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Cooling Mechanism for a Nanomechanical Resonator by Periodic Coupling to a Cooper Pair Box
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We propose and study an active cooling mechanism for the nanomechanical resonator (NAMR) based
on periodical coupling to a Cooper pair box (CPB), which is implemented by a designed series of
magnetic flux pluses threading through the CPB. When the initial phonon number of the NAMR is not too
large, this cooling protocol is efficient in decreasing the phonon number by 2 to 3 orders of magnitude.
Our proposal is theoretically universal in cooling various boson systems of a single mode. It can be
specifically generalized to prepare the nonclassical state of the NAMR.
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FIG. 1 (color online). The coupling system of the NAMR
(within the rectangle of dashed lines) and the CPB: the bang-
bang coupling is implemented by a predesigned periodic series
of magnetic flux �x threading through the CPB.
Introduction.—Recently nanomechanical resonators
(NAMRs) have been fabricated with high quality factors
(from 102 to 105) and large fundamental frequencies (in the
range of MHz–GHz) [1–3]. The NAMR has been shown as
a good candidate for exploring various mesoscopic quan-
tum phenomena at the boundary between classical and
quantum realms. Until now NAMRs have been used in
generating entangled states [4], demonstrating quantum
nondemolition measurement [5] and progressive quantum
decoherence [6], and implementing a two-qubit quantum
gate [7].

The quantum nature of NAMRs has been exhibited by
the accurate measurement near the standard quantum limit
[8,9]. But in most cases, to fully utilize the quantum
wealths provided by NAMRs it is necessary to cool the
NAMR to its ground state. There have been some schemes
for cooling NAMRs [10–12]. Some of them are based on
coupling with Josephson junction (JJ) qubit and make use
of feedback control and sideband cooling techniques.
Characterized by the maximal ratio between the average
number of phonons before and after cooling, the highest
efficiency of some schemes [11,12] can be achieved when
the initial number of phonons Nth of the NAMR is large
enough (Nth * 10�1). The cooling effect is evidently de-
creased as Nth gets very small.

Motivated by the existing investigations mentioned
above, we suggest a straightforward mechanism to cool
the NAMR. Our scheme is also based on the coupling with
the Cooper pair box (CPB), which is considered as a
controllable two-level system. Different from the existing
schemes, our cooling protocol works efficiently in small
Nth regime (Nth & 101). In our scenario, the interaction
takes place periodically between the CPB and the NAMR.
Before the interaction takes place in each cycle, the CPB is
always set to its ground state so that it can absorb some
energy from the NAMR during the interaction period. A
similar method has been used by to cool the microwave
cavity [13,14]. In principle, the present proposal can be
generalized for cooling any single mode boson system via
the coupling with a two-level system.
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One can intuitively compare our cooling mechanism
with a classical analog. To cool a thermal box one can
put a piece of ice into it and then drain the meltdown
water. It will take away part of the heat in the box.
Naively, one can freeze the drained water into ice outside
the box in some way and then place it back into the box.
Repeat this process again and again until the box reaches
the desired temperature. In our scheme, the CPB prepared
in the ground (excited) state can be imagined as the ice
(water) and the NAMR as the thermal box in the classical
analog. However, due to quantum coherence, the mecha-
nism of our cooling protocol is not as naive as this ‘‘ice-
and-box’’ analog, because the energy loss of the box is
irreversible due to the second law of thermodynamics. The
substantial difference of our protocol from the above clas-
sical analogue is the coherent oscillation of energy ex-
change between the qubit and the bosonic mode. In a
sense, our scheme is more related to a type of quantum
heat engine [15].

Model for our cooling protocol.—In our NAMR-CPB
composite system shown schematically in Fig. 1, the
NAMR is directly connected to a CPB consisting of two
Josephson junctions. The external magnetic flux �x
threads through the SQUID, which can be used to adjust
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its effective Josephson energy. CJ is the Josephson capaci-
tance, Vg the tunable gate voltage, Cg the gate capacitance,
Vx the bias voltage on the resonator, and C0 the effective
capacitance of the NAMR. Cx denotes the distribution
capacitance between the CPB and the NAMR. Let Ec �
e2=�2�Cx � Cg � CJ� be the charge energy unit and
ng�x� � �C

0�x�Vx � CgVg�=2e be the total gate charge.
The dependence of charging energy 4Ec�nc � ng�x��2

on x results in the coupling between the NAMR with
free Hamiltonian p2=�2m� �m!2

0x
2=2 and the CPB

with controllable Josephson tunneling energy �2EJ �
cos���x=�0� cos�. Here, nc denotes the number of the
excess Cooper pair on the island while its conjugate vari-
able is the phase difference � of the two sides of each
junction. Usually the fluctuation of x is much smaller than
the distance d between the NAMR and the CPB. At the
exact resonance point defined by �CxVx � CgVg�=2e �
N=2 where N is odd, the CPB acts as a two-level system,
a qubit. We denote two linearly independent charge states
by j1i � jnc � �N � 1�=2i and j2i � jnc � �N � 1�=2i.
Under the two-level approximation and the rotation wave
approximation (RWA), we write the above Hamiltonian as
the Jaynes-Cummings (JC) form [12]

H � EJ cos
�
�

�x

�0

�
�z �!0a

ya� g�a�� � H:c:�: (1)

Here, �z���; ��� are defined with respect to the new basis
fjei � �j1i � j2i�=

���
2
p
; jgi � �j1i � j2i�=

���
2
p
g; a (ay) are

the phononic creation and annihilation operators of the
NAMR mode with the effective coupling constant g �
4Ecnx

������������������
1=2m!0

p
=d where nx � CxVx=�2e�.

In our protocol, the above JC-type interaction is as-
sumed to take place periodically with rate ra. Then it is
switched off after the duty cycle interval � of the order of
g�1. This on-and-off switching can be realized by the
magnetic flux �x. In fact, at the exact resonance point,
the JJ tunneling energy EJ cos���x=�0� is just the energy
level spacing. It will be switched to the value resonant with
the NAMR during the duty cycle � and far-off resonant
outside this period. The similar manipulation has been used
to create the nonclassical photon state based on the super-
conductor devices [16].

To implement our proposal we have two main tasks to
realize the periodical coupling: (a) Switching on and off
the interaction between the CPB and the NAMR periodi-
cally, and (b) Preparing the CPB to its ground state before
the interaction takes place in each cycle. Both tasks can be
accomplished via tuning the magnetic flux �x with time. In
fact, the gate charge fluctuation induced relaxation rate
��!� � ��g!�coth�!=2kBT� � 1�=2 of the CPB at tem-
perature T [12] can be well controlled by varying the flux
�x since! � EJ cos���x=�0�. Here, kB is the Boltzmann
constant, �g is about 2e2R�C2

x�C2
g�=���Cx�Cg�CJ�2�,

and R the fluctuation impedance of Vg and Vx. Outside the
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duty cycle �, one can switch the energy spacing ! of CPB
to a large value to satisfy !	!0 
 g. In this case, the
CPB-NAMR interaction is effectively switched off be-
cause of the far-off resonance (this can be deduced without
RWA) while the decay process is enhanced. Thus the CPB
can be prepared well in its ground state jgi for the upcom-
ing interaction period.

Master equation approach in steady states.—We assume
the coupling strength g is much stronger than ��!a� and �
where � is the decay rate of NAMR, and the interaction
period � is so short that ��!a��� 1, ��� 1. In this case
both the decay of CPB during the duty cycle and the
NAMR-environment coupling can be omitted. Therefore,
if the interaction is switched on at instance tl, the reduced
density operator ��tl � �� of the NAMR after a time
interval � can be obtained through the action of the super-
operator M��� on the reduced density operator ��tl� at
instance tl, i.e., ��tl � �� � M������tl��, which is defined
as M������tl�� � Tra�exp��iĥ����tl� � jgihgj exp�iĥ���
Tra denotes tracing over the variables of CPB. ĥ �
ga�� � H:c: is the JC-type Hamiltonian (1) at resonance
in the interaction picture. Without any dissipation, the
exact solution of the resonant JC model gives the explicit
recursions

pn�tl � �� � jcg;n���j
2pn�tl� � jce;n���j

2pn�1�tl� (2)

for the diagonal elements pn � hnj�jni of ��tl � �� for
the number jni state of NAMR phonon. Here, ce;n��� �
sin�g�

������������
n� 1
p

� and cg;n��� � cos�g�
���
n
p
� come from the

exact solution of the resonant JC model.
With the presence of the dissipation of NAMR, the

evolution of � can be depicted by the course gained master
equation

d�
dt
� ra�M��� � 1��� L���: (3)

The super operator L in the above equation is attrib-
uted to the dissipation and is defined as L��� �
���=2�Nth�aa

y�� 2ay�a� �aay� � ��=2��Nth � 1��
�aya�� 2a�ay � �aya� where Nth � �exp�!0=kBT� �
1��1 is the average number of phonons of NAMR at
temperature T before cooling. The master equation (3)
was initially presented for the case that the interaction
between the two-level system and the single mode oscil-
lator is ‘‘turned on’’ randomly [17,18]. In the case where
the interaction in our scheme is periodically turned on, this
equation can also lead to a correct stable solution.

Without detailed computations, the average number of
phonons hnis � Tr��sa

ya� of NAMR in the steady state �s
can be obtained from the above master equation:

hnis � Nth � �ra=���n; (4)

where �n � Trfaya�1�M�����sg. Since Trfaya�1�
M�����sg> 0 can be proved with the definition of M���,
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we can conclude that hnis < Nth; i.e., the NAMR can al-
ways be cooled when the steady state is reached.

Dynamic process of cooling and the fluctuation of num-
ber of phonons.—The steady state solution of Eq. (3) gives
the phonon population

psn � ps0
Yn
l�1

Nthl

�Nth � 1�l� jce;l�1j
2ra=�

: (5)

Here, psn is nth diagonal element of �s and ps0 is deter-
mined by the normalization condition �1i�0p

s
i � 1 [17]. By

virtue of numerical computations, we can describe exactly
the evolution of vacuum state probability p0 and average
number hni of phonons in detail. Figure 2 demonstrates
these results with experimentally rational parameters
Nth  1:7, ra=� � 133, and g� � �=8. It is shown that,
at the time ta satisfying rata � 60, the steady solution (5)
is reached. In this sense the distribution of the number
of phonons in the data does not vary significantly after
time ta.

Apparently, we can improve the cooling effect by in-
creasing ra. For a given value of ra=�, our cooling scheme
works well when the average number of phonons Nth

before cooling is small enough, i.e., Nth � ra=�. Under
this condition, we can achieve the maximum cooling effect
by setting the duty cycle � � �=�2g� so that jce;0j � 1. In
this case the average number of phonons after cooling is

hnis  ps1  Nth�=ra: (6)

This result implies that the number of phonons is reduced
by a factor of �ra=��. However, if Nth is comparable with
(or larger than) jce;0j2ra=�, our scheme does not work well.
For Nth � 1
 ra=�, we have pn  p0�Nth=�Nth � 1��n,
which implies that the average number of phonons hnis in
the steady state is very close to Nth, the number of phonons
before cooling. The average number hnis of phonons after
cooling is drawn against Nth in Fig. 3. It shows that, with
ra=� � 102 and jce;0j � 1, we have hnis  10�2Nth for
FIG. 2. The time evolution of the average phonon number hni
and the vacuum state probability p0. The unit of time is 1=ra.
The fluctuation of the phonon number in the steady state is
shown in the inset.
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Nth & 1; with ra=� � 103 and jce;0j � 1, we have hnis 
10�3Nth for Nth & 10 and hnis  10�2Nth for Nth & 102.

It is also noted that, since the interaction between the
CPB and the NAMR is switched on and off again and
again, and the master equation (3) is obtained via a coarse
granulation approach, the number of phonons will have a
fluctuation �n � TrNfa

ya�1�M�����sg even in the
steady state. In the inset of Fig. 2, the fluctuation �n is
shown in the evolution curve of the number of phonons in
the steady state.

Experimentally feasible predications.—We consider a
NAMR with frequency !0 � 2�� 102 MHz (0:5 �eV)
and quality factor Q � 2� 105. Our cooling protocol can
be realized with the following experimentally accessible
parameters, the decay rate � � �� 10�3 MHz, the
Josephson energy EJ  4�� 104 MHz (100 �eV), the
Coulomb charging energy EC  320 �eV (i.e., C� 
250 aF, the mutual capacitance Cx � Cg  20 aF), the
impedances R  50 � and the gate voltage Vx 
0:25 V. With these parameters, the interaction strength g
is estimated to be 2�� 10 MHz, the number of Cooper
pairs nx is about 15 and �g  1� 10�4.

When the magnetic flux �x in the Hamiltonian (1) is
tuned to about 0:498�0 on resonance, the interaction takes
place. We set the interaction duration � � 2:5� 10�8 s so
that jce;0���j � 1. If the temperature T is 0.01 K, during the
duty cycle, the decay rate ��!0� of CPB is about 0.56 MHz.
Just after the interaction, the magnetic flux should be
turned off to maximize the energy spacing. Then the
CPB will decay to its ground state by a rather large decay
rate ��EJ�  40 MHz. The CPB then decays quickly in
�0 � 0:275 �s. This elementary procedure is repeated at a
frequency ra  3 MHz. Namely, the interaction takes
place every T1 � 1=ra � 0:3 �s. The time is sufficiently
long for completing the interaction and the relaxation in
each elementary procedure. Therefore, omitting the dissi-
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FIG. 3 (color online). The cooling effect diagram. Here we
assume �g  1� 10�4. The finial phonon number hnis is drawn
as a function of the initial phonon number Nth when ra=� � 102

or 103. In the solid (black) line, the thermal excitation of the CPB
is not considered. In the dashed (blue) line, we assume the
thermal excitation probability of the CPB is p � 10�4. In the
dotted (red) line, we assume p � 10�5.
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pation effect of the CPB, we can estimate from Eq. (6) that
the number of phonons after cooling has the magnitude of
hnis � Nth=�ra=�� � 10�3Nth.

In the above discussion, the parameter of crucial impor-
tance � is determined by the quality factor Q and the
resonance frequency !0 of the NAMR. As illustrated
above, for Q� 2� 104, we end up with ra=� � 102,
and the cooling effect would be much worse. A careful
analysis of the cooling cycle reveals that the cooling effect
is also influenced by the dissipation of the CPB during the
duty cycle. For high initial temperatures, we can replace
the factor jce;l�1j

2 in formula (5) by jce;l�1j
2Fl�1 where

Fl�1 is the fidelity defined as Fl�1 � 1� ��!0� �R
�
0 jce;l�1�t0�j2dt0 from a first order perturbation calcula-

tion. This leads to a more precise phonon distribution pn in
the steady state. For parameters corresponding to �g 
1� 10�4 as given above, the correction to pn due to the
above perturbation effect of the inclusion of CPB dissipa-
tion can be omitted whenNth & 102. On the other hand, the
coupling of the CPB to the environment may cause the
CPB to jump from the ground state to the excited state with
a rate ��!0�, and subsequently emit a phonon via coherent
Rabi oscillation. In the low temperature case, this proba-
bility can be estimated as Nth��!0�

R
�
0 jCe;0��� t

0�j2dt0 �
Nth��!0��=2. In our example as mentioned above, this
value is about 7� 10�3Nth. The detailed study on the
influence of the dissipation effect of the CPB on our
cooling protocol will be given in our future work.

More generally, for the case of finite temperatures, there
is always a thermal excitation for the CPB. In fact, even
when off duty, the CPB decays to a mixed state with
probability p � 1=�1� exp�EJ=kBT�� in the excited state
jei and �1� p� in the ground state jgi. For a finite value of
p, the elements of the steady state density matrix �s should
be modified to be

psn � ps0
Yn
l�1

Nthl� pjce;l�1j
2ra=�

�Nth � 1�l� �1� p�jce;l�1j
2ra=�

: (7)

This leads to a reduction of the cooling efficiency. In Fig. 3,
the influence of this thermal excitation probability is il-
lustrated. In the low temperature limit, the average num-
ber of phonons emitted by the CPB via this mechanism
during the duty cycle is still p. Combined with the analysis
of the previous paragraphs, the lower limit phonon number
fluctuation at steady state due to thermal excitations and
dissipations of the CPB can be estimated as 1=�1�
exp�EJ=kBT�� � Nth��!0��=2, which vanishes in the limit
of large EJ and low ��!0�. This can also be considered as
the lower limit of the average phonon number after
cooling.

Conclusion with remarks about relations to maser.—We
should notice that the periodic cooling of the NAMR can
be understood as an ‘‘inverse’’ of the ‘‘maser’’ mechanism.
09720
In the usual maser process, the input excited atoms (mole-
cules) can coherently heat the cavity and then coherently
accumulate photons in a single state to enhance cavity field
in a quantum way. In the present protocol, the NAMR is
cooled by the CPB in its ground state. It should be empha-
sized that, with the same setup and operations similar to the
above protocol, a ‘‘NAMR maser’’ can be devised if the
CPB is initially prepared in its excited state jei before the
interaction is switched on. Namely, we can prepare the
NAMR in the nonclassical state with the number of pho-
nons in super-Poissonian or sub-Poissonian distribution.
On the other hand, in many protocols of two-qubit quantum
logic gates based on different physical systems, the bo-
sonic mode in its ground state can serve as a quantum data
bus to transfer quantum information from its coupled qubit
to another, or to entangle two qubit at a distance.
Therefore, the protocol in this Letter may have potential
applications in quantum information theory.
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