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For an atomic condensate in an axially symmetric magnetic trap, the sum of the axial components of the
orbital angular momentum and the hyperfine spin is conserved. Inside an Ioffe-Pritchard trap (IPT) whose
magnetic field (B field) is not axially symmetric, the difference of the two becomes surprisingly
conserved. In this Letter we investigate the relationship between the values of the sum or difference
angular momentums for an atomic condensate inside a magnetic trap and the associated gauge potential
induced by the adiabatic approximation. Our result provides significant new insight into the vorticity of
magnetically trapped atomic quantum gases.
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A magnetic trap constitutes one of the key enabling
technologies for the recent successes in atomic quantum
gases [1]. The most commonly employed magnetic traps
includes the quadrupole trap (QT) as in the magneto-opti-
cal-trap (MOT) configuration [2] and the Ioffe-Pritchard
trap (IPT) [3]. The direction of the B field forming the
magnetic trap is generally a function of the spatial position.
For a trapped atom, its hyperfine spin adiabatically follows
the changing B-field direction, and the atom remains
aligned (or antialigned) with respect to the local B field.
As a result of the adiabatic approximation, the center of
mass motion of a magnetically trapped atom experiences
an induced gauge potential from the changing B field [4,5].

In a variety of magnetic traps, e.g., in a QT, the B field is
invariant with respect to rotations along a fixed z axis. As
the case of single particle dynamics [6], such a SO(2)
symmetry leads to the conservation of the z component
Jz (�Lz � Fz) of the total angular momentum or the sum
of the z components of the atomic spatial angular momen-
tum ~L and the hyperfine spin ~F. A different symmetry
exists for an IPT giving rise to a corresponding conserved
quantity Dz (�Lz � Fz), the difference of Lz and Fz. To
our knowledge, this surprising property has never before
been identified explicitly. We feel obliged to present this
Letter because it significantly affects the vortical properties
of a global condensate ground state in a magnetic trap.

Our work is focused on a detailed investigation of the
relationship between the gauge potential and the associated
values of Jz�Dz� in a magnetic trap. For a spin-F conden-
sate, due to the appearance of the adiabatic gauge potential,
the possible values of Jz or Dz are restricted to a definite
region [�F, F]. The gauge potential of our formulation is
directly related to the effective trap rotation studied earlier
in Ref. [5]. While Ho and Shenoy mainly studied the
orbital angular momentum component in an IPT [5], in-
stead we concentrate on the conserved quantity, the sum
(Jz) or difference (Dz) for a QT or a IPT.

This Letter is organized as follows. We first consider a
spin-1 condensate in a QT. Making use of an effective

energy functional appropriate for the adiabatic approxima-
tion [5], we prove Jz 2 ��1; 1� with the actual value
determined by the angle between the z axis and the direc-
tion of the B field. We then generalize to the spin-F case.
Finally, our result is extended to an IPT.

The Hamiltonian of a spin-1 atomic condensate with N
atoms in a magnetic trap (@ � 1) isH � HS �HI with the
single atom part

 HS �
Z
 ̂y� ~r�

�
�
r2

2M
��BgFB� ~r� ~F � n̂�~r�

�
 ̂�~r�d~r;

and the atom-atom interaction Hamiltonian

 HI�
X

m;n;p;q

Z
 ̂�z�ym �~r� ̂

�z�y
n � ~r0�Vmnpq �~r; ~r0� ̂

�z�
p �~r� ̂

�z�
q � ~r0�d~rd~r0:

 ̂� ~r� � � ̂�z��1� ~r�;  ̂
�z�
0 �~r�;  ̂

�z�
1 �~r��

T denotes the annihilation
field operator for the z-quantized Fz component ofm, n, p,
q � 0, 	1. M is the atomic mass, and �B the Bohr
magneton. B�~r� and n̂� ~r� denote the strength and direction
of the local B field. The Lande g factor is gF�1 � �1=2.

Within the mean field approximation, the field operator
 ̂� ~r� is replaced by its average h ̂� ~r�i. To introduce the
adiabatic approximation, we define a group of normalized
scalar wave functions ’u� ~r�:

 h ̂�~r�i �
X

b�0;	1

����
N
p

�B�b; ~r�’b� ~r�; (1)

where �B�b; ~r� is the eigenstate of the B-quantized spin
component ~F � n̂� ~r� with eigenvalue b, satisfying
~F � n̂�~r��B�b; ~r� � b�B�b; ~r� and �By�b; ~r��B�b0; ~r��
�b;b0 . In the z-quantized representation, �B�b; ~r� �
��B�1�b; ~r�; �

B
0 �b; ~r�; �

B
1 �b; ~r��

T . In this study, it is impor-
tant to distinguish �B�b; ~r� from the eigenstates �z�0;	1�
of Fz with eigenvalues 0, 	1. In explicit form, we have
�z��1�� �1;0;0�T , �z�0���0;1;0�T , and �z�1�� �0;0;1�T .

A magnetic dipole precesses around the direction of a B
field. Majorona transitions between different �B�b; ~r� states
can be neglected when B� ~r� is large enough. Thus the
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atomic hyperfine spin adiabatically freezes in the low-field
seeking state �B��1; ~r� during the trapped center of mass
motion, and ’�1� ~r� � ’� ~r� and ’0;�1� ~r� � 0. Similarly
the z-quantized mean field becomes

  ̂� ~r� 
 h ̂�~r�i �
����
N
p

�B��1; ~r�’� ~r�; (2)

with ’�~r� a B-quantized scalar function.
Substituting Eq. (2) into the expression of H, we can

obtain the expression of the condensate energy Ead as a
functional of the scalar wave function ’� ~r�: Ead�’� �
N
R
’�� ~r�Ead’�~r�d~r. Here Ead is defined as [4,5]:

 E ad �
��i ~r� ~A� ~r��2

2M
��BB�~r� �W � Vo �

g2

2
j’j2:

(3)

The gauge potential induced by the adiabatic approxi-
mation is ~A� ~r� � �i�By��1; ~r�r�B��1; ~r� and W �
�jr�By��1; ~r�r�B��1; ~r�j � ~A � ~A�=�2M�. The trap po-
tential �BB�~r� is augmented by Vo��; z� from other
sources, e.g., an optical potential with rotational symmetry
along the z axis. Under the approximation of contact
pseudopotentials, trapped atoms collide in the same spin
aligned state. Thus the g2 term is proportional to the
scattering length a2 in the total spin channel Ftot � 2.

We show below that the gauge potential ~A� ~r� constrains
the values of Jz for a condensate ground state. In cylindri-
cal coordinate (�, �, z), the B field of a QT is expressed as
~B� ~r� � B0��ê� � 2zêz�. An optical potential Vo��; z� is

introduced to push atoms away from the region of small
B� ~r�, eliminating the deadly Majorona transitions [7,8].
Because this B field is cylindrically symmetric, ~F � n̂�~r�
commutes with the z component of the total atomic angular
momentum Jz � Lz � Fz. This allows us to choose
�B��1; ~r� as the common eigenstate of ~F � n̂� ~r� and Jz
with any possible eigenvalues. In this study we choose
�B��1; ~r� for convenience to satisfy

 Jz�B��1; ~r� � 0: (4)

This constraint on Jz limits the respective values for Lz
or Fz, in a sense equivalent to a gauge choice. The ac-
tual value of Jz for the ground state of a condensate
is determined by appropriate system parameters. Expli-
citly, a simple rotation gives �B��1; ~r� � exp�i���
exp��i ~F � ê����; z���z��1�. The angle between the z

axis and n̂�~r� is ���; z� � arccos��2z=
�������������������
�2 � 4z2

p
�.

The B-quantized ground state scalar mean field wave
function is denoted as ’g�~r�, determined from a minimi-
zation of Ead�’�. The cylindrical symmetry of both ~B�~r�
and Vo assures Ead�’��;�; z�� � Ead�’��;�� �; z�� for
any �. Because of this SO(2) symmetry, if there exists only
one normalized ground state (up to global phase factors) as
in the situation considered here for a condensate, it has to
be a common eigenstate for all rotation operators
exp��@=�@���, i.e., an eigenstate of i@=�@��. Thus, we

take ’g�~r� � ~’g��; z� exp�is��. On substituting into
Eq. (2), we obtain the z-quantized mean field h ̂� ~r�ig for
the ground state

 h ̂�~r�ig �
����
N
p

�B��1; ~r�~’g��; z� exp�is��; (5)

which is an eigenstate of Jz with an eigenvalue s, i.e.,

 Jzh ̂� ~r�ig � sh ̂� ~r�ig; (6)

because of Eq. (4).
Equation (5) and the expansion h ̂�~r�ig �P
m�0;	1h ̂

�z�
m � ~r�ig�z�m� gives

 h ̂�z�m ig �
����
N
p

�Bm��1; ~r�’g� ~r� � bm��; z�~’g��; z�ei�s�m��;

(7)

with bm � �yz �m�e�iFy���;z��z��1�. The individual spin
components of state Eq. (7) naturally carry topological
windings as a direct result of the conservation of Jz.

To determine the value of s or Jz for the ground state, we
first compute the gauge potential ~A�~r� for a QT. With the
expression of �B��1; ~r�, we find ~A� ~r� � cos���; z�ê�=�.

Using the expressions for ~A�~r�, Ead, and Ead, it is easy to
show that for a scalar wave function ~’g��; z� exp�im��
with any integer m, the energy functional Ead satisfies

 Ead�~’g��; z�eim�� � Ead�~’g� � �Em�~’g�; (8)

with Em�~’g��
R
d~rj ~’�g��;z�j

2��m2�4mcos��=�2M�2��.
In addition to the centrifugal term proportional to m2, a
term linear in m appears due to the ~A � r term in Ead.

In the following we show that the above linear term is
important for the value s, which we determine with a
variational approach. Because Ead takes its minimal value
in the state ~’g exp�is��, we have Ead�~’geis�� 
Ead�~’ge

i�s	1���. Together with Eq. (8), we find the neces-
sary condition satisfied by s: �Es�~’g�  �Es	1�~’g� or
js� Cj  1=2, where the coefficient C is defined as

 C �

R
d~rj ~’�g��; z�j

2�cos���; z�=�2�R
d~rj ~’�g��; z�j

2�1=�2�
:

When the correlation between cos���; z� and ��2 is
neglected, the factor is approximated by C 
R
d~rj ~’�g��; z�j2 cos���; z�, i.e., the expectation value of

cos���; z� for state ~’g. Since jCj< 1, we have js� Cj �
jsj � 1, which is the same as s 2 ��1; 1�. Without the
gauge potential ~A� ~r�, we would have �Em�~’g� �
m2

R
d~rj ~’�g��; z�j2�2M�2��1 � 0. Thus the value of s def-

initely would be zero. Then the appearance of a nonzero
valued s arises due to the induced gauge potential.

We now generalize our result to atoms with an arbitrary
F and inside any axially symmetric B fields. Analogously
we can prove that the value s of Jz in the ground state
satisfies the necessary condition

 js� �FFCj  1=2; (9)
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and s 2 ��F;F� with �F � sign�gF�. The result of s 2
��F;F� and the conservation of Jz is independent of the
form of the atomic interaction potential. Although its
strength g2 does affect the wave function shape, thus can
influence the value of s through the factor C.

The condition Eq. (9) also allows for a rough estimate
of Lz. A straightforward calculation gives hLzi �
s� �FF

R
d~rj ~’�g��; z�j2 cos���; z� for the spinor mean

field h ̂� ~r�ig. Neglecting the correlation between ��2 and
cos���; z� as before, the value of hLzi becomes approxi-
mately s� �FFC, which lies always in the region [�1=2,
1=2] according to Eq. (9). Therefore, the value hLzi, or
the weighted average of the winding numbers, is gen-
erally a small number, despite the winding number s�m
itself, for the component h ̂�z�m �~r�ig, may take any in-
teger in the region [�2F, 2F]. We find hFzi �
�FF

R
d~rj ~’�g��; z�j

2 cos���; z� from the expression of
hLzi, a qualitative reflection that atomic hyperfine spin is
aligned (gF > 0) or antialigned (gF < 0) with respect to
the local B field.

Our result above allows for the direct creation of vortex
states in a quadrupole trapped atomic condensate. For
example, assume a spin-1 condensate in a QT plus an
‘‘optical plug’’ [8] satisfies Vo��; z� � Vo��;�z�, then
we find C � 0 and s � 0 due to the spatial reflection
symmetry about the x� y plane. The ground state compo-
nents h ̂�z�	1�~r�ig then automatically carry persistent cur-
rents with winding numbers �1 according to Eq. (7). In
addition, the low-field seeking atoms are trapped near the
x-y plane at z � 0 because jB� ~r�j is an increasing function
of z. The populations for the three z-quantized states,
determined by �B0 ��1; ~r� and �B	1��1; ~r�, are of the same
order of magnitudes. Therefore, when a ground state con-
densate in the ‘‘plugged’’ QT is created, its	1 components
h ̂�z�	1� ~r�ig are single quantized vortex states and can be
directly resolved with a B field as used in Ref. [9].

The qualitative example above is confirmed by the nu-
merical solution for a condensate of 5� 106 23Na atoms in
a quadrupole plus a plug trap. We take B0 � 22 Gauss=cm
and Vo � Uo exp���2=	2� with Uo � �2
�8� 104 Hz

and 	 � 7:4 �m. The ground state distribution pi �R
d~rjh ̂�z�i �~r�ij

2 is found to be p	1 � 27:2% and p0 �
45:6%. The phase and density distributions for the three
components h ̂�z�0;	1�~r�ig are shown in Fig. 1(a) and 1(b).

We also can expand the ground state h ̂� ~r�ig in terms of
the eigenstates �x�m� of Fx with eigenvalues m: h ̂�~r�ig �P
m�0;	1

����
N
p
h ̂�x�m � ~r�ig�x�m�. We then immediately note

that h ̂�x�m � ~r�ig is a superposition of vortex states with

definite winding numbers 0 or 	1, e.g., h ̂�x�0 � ~r�ig �
�
����
N
p

=
���
2
p
��b�1��; z�ei� � b1��; z�e�i��. The density distri-

bution of h ̂�x�0;	1�~r�ig as shown in Fig. 1(c) clearly illus-
trates the interference pattern along the ê� direction. As is

demonstrated in Fig. 1(c), the middle panel for jh ̂�x�0 � ~r�ij
2

clearly displays the double peak structure along the azimu-
thal direction, arising from the interference of the terms
proportional to ei	�. Thus, if a B field is used to separate
the components h ̂�x�m � ~r�ig, a superposition of vortices with
different winding numbers would be obtained.

We now extend our result for an axially symmetric
magnetic trap to the widely used IPT whose B field
possesses a different symmetry. In the region near the z
axis, ~B� ~r� � B0�cos�2��ê� � sin�2��ê� � hêz�, the angle
���; z� between the local B field and the z axis satisfies

cos���; z� � h=
�����������������
�2 � h2

p
. In this case Jz is no longer

conserved due to the lack of the SO(2) symmetry.
However, we find that Dz is now conserved because it
commutes with ~F � ~B� ~r�. Therefore, we can select the
low-field seeking hyperfine spin state �B��FF; ~r� as the
eigenstate of Dz with an eigenvalue ��FF, the same spin
state as used in [5], again defined through a rotation
�B��FF; ~r� � exp��i ~F � n̂?���z��FF�. For h > 0, we
find the induced gauge potential becomes ~A� ~r� �
��FF�1� cos���; z��ê’=�.

Adopting the same notation as before, we denote
the ground state spinor mean field wave function as
h ̂�~r�ig �

����
N
p

’g� ~r��B��FF; ~r�. Interestingly, we find
Ead�’��;�; z�� � Ead�’��;�� �; z�� remains satisfied,
and the ground state condensate scalar wave function takes
the form ’g � ~’g��; z� exp�iu��. Therefore, h ̂�~r�ig is the
eigenstate of Dz with an eigenvalue d � u� �FF, and its
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FIG. 1 (color online). (a) The phases of the z-quantized com-
ponents h ̂�z�1 i (left), h ̂�z�0 i (middle), and h ̂�z��1i (right panel), as
functions of the azimuth angle �; (b) the density distributions
jh ̂�z�1 ij

2 (left), jh ̂�z�0 ij
2 (middle), and jh ̂�z��1ij

2 (right panel) of the
z-quantized components as functions of � and z; (c) the inte-
grated density distributions

R
jh ̂�x�1 ij

2dz (left),
R
jh ̂�x�0 ij

2dz
(middle), and

R
jh ̂�x��1ij

2dz (right panel) of the x-quantized
components as functions of x and y. The units for x, y, �, and
z in (b) and (c) are all arbitrary.
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components h ̂�z�m � ~r�ig �
����
N
p

b0m��; z�e
i�m�u��FF�� analo-

gously carry a persistent current with a winding number
m� u� �FF. Here b0m � �yz �m�e�iFy��z��FF�. This re-
sult is consistent with the ground state vortex phase dia-
gram for an F � 1 condensate found numerically in the
z � 0 plane of an IPT [10]. The conservation of Dz as
found by us, however, calls for a simpler labeling of each
vortex phase because only one of three integers (m1, m0,
m�1) is independent, as with Eq. (15) of Ref. [10].

Following the same reasoning as before, we find

 jd� �FF�1� C�j  1=2; (10)

for d � �FF, and d 2 ��F;F� or the value of Dz in the
ground state lies in the region [� F, F].

In an IPT, atoms are trapped near the z axis where the B
field is essentially along the z-axis direction and
�B��FF; ~r� is approximately the eigenstate �z��FF�. Lz
then is essentially always zero corresponding to a ground
state without a vortex. The angular momentum difference
Dz then becomes d � ��FF.

Several previous proposals [11] and experiments [12] on
creating vortex states unknowingly have used the fact that
h ̂�~r�ig in an IPT is an eigenstate ofDz. For example, in the
experiment of Ref. [12], spin-1 atoms initially were pre-
pared in the internal state �z��1� (Fz � �1) with no
vorticity in its spatial mode. This corresponds to Dz � 1.
To create a vortex state, the bias field along the z axis was
adiabatically inverted from the �z to the �z direction. In
this process the atomic internal state was changed from
�z��1� to �z�1�. If the whole operation is adiabatic, the
commutator � ~F � ~B�~r; t�; Dz� � 0 will be maintained.
Consequently, Dz is conserved. In the end, when the inter-
nal state was changed to �z�1� (Fz � 1), its orbital angular
momentum became Lz � Dz � Fz � 2 or a double vortex
spatial mode as was observed [12].

In Ref. [9] when the bias field is adiabatically switched
off, the direction of the B field adiabatically changes to lie
in the x-y plane. Dz is again conserved during this process
(�1). When complete, the atomic state is changed from
�z��1� to a superposition of all three components
�z�0;	1�. Then different Fz components are associated
with vortex states with corresponding Lz � Dz � Fz.
When the three internal states are separated, two of them
are observed to contain vortices with nonzero winding
numbers.

Creating a ground state condensate with Dz � ��FF
is quite challenging inside an IPT. This was considered
quantitatively by Ho and Shenoy [5], who obtained an
approximate gauge potential resembling an effective trap
rotation when expanded to the first order of �. However,
their expansion easily fails away from the z axis. A nu-
merical discussion on this challenge is provided in [10].
The more general constraint of Dz � ��FF, i.e., the
necessary condition Eq. (10) of the angular momentum

difference Dz, was not obtained in [5,10]. From a direct
calculation, it can be proved that if C is approximated byR
d~rj ~’�g��; z�j

2 cos���; z� and d � �FF, we have hLzi �
d� �FF

R
d~rj ~’�g��; z�j

2�1� cos���; z��, which can
never be greater than 1=2 according to Eq. (10).

In summary, we have investigated the angular momen-
tum of a magnetically trapped condensate. Inside an ax-
ially symmetric trap such as a QT, the total angular
momentum Jz along the symmetric z axis is found to be
conserved, while the angular momentum difference Dz is
conserved in an IPT. Both conservation laws reflect the
underlying symmetries of the traps’ magnetic fields, and
the values of Jz or Dz in the ground states are determined
by the gauge potential ~A�~r�. In the global ground state,
the corresponding eigenvalues of Jz and Dz are limited
to2 ��F;F�with the precise values directly related to the
angle between the local B field and the z axis.

Our results provide significant insights into the study of
magnetically trapped condensates. The conservation laws
we discuss reveal an important observational consequence:
in the QT or IPT [10], the components h ̂�z�m �~r�ig of a
condensate ground state automatically carry persistent
currents with different winding numbers. Furthermore,
according to the conditions Eqs. (9) and (10), the values
of Jz or Dz, or the winding numbers of the spatial wave
functions, can be controlled through the angle � between
the local B field and the z axis. We have shown for a
condensate in a QT with an optical plug, where the atomic
populations for the 2F� 1 components have approxi-
mately the same order of magnitude. Therefore, vortex
states can be present already in a ground state condensate
without requiring adiabatic operations as in [9,12].
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