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The superfluid phases in resonant dipolar Fermi gases are investigated by the standard mean-field

theory. In contrast to the crossover from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer

superfluid in Fermi gases with isotropic interactions, resonant dipolar interaction leads to two completely

different BEC phases of the tight-binding Fermi molecules on both sides of the resonance, which are

characterized by two order parameters with distinct internal symmetries. We point out that, near the

resonances, the two competitive phases can coexist, and an emergent relative phase between the two order

parameters spontaneously breaks time-reversal symmetry, which could be observed in momentum

resolved rf spectroscopy.
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Introduction.—The unprecedented experimental pro-
gress [1–5] toward creating quantum gases of fermions
with a large dipole moment has stimulated extensive inves-
tigations of dipolar Fermi gases. Owing to the long-range
and anisotropic nature of the dipole-dipole interaction
(DDI), new quantum phenomena emerge in dipolar
Fermi gases, e.g., the ferronematic phase [6], the novel
static and dynamical properties in the normal phase [7],
and the p-wave-dominated Bardeen-Cooper-Schrieffer
(BCS) superfluids induced by the partially attractive DDI
[8–11]. Of particular interest, recent studies demonstrated
that in the two-species dipolar Fermi gases, competition
between the short-range contact interaction and DDI
led to the coexistence of singlet- and triplet-paired super-
fluids [12–14].

Most theoretical works focus on the Fermi gases with
DDI in the weak coupling regime, for which the scattering
amplitude is replaced by the first Born approximation of
the bare DDI potential [15]. In the strong coupling regime,
previous studies on the low-energy scattering of two po-
larized dipoles indicate that, due to shape resonances, the
scattering lengths diverge at certain strengths of the DDI
[8,16–18]. Of particular interest, these shape resonances
may take place simultaneously in multiple scattering chan-
nels as the DDI couples partial waves with different angu-
lar momenta [17]. This multichannel resonance (MCR),
described by a matrix of the scattering lengths, is in strik-
ing contrast to the Feshbach resonance (see e.g., Ref. [19]
and references therein).

In this Letter, we investigate novel superfluid phases
in a two-species dipolar Fermi gas with resonant DDI.
On the basis of an analysis of the low-energy scattering
of two polarized dipoles, we propose an effective two-body

interaction potential and a model to describe the MCR. It is
found that a two-body bound state is formed on either side
of the resonance. Consequently, for a many-body system,
the Bose-Einstein condensates (BECs) of the tight-binding
molecules dominate on both sides of the resonance. Since
these molecular states possess distinct internal symmetries,
the system experiences a phase transition across an MCR.
Moreover, close to the resonance, two competitive phases
coexist and a relative phase between two order parameters
emerges, which spontaneously breaks the time-reversal
symmetry (TRS). Similar mixed order parameters were
studied in the high-Tc superconductors [20–24]. Finally,
we study the quasiparticle spectral function of the system
in order to explore the possibility of the experimental
detection using momentum-resolved (MR) rf spectroscopy
[25,26].
Model.—We consider an ultracold gas of two-species

dipolar fermions in a box of volumeV . For simplicity, we
assume that n" ¼ n# ¼ n, with n� being the number den-

sity of the spin-� particle. The total Hamiltonian of the
system can be decomposed into H ¼ H0 þH1, where in

the momentum space, H0 ¼ P
k;�"kc

y
k�ck�, with ck�

being the annihilation operator of the spin-� fermion and
"k ¼ k2=ð2MÞ �� with M being the mass of the particle
and � the chemical potential. Furthermore, the interaction
Hamiltonian takes the form

H1 ¼ 1

2V

X
��

X
kpq

Uðk�pÞcyq=2þk�c
y
q=2�k�cq=2�p�cq=2þp�;

(1)

where UðkÞ ¼ 4�d2ð3cos2�k � 1Þ=3 is the Fourier trans-
form of the bare DDI between two polarized (along the z
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axis) dipoles with d being the dipole moment and �k the
angle between k and the z axis. We note that the short-
range interaction can be straightforwardly included in the
two-body interaction potential U [13,15].

Effective interaction potential.—To obtain valid results
in the strong coupling regime, the bare DDI has to be
renormalized. To this end, we consider the scattering
between two polarized dipoles. In terms of the K matrix,
KðkÞ, the scattering amplitude can be generally
expressed as

fðk0;kÞjk¼k0 ¼ 4�
X

lml0m0
il

0�lk�1

�
1

K�1 � i

�
l0m0

lm

� Ylmðk̂ÞY�
l0m0 ðk̂0Þ; (2)

where the subscripts and superscripts of the bracket denote
the matrix elements. Specifically, for DDI, since U / Y20,

Kl0m0
lm is nonzero only when jl� l0j � 2. In addition,

because the DDI conserves the projection of the angular
momentum, K is diagonal with respect to the magnetic
quantum number m. Of particular importance, in the zero

energy limit, the matrix elements Kl0m
lm ðkÞ=k are all non-

vanishing [8,16], which results in finite scattering lengths

aðmÞ
ll0 ¼ �limk!0Kl0m

lm ðkÞ=k.
To proceed further, we introduce matrix A whose

elements are defined by the scattering lengths as AðmÞ
ll0 ¼

il
0�laðmÞ

ll0 . Assuming that A is diagonalized in the

orthonormal basis wjmðk̂Þ ¼
P

ldjlYlmðk̂Þ with the corre-

sponding eigenvalues �jm, the scattering amplitude,

Eq. (2), can be reexpressed as

fðk0;kÞjk¼k0!0 ¼ 4�
X
jm

fjmwjmðk̂Þw�
jmðk̂0Þ; (3)

where fjm ¼ �1=ð��1
jm þ ikÞ. It is clear that the eigenvalue

�jm represents the effective scattering length in the scat-

tering channel wjmðk̂Þ. We can now construct a separable

effective interaction potential,

U0ðk̂; k̂0Þ ¼ 4�
X
jm

gjmwjmðk̂Þw�
jmðk̂0Þ; (4)

where the coupling constants gjm satisfy the renormaliza-

tion condition

1

gjm
þ

Z d3q

ð2�Þ3
M

q2
¼ M

4��jm

: (5)

Noting that in both weak and strong coupling regimes
U0 reproduces the scattering amplitude, Eq. (2), and con-
sequently the asymptotic wave function, the validity of
the effective potential is justified because it describes
the same low-energy physics for the system as the origi-
nal interaction potential [27]. We point out that other
pseudopotentials applicable to the strong DDI were also
proposed [28,29].

Two-body physics in the resonance regime.—With the
effective potentialU0, it can be shown that if �jm is positive,

the scattering channel wjmðk̂Þ may support a two-body

bound state with binding energy Eb;jm ¼ �1=ðM�2
jmÞ

(see e.g., Ref [30]). Indeed, numerical calculations show
that, as one tunes the dipole moment d of the colliding

particles, the scattering lengths aðmÞ
ll0 appear to have various

resonances [8,16,17]. Those shape resonances indicate the
DDI indeed supports bound states. Noting that within

the same l and l0 manifold, aðmÞ
ll0 with m ¼ 0 is always the

largest term [8], here and henceforth, we restrict our analy-
sis to m ¼ 0 and drop the index m.
To be specific, we consider the collision between spin- "

and a spin- # particles in the spin-singlet channel. In gen-
eral, the shape resonances induced by the DDI are well-
separated [17], which allows us to focus on a particular
resonance, say the resonance of a00 at dipole moment dr.
Interestingly, Kanjilal and Blume found that a resonance
on a02 also takes place at the same position dr [17].
In principle, because the DDI couples the partial waves
jl� l0j � 2, resonances should occur in all all0 with l, l

0 ¼
even. Therefore, unlike the Feshbach resonance, the shape
resonance induced by the DDI may occur simultaneously
in multiple scattering channels. Utilizing the fact that the
widths of the resonances decrease with increasing lþ l0
[17], we propose a minimal model for MCR by assuming
that it is described by the matrix

A sd ¼ a00 �a02
�a02 0

� �
;

where all other scattering lengths are assumed to be zero.
We note that the exact behavior of Asd depends on the
details of the short-range physics of the colliding particles.
However, as will be shown, some general properties for
MCR can be obtained by analyzing this simplest model.
The matrix Asd can be easily diagonalized to yield

the eigenvalues �1;2 ¼ ½a00 � sgnða02Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a200 þ 4a202

q
�=2

and the corresponding eigenstates w1;2ðk̂Þ ¼ ½s1;2Y00ðk̂Þ þ
Y20ðk̂Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21;2 þ 1

q
, where s1;2 ¼ �ðy� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p Þ=2 with

y ¼ a00=a02. Clearly, independent of the values of the
scattering lengths, only one of the eigenvalues can be
positive; i.e., only a single bound for any given set of
(a00, a02) exists. More specifically, on the upper (a�1

00 ,

a�1
02 ) parameter plane, we have �1 > 0, which leads to

the binding energy Eb ¼ �1=M�2
1 and the angular distri-

bution of the bound state wave function jw1ðk̂Þj2. On the
other hand, �2 is positive on the lower (a�1

00 , a
�1
02 ) plane.

Consequently, the angular distribution of the bound state

wave function becomes jw2ðk̂Þj2. Since w2ðk̂Þ is orthogo-
nal to w1ðk̂Þ, the bound state changes its microscopic
symmetry when a02 changes its sign. One can also carry
out a similar analysis when a00 changes its sign. Therefore,
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we expect that a quantum phase transition takes place as
the system crosses an MCR.

We remark that the above discussion can be easily
generalized to the MCR between two spin polarized parti-
cles by replacing the even orbital angular momentum
quantum numbers with odd ones. In this case, the simplest
model for the MCR is characterized by the matrix

A pf ¼ a11 �a13
�a13 0

� �
:

The properties of the two-body bound states can be derived
straightforwardly.

Many-body physics across an MCR.—For the superfluid
phases of a resonant dipolar Fermi gas, we focus on a single
MCR in the spin-singlet channel. This can be achieved by
imposing a restriction on the parameter regime, within
which the resonance in the spin-triplet channel is absent.
At zero temperature, the system can then be treated by
using the standard BCS mean-field theory.

To start, we define the order parameters for channels

wjðk̂Þ as �j ¼ 4�gj
P

kw
�
j ðk̂Þhc�k#ck"i=V , which satisfy

the coupled gap equations

� M�j

16�2�j

¼ X
j0

Z d3p

ð2�Þ3 w
�
j ðp̂Þ

�
1

2Ep

� M

p2

�
wj0 ðp̂Þ�j0 ;

(6)

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k þ j�ðk̂Þj2

q
is the quasiparticle excitation

energy with �ðk̂Þ ¼ P
j�jwjðk̂Þ being the order parame-

ter. Furthermore, to completely determine the gaps �j, one

needs the density equation, which for the spin-balanced
system takes the form

k3F
3�2

¼
Z d3p

ð2�Þ3
�
1� "p

Ep

�
; (7)

where kF ¼ ð6�2nÞ1=3 is the Fermi momentum. Equations
(6) and (7) form a closed set of equations for the order
parameters �j and the chemical potential �. Even though,

the order parameters �j are generally complex numbers, it

can be shown that only their absolute values j�jj and the

relative phase � ¼ argð�1Þ � argð�2Þ are relevant.
For a given set of scattering lengths a00 and a02, the self-

consistent Eqs. (6) and (7) can be solved numerically. In
general, there are multiple solutions corresponding to dif-
ferent local minima of the energy density,

E ð�1;�2; �Þ ¼
Z d3k

ð2�Þ3
�
"k � Ek þ j�ðk̂Þj2

2Ek

�
þ�k3F

3�2
:

The true ground state can be identified by comparing E
corresponding to the different solutions.

In principle, to obtain a full picture of the superfluidity in
the resonant dipolar gases, one should numerically find
the gaps for the scattering lengths covering the entire
(a�1

00 , a
�1
02 ) plane. Here, for simplicity, we fix the ratio

y � a00=a02 of the scattering lengths and treat a�1
02 as a

free parameter. This treatment implies that the widths of
the resonances in a00 and a02 are the same, which seems
rather unrealistic, as the resonance in a02 is generally more
narrow than that in a00. However, the physics presented
here stands as long as the widths of the two resonances
become comparable.
In Fig. 1, we present the order parameters and the chemi-

cal potential of the system across an MCR for y ¼ �1. As
can be seen, away from the resonance, the condensation of
the molecular state [�1 (�2) for a02 > 0 (< 0)] always
dominates. From the angular distributions of the order

parameter �ðk̂Þ, the Cooper pairs show completely differ-
ent internal symmetries on different sides of the resonance.
In this sense, a phase transition takes place as the system
crosses the resonance. This result is in contrast to the
Feshbach resonance, for which only a smooth crossover is
experienced [31,32]. Near the resonance, a�1

02 � 0, the

amplitudes of �1 and �2 become comparable such that
the two order parameters coexist in the system.Of particular
interest, a nonzero relative phase also develops in this

region. As a result,�ðk̂Þ becomes complex, which indicates
that the TRS is spontaneously broken. In fact, such mixed
order parameters with nonzero relative phases have been
extensively studied in the high-Tc superconductors [20].
Further evidence about the phase transition is provided

by the chemical potential, which becomes negative away
from the resonance. This indicates that strongly coupled
BECs form on the both sides of the resonance. In addition,
� reaches its maximal value when the system approaches
the resonance, which explicitly shows the competition
between these two phases. As a comparison, we point out
that for the BCS-BEC crossover induced by the Feshbach
resonance, the chemical potential monotonically decreases
from the Fermi energy to a negative value as the system
passes through the resonant regime from the BCS side to
the BEC side.

FIG. 1 (color online). Order parameters (upper row) and
chemical potential (lower row) for a two-species dipolar Fermi
gas in the resonance regime with y ¼ �1 (left column) and 1
(right column). Here, "F ¼ k2F=ð2MÞ is the Fermi energy.
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It is also worthwhile to note that the sign of a00 deter-
mines the detailed behavior of the order parameter for the
BCS state. For negative (positive) a00, the amplitude of
the BCS state quickly (smoothly) decays to near zero when
the system moves away from the resonance.

Replacing the matrix Asd by Apf , one can generalize

the above analysis to a single-component dipolar Fermi gas
in the MCR regime. Indeed, it is found that other than the
angular distribution of the order parameter, the behaviors
of the gaps and the chemical potential are very similar to
those of a two-component gas.

Experimental detection.—Now, we explore the possibil-
ity for the experimental detection of the fermionic super-
fluid with MCR. A potential technique for detecting the
phasewithmixed order parameters and the associated phase
transition is MR rf spectroscopy [25]. In such experiments,
a rf pulse drives the transition fromone of the two spin states
to an unoccupied third spin state, and the photoemission
spectroscopy measures the quasiparticle spectral function

Aðk; !Þ ¼ �

�

X
s¼�

u2k;s
ð!� sEkÞ2 þ �2

; (8)

where u2k;� ¼ ð1� "k=EkÞ=2 and � is the energy

resolution.
As an example, we present lnAðk; !Þ in Fig. 2 for the

ratio of the scattering lengths y ¼ 1. At the left end of
the resonance (1=kFa02 ��1), the system is dominated
by the order parameter �2w2ðkÞ. It can be shown that the
gap is closed at cos��k ’ �0:39 and reaches its maximum
value at cos���k ’ �0:9. This property is clearly demon-
strated in the left column of Fig. 2. On the other hand, for
1=kFa02 � 1, the order parameter roughly becomes
�1w1ðkÞ, for which the gap is closed at ���k and opens up
at ��k. The behavior of the spectral function can then be used
to identify the phase transition. Moreover, as shown in the

middle column of Fig. 2, the gap presents for both ��k and

���k in the resonance regime (1=kFa02 � 0). In fact, in

this regime, it can be shown that the gap is nonzero for
arbitrary �k.
For an arbitrary y value, it is still possible to distinguish

the two phases away from the resonance by using the
spectral function. To demonstrate this, we plot the y depen-
dence of the angular distributions of the order parameters
wjðkÞ in Fig. 3. It can be shown that for y < y1 ’ 1:79 (y >

y2 ’ �0:22), w1 (w2) always has a zero at j cos�kj> 0:58
(<0:58). Therefore, for y2 < y< y1, the spectral function
possesses features similar to those displayed in Fig. 2.While
for y < y2 and y > y1, only at one end of the resonance one
can observe that the gap is closed. The angle �k at which the
gap vanishes can be used to identify the phase.
Finally, we note that the similar analysis for the spectral

function of the MCR with odd angular momenta can be
carried out straightforwardly, for which the gap always
vanishes at cos�k ¼ 0.
Conclusions and outlook.—We have studied the super-

fluid phases of a two-species dipolar fermionic gas across an
MCR. On the basis of an analysis of the low-energy scat-
tering of two polarized dipoles, we construct a separable
effective potential for the DDI that is valid in both strong
and weak coupling regimes. We then propose a minimal
model to describe the MCR. Subsequently, two- and many-
body physics across an MCR are studied. It is found that
condensates of the molecular states with distinct internal
symmetries form on both sides of the resonance, indicating
that a phase transition occurs when the system passes
through the resonance. Near the resonance, two competitive
order parameters coexist. In addition, a relative phase
between these two orders emerges, which spontaneously
breaks the TRS. Finally, we study the quasiparticle spectral
function of the system in order to explore the possibility of
experimental detection using MR rf spectroscopy.
The proposed model allows one to investigate the prop-

erties of the strongly interacting dipolar gases without
knowing the details of the short-range behavior of the
interaction potential. Along this line, confinement-induced
resonances in lower-dimensional dipolar gases are currently
under study by taking into account the MCR [33]. Noticing
the spontaneous TRS breaking in the coexistence regime,
our future works will also include the study of Majorana

0 1 2 3 4 5
−10

−5
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5

10

FIG. 2 (color online). Quasiparticle spectral function,
lnAðk; !Þ, at cos�k ¼ �0:39 (upper row) and �0:9 (lower
row) for a superfluid in the multiple-channel resonant regime.
From the left to the right columns, 1=ðkFa02Þ ¼ �1, 0, and 1.
Other parameters are y ¼ 1 and �="F ¼ 0:2.
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FIG. 3 (color online). y dependence of the angular distribu-
tions for jw1ð�kÞj (left panel) and jw2ð�kÞj (right panel).
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edge modes [34] in the spin-polarized resonant dipolar
Fermi gases. We believe that these studies will open many
unexplored and promising avenues of research in the field of
ultracold atomic gases.
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