cw
irradiation is sufficiently long and strong, the system will
be driven asymptotically into a steady state p,, of the form
Pss = Dty €5.0%, that is, the protons are saturated. In
experiment, the irradiation is set to be 10 s duration and
2500 Hz magnitude. As expected, we see the establishment
of the steady state, in which only the carbons’ polarizations
are left, but with enhanced bias compared to the equilib-
rium state. For example, the NOE enhancement factor of C,
is about 1.8. Next, we retain just the signal of C, by first
rotating the polarizations of other carbons to the transverse
plane and then destroying them with z-axis gradient field.
This gives the desired initial state p;.

The preparation part aims to steer p; towards p. To give a
good initial control guess to accelerate convergence, we
designed an approximate preparation circuit. The approxi-
mate circuit is constructed based on a simplified system
Hamiltonian which ignores the small couplings and the
small differences between large couplings of the original
Hamiltonian. Such simplification manifests which cou-
plings are allowed to evolve for preparing p, and thus
enables direct circuit construction; see Fig. 2(b). The circuit
thus constructed, if we turn back to the real Hamiltonian,
generates a final state that deviates p only slightly:
f =~ 0.9824. Moreover, the circuit length is 16.36 ms, much
shorter than the system’s relaxation time, so the preparation
stage can be taken as unitary. In order that the number of
control parameters after pulse discretization be as few as
possible, we adopt a relatively large time step length
7 =20 ps. We use Gaussian shaped selective pulses to
implement the rotational gates. Each selective pulse has
its pulse width determined according to which qubit it is
acting on. Excluding the free J evolutions, we have in total
2 x 108 nonzero pulse parameters to be optimized. We
have employed a compilation procedure [34,35] to sys-
tematically reduce the errors that come in when the ideal
rotational operations are implemented through soft selec-
tive pulses, yet f still drops severely. Therefore, some
extent of pulse optimization is necessary.

We add a small amount of random disturbances to the
above constructed selective pulse network. The purpose of
doing so is to start the oracle iteration from a relatively low-
quality control and hence to witness a more notable rising
of f. According to our previous analysis, we roughly
figure out the experiment time cost for each round of
iteration to be about 5 h. We have demonstrated the query
action on the sample for 10 times. Figures 2(c)-2(d) show
the experimental results, from which we see clearly that
the successively updated pulse is indeed approaching a
solution of the optimal control problem. Because meas-
urement inaccuracies induce errors in gradient estimation, it
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is expected that some degree of deviation of the exper-
imental growth of f from that performed on a classical
computer appears. Therefore, the important challenge left
open is to understand quantitatively how measurement
inaccuracies affect the convergence efficiency.
Discussion.—From the control theory perspective, the
apparatus in our experiment, including a control input
generator, a sample of molecules, and a measurement device,
interact as a closed learning loop. In each cycle of the loop, the
fitness information learned from the sample directs the
optimization to achieve a given control objective. Such
strategy has the advantage of reliability and robustness.
The learning algorithm is the crucial ingredient, and previous
studies have been mainly focused on using stochastic search-
ing strategies such as evolutionary algorithms [36,37]. We
here have shown that a large class of gradient-based methods
can also be incorporated into the closed loop learning control
model. This will be important for realizing high-fidelity
quantum control experiments, such as is needed in the fields
of quantum information processing and spectroscopy.
Future work will seek to gain a better understanding of
the feasibility of the hybrid quantum-classical approach to
quantum optimal control. NMR is an excellent platform on
which to test various quantum control methods, but for our
scheme its drawback is the relatively long reset (relaxation)
time. It can be envisioned that on other quantum informa-
tion processing candidate systems that have much shorter
operation time and relaxation time [2], the search process
may get several orders of magnitude faster. We expect the
methodology developed in this work can promote studies
of scalable quantum controls on larger quantum systems.
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