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Waves in open systems via a biorthogonal basis
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Dissipative quantum systems are sometimes phenomenologically described in terms of a non-Hermitian
HamiltonianH, with different left and right eigenvectors forming a biorthogonal basis. It is shown that the
dynamics of waves in open systems can be cast exactly into this form, thus providing a well-founded realiza-
tion of the phenomenological description and at the same time placing these open systems into a well-known
framework. The formalism leads to a generalization of norms and inner products for open systems, which in
contrast to earlier works is finite without the need for regularization. The inner product allows transcription of
much of the formalism for conservative systems, including perturbation theory and second quantization.
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INTRODUCTION

Dissipative systems can be discussed in many ways.
fundamental approach recognizes that energy flows from
systemS to a bathB, whose degrees of freedom are th
eliminated from the path integral or equations of motion@1#.
While rigorous, this approach is inevitably complicated a
often leads to integro-differential equations for time evo
tion. An alternate phenomenological approachpostulatesa
non-Hermitian Hamiltonian~NHH! H, whose left and right
eigenvectors form a biorthogonal basis~BB! @2–7#. These
NHHs with discrete BBs can sometimes be obtained from
full quantum theory, but usually under some approximatio
@5,8#.

This paper discusses a class of models of waves in o
systems. These are scalar fieldsf(x,t) in one dimension,
described by the wave equation. Outgoing wave bound
conditions cause the system to be dissipative. We show
these open systems areexactlydescribed by a NHH with a
BB formed by the resonances or quasinormal mo
~QNMs!. This connection, on the one hand, provides
phenomenological approach with a realization that has
impeccable pedigree rigorously traceable to the fundame
approach and, on the other hand, places earlier work on
open systems into a familiar framework. A generalized in
product emerges; in contrast to previous works, it is fin
and requires no regularization. Under the generalized in
product, the HamiltonianH is symmetric, which opens th
way to a clean formulation of perturbation theory and seco
quantization in terms of the QNMs of the system.

WAVES IN OPEN SYSTEMS

We consider waves in one dimension describ
by @r~x!] t

22]x
2#f~x,t!50 on the half line @0,̀ !, with

f~x50,t!50 and f~x,t! approaching zero rapidly asx→`
@9#. Let the systemS be the ‘‘cavity’’ I 5@0,a# and the bath
B be (a,`), wherer(x)51. Energy is exchanged betweenS
andB only through the boundaryx5a. We impose the out-
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going wave condition] tf(x,t)52]xf(x,t) for x.a.
This mathematical model is relevant for many physic

systems: the vibrations of a string with mass densityr @10#,
the scalar model of~em! electromagnetic field in an optica
cavity @the node atx50 is a totally reflecting mirror and a
partially transmitting mirror atx5a can be modeled by
r(x)5Md(x2a)] @11#, or gravitational radiation from a sta
with radiusa @12#. The wave equation can be mapped on
the Klein-Gordon equation with a potentialV(x) @13#, which
is relevant for gravitational waves@14#; heref is the pertur-
bation about the spherical background metric of a star,x is a
radial coordinate related to the circumferential radiusr , and
V describes the wave scattering by the background me
Gravitational waves carrying the signature of the QNMs
black holes may soon be observed by detectors such
LIGO and VIRGO@15#.

For the ‘‘cavity’’ I 5@0,a#, the outgoing condition is im-
posed atx5a1 only, wherea1 denotesa plus infinitesimal.
The QNMs are factorized solutions onI : f(x,t)
5 f n(x)e2 ivnt, with @]x

21r(x)vn
2# f n(x)50. These are ob-

served in the frequency domain as resonances of finite w
~e.g., the em spectrum seen outside an optical cavity! or in
the time domain as damped oscillations~e.g., the numerically
simulated gravitational wave signal from the vicinity of
black hole!. It would obviously be interesting to be able t
describe these QNMs in a manner parallel to the norm
modes of a conservative system.

These QNMs form a complete set onI if ~a! r(x) has a
discontinuity atx5a to provide a natural demarcation of th
cavity and~b! r(x)51 for x.a, so that outgoing waves ar
not scattered back into the system@16#. Under these condi-
tions, one can expandf(x,t)5(nanf n(x)e2 ivnt for xPI
andt>0, thus allowing anexactdescription of the system in
terms of discrete variables ~modes spaced byDv;p/a)
rather than a continuum. Nevertheless, the analogy with c
servative systems is still not apparent: Is there a natural in
product~with which to do projections and thus to prove th
uniqueness of expansions!? Is there a norm to scale wav
6101 © 1998 The American Physical Society
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functions ~noting that f n diverges at spatial infinity!? Can
perturbation theory be formulated~noting that the usua
proofs require an inner product to define orthogonality!? Can
the theory be second quantized? This paper shows tha
these questions have natural answers in the language
BB.

PHENOMENOLOGICAL NON-HERMITIAN
HAMILTONIANS AND BIORTHOGONAL BASES

Though not rigorously founded upon a genuine quant
theory, NHHs with BBs are nevertheless well developed a
postulatorysystem@2,3#. Consider a spaceW on which a
non-hermitian operatorH and a conjugate linear dualit
transformationD are defined:D~auF&1buC&!5a* D uF&1
b* D uC&, such thatDH5H†D @17#. The BB consists of the
two set of eigenvectorsuFn&PW and uGn&5DuFn&PW̃
5D(W) satisfying HuFn&5vnuFn&, H†uGn&5vn* uGn&,
where the two eigenvalues are related by duality. By proje
ing the eigenvalue equations on^Gnu and uFn& it follows
easily that̂ GnuFm&50 for mÞn. It is usually assumed tha
these eigenstates are complete, so that any vector ca
expanded asuF&5(nanuFn&, with an5^GnuF&/^GnuFn&,
leading immediately to the resolution of the identity and
the time-evolution operator

15(
n

uFn&^Gnu
^GnuFn&

, ~1!

e2 iHt5(
n

uFn&e
2 ivnt^Gnu

^GnuFn&
, ~2!

which in principle solves all the dynamics@18#.

BIORTHOGONAL BASIS FOR THE WAVE EQUATION

BBs are widely used in many disciplines, for example,
the theory of wavelets@19# and to describe excited molecula
systems@4,20#. The left and right eigenvectors of the Max
well operator are typically used to represent the Gree
function for em fields in open cavities@21–23# or to evaluate
Fox-Li states@24#. Here we seek a parallel with quantu
mechanics, similar to earlier works for generalized osci
tors@25# and the classical wave equation~without dissipation
due to leakage! @26#. The problem at hand, where there
dissipation due to outgoing waves, was formulated in t
manner recently@27# and is briefly sketched below, esp
cially as it relates to the BB.

It is natural to introduce the conjugate momentumf̂
5r(x)] tf and the two-component vectoruF&5(f,f̂)T. In
terms of this, the dynamics can be cast into the Schro¨dinger
equation with the NHH

H5 i S 0 r~x!21

]x
2 0 D . ~3!

The identificationf̂5r] tf follows from the evolution equa
tion @28#.

The natural definition of an inner product betweenuC&
5(c,ĉ)T and uF&5(f,f̂)T on @0,̀ ) is
all
f a

a

t-

be

f

’s

-

s

^CuF&5E
0

`

~c* f1ĉ* f̂ !dx. ~4!

However, on account of the assumed asymptotic behav
the integral is convergent.

For outgoing waves, we consider only the spaceU of
such vectorsuF& defined on@0,̀ ) that satisfy the outgoing
condition f̂52f8 for x.a. The bath variables are elimi
nated simply but exactly by projecting to the spaceW of
vectors uF& defined onI and that satisfyf̂52f8 at x
5a1. The QNMs are right eigenvectors ofH: uFn&
[( f n , f̂ n)T5( f n ,2 ivnr f n)T. The duality transformation is
D(f1 ,f2)T52 i (f2* ,f1* )T.

For open systems, a crucial concept is the inner prod
between one vector and the dual of another, to which
give a compact notation

~C,F![^DCuF&5 i E
0

`

~ĉf1cf̂!dx, ~5!

which is linear in both vectors and cross multiplies the tw
components, properties to be emphasized below. This b
ear map plays the role of the inner product for conserva
systems.

Our notation does not distinguish between functions~say
uF&) defined on@0,̀ ) and their restrictions toI ; the former
are inU and the latter are inW, with the association betwee
them being many to one. As written in Eq.~5!, the inner
product involves the wave functions outsideI , i.e., it appears
to be defined onU rather thanW. However, one can com
pletely eliminate the bath degrees of freedom: Because of
outgoing conditions, the integrand on (a,`) reduces to a
total derivative and Eq.~5! can be written purely in terms o
the inside variables@27#

~C,F!5 i H E
0

a1

~ ĉf1cf̂!dx1c~a1!f~a1!J . ~6!

The surface term is the only remnant of the outside. Thus
~6! can be regarded as a bilinear map~or loosely an inner
product! defined onW @27#. The somewhat peculiar structur
~e.g., the cross multiplication between the two compone
and the appearance of the surface term! is now seen to arise
naturally from Eq.~4! upon the introduction of the duality
transformation. In the limit where the escape of the wave
small, the generalized norm of an eigenvector (Fn ,Fn) re-
duces to 2vn times the conventional norm; this is the reas
for choosing the phase convention forD. The ability to nor-
malize QNM wave functions is nontrivial sincef n diverges
at spatial infinity and a naive expression such as*0

`u f nu2dx
would not be appropriate.

The diagonal version (F,F) for the special case o
QNMs was introduced by Zeldovich@29# in a form that in-
volved ~a! f outsideI ~so that it is defined onU rather than
W) and ~b! regularization of the divergent integral rath
than a surface term; it was later recast into the form~6! and
generalized to three dimensions and em fields@30#. The off-
diagonal form (C,F) was later introduced@27#. Here, by
relating the discussion to biorthogonal states and the dua
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transformation, it is seen that these concepts emerge n
rally, including the specific form of Eq.~6!.

An inner product equivalent to Eq.~6! has also been dis
cussed extensively from other perspectives@31,32#. In these
works, the inner product is defined on@0,̀ ) rather than a
finite interval, with the consequent divergence~e.g., for the
inner product between two QNMs each growing expon
tially at infinity! handled either~a! by a regulating factor
exp(2ex2), with e tending to zero from above,~b! analytic
continuation in the wave numberk, or ~c! complex rotation
in the coordinatex. Each of these procedures has its limit
tions; in contrast, Eq.~6! makes no reference to the outsid
or bath and is computationally convenient and manifes
finite.

Under this bilinear map,H is symmetric: (C,HF)
5(F,HC), which follows very simply fromDH5H†D.
This key property is analogous to the Hermiticity ofH for
conservative systems. It is nontrivial, in that surface ter
that arise in the integration by parts are exactly compens
by the surface terms in Eq.~6!. This symmetry property
leads, in the usual way, to the orthogonality of nondegen
ate eigenfunctions.

The completeness relation~1! is a dyadic equation. Its
(1,2) and (1,1) components lead to the sum rules@34#

(
n

f n~x! f n~y!

2vn
50,

(
n

1

2
f n~x! f n~y!r~x!5 id~x2y! ~7!

for x,yPI , which have been derived and discussed ext
sively @27#.

The completeness and orthogonality relationships es
lish the QNMs as a BB and moreover allow the time evo
tion to be solved asuF~x,t!&5(nane2 ivntuFn&, wherean5
^GnuF~x,0!&/2vn . This is adiscreteandexactrepresentation
of the dynamics, even thoughI is open to an infinite universe
with a continuum of states. Completeness is not proved
most other applications of NHHs to physical systems.

PERTURBATION THEORY

These notions allow much of the standard formalism
quantum mechanics to be carried over. As one example
sider time-independent perturbation theory. Letr0(x)21

be changed tor(x)215r0(x)21@11mV(x)#, where umu
!1 andV(x) has support inI . Then the perturbation to th
eigenvalues and eigenfunctions can be written in the s
dard Rayleigh–Schro¨dinger form, in terms of adiscretese-
ries @27#. These formulas, though superficially identical
textbook formulas for conservative systems, are nontrivia
two ways. First, the perturbative formulas apply tocomplex
eigenvalues. Second, the use of resonances implies that
is no ‘‘background’’ and expressing the corrections in ter
of discrete modes also means that the small paramete
expansion ism/uDvu;ma/p, which would not have been
apparent in terms of the states of the continuum. The der
tion of these results simply follows the conservative ca
@everywhere replacing inner products by the bilinear m
(C,F)], and need not be repeated.
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DISCUSSION

We have established an exact correspondence betw
phenomenological NHHs and waves in a class of open s
tems. This relationship provides a well-founded realizat
of NHHs. Because we start with a Hamiltonian system a
remove the bath degrees of freedom without approximatio
these open systems can be second quantized@35#. In other
words, one can discuss photons in open cavities using B
which makes this class of examples unique and interest
The relationship also places these open systems into a w
known and convenient framework. Thus the linear spa
structure, orthogonality, and completeness can all be der
naturally by transcribing usual derivations for conservat
systems and everywhere replacing the inner product
(C,F).

The formalism discussed here also applies to the Kle
Gordon equation with a potentialV(x) @13#, which applies,
among other things, to linearized gravitational waves pro
gating away from a black hole. The first-order perturbati
result for the QNM frequencies has been used to unders
the shifts in the gravitational wave frequencies when a bl
hole is surrounded by an accretion shell@33#.

The wave equation discussed here may be regarded
physical realization of BBs for open systems. Many oth
inequivalent realizations arise when one considers outgo
waves in a spherically symmetric three-dimensional syst
each angular momentuml leads to realizations in which th
surface terms in the inner product involvesl radial deriva-
tives @36#.

However, the entire formalism refers to systems descri
by second-order differential equations, so that two sets
initial data, namely,f andf̂, are required, and the outgoin
condition is expressed as a constraint between them.
formalism doesnot apply in its entirety to systems describe
by first-order differential equations, e.g.,a decays described
by the Schro¨dinger equation with Gamow boundary cond
tion. In any event, the Schro¨dinger equation formally gives
unbounded signal speeds and does not possess outgoin
incoming sectors related by time reversal; thus the concep
outgoing waves is actually quite different. Nevertheless
one is interested only in frequency domain problems, e
eigenvalue problems and time-independent perturba
theory, then the formalism survives even in this case. Thi
most easily appreciated by starting with the Klein-Gord
equation and simply relabelingv2°v.

Using (C,F) rather than the equivalent form̂DCuF&
allows all reference toD to be avoided. However, (C,F) is
a bilinear map~rather than being linear in the ket and co
jugate linear in the bra!. This property is quite general sinc
D is conjugate linear. However, in most applications of t
inner product ~e.g., for projections!, it does not matter
whether the map is linear or conjugate linear in the bra; t
is why results from conservative systems can be carried o
The only property that is lost is the positivity of (F,F),
which is unsurprising for a dissipative system. Thus it
useful to think of the states of quantum dissipative syste
as vectors in a linear spaceW endowed with such a bilinea
map, which is the generalization of the notion of a Hilbe
space. Time evolution is then generated by an operatoH
that is symmetric.
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The open systems described here are genuinely diss
tive, with Im vn,0. This contrasts with some models wi
NHHs that are nevertheless conservative@25,26#. For
infinite-dimensional NHH models, completeness of the BB
usuallyassumed, but difficult to prove. Through these wav
systems, we have provided explicit examples where co
pleteness can be proved~if the discontinuity and ‘‘no tail’’
conditions are met!, as well as examples where the basis
not complete~if these conditions are not met!. These should
also be useful in furthering understanding of NHH mode
es
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