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Waves in open systems via a biorthogonal basis
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Dissipative quantum systems are sometimes phenomenologically described in terms of a non-Hermitian
HamiltonianH, with different left and right eigenvectors forming a biorthogonal basis. It is shown that the
dynamics of waves in open systems can be cast exactly into this form, thus providing a well-founded realiza-
tion of the phenomenological description and at the same time placing these open systems into a well-known
framework. The formalism leads to a generalization of norms and inner products for open systems, which in
contrast to earlier works is finite without the need for regularization. The inner product allows transcription of
much of the formalism for conservative systems, including perturbation theory and second quantization.
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INTRODUCTION going wave conditiord,¢(X,t) = — dyd(Xx,t) for x>a.
This mathematical model is relevant for many physical
Dissipative systems can be discussed in many ways. Theystems: the vibrations of a string with mass dengifyL0],
fundamental approach recognizes that energy flows from thghe scalar model ofem) electromagnetic field in an optical
systemS to a bathB, whose degrees of freedom are thencavity [the node ax=0 is a totally reflecting mirror and a
eliminated from the path integral or equations of mofi®h  partially transmitting mirror atx=a can be modeled by
While rigorous, this approach is inevitably complicated andp(x): M 5(x—a)] [11], or gravitational radiation from a star
often leads to integro-differential equations for time evolu-yith radiusa [12]. The wave equation can be mapped onto
tion. An alternate phenomenological approgudstulatesa the Klein-Gordon equation with a potenti(x) [13], which

non-Hermitian HamiltoniaNHH) H, whose left and right . o . :
. . is relevant for gravitational waveg44]; here ¢ is the pertur-
eigenvectors form a biorthogonal bagBB) [2-7]. These bation about the spherical background metric of a stés,a

NHHs with discrete BBs can sometimes be obtained from aadial coordinate related to the circumferential radiuand

full quantum theory, but usually under some approximation . . .
[5 8?. y y PP describes the wave scattering by the background metric.

This paper discusses a class of models of waves in Ope(I.?,ravitational waves carrying the signature of the QNMs of
systems. These are scalar fieldéx,t) in one dimension, black holes may soon be observed by detectors such as
described by the wave equation. Outgoing wave boundar&t'GO and VlR(-_;O[15]- ) o
conditions cause the system to be dissipative. We show that For the “cavity” 1=[0,a], the outgoing condition is im-
these open systems agzactlydescribed by a NHH with a posed ak=a" only, wherea™ denotesa plus infinitesimal.

BB formed by the resonances or quasinormal modedhe QNMs are factorized solutions or: ¢(x,t)
(QNMs). This connection, on the one hand, provides the=f,(x)e~'“n!, with [a§+p(x)wﬁ]fn(x)zo. These are ob-
phenomenological approach with a realization that has aserved in the frequency domain as resonances of finite width
impeccable pedigree rigorously traceable to the fundamentdé.g., the em spectrum seen outside an optical cawityin
approach and, on the other hand, places earlier work on sughe time domain as damped oscillatiqgesy., the numerically
open systems into a familiar framework. A generalized innesimulated gravitational wave signal from the vicinity of a
product emerges; in contrast to previous works, it is finiteblack holg. It would obviously be interesting to be able to
and requires no regularization. Under the generalized innedlescribe these QNMs in a manner parallel to the normal
product, the Hamiltoniad is symmetric, which opens the modes of a conservative system.

way to a clean formulation of perturbation theory and second These QNMs form a complete set bnif (a) p(x) has a

guantization in terms of the QNMs of the system. discontinuity atx=a to provide a natural demarcation of the
cavity and(b) p(x)=1 for x>a, so that outgoing waves are
WAVES IN OPEN SYSTEMS not scattered back into the syst¢fr6]. Under these condi-

tions, one can expand(x,t)==,a,f,(x)e ' for xel
We consider waves in one dimension describedandt=0, thus allowing arexactdescription of the system in
by [p(x)d2—d%]p(x,t)=0 on the half line [0), with  terms of discrete variables (modes spaced by w~ /a)
¢(x=01)=0 and ¢(x,t) approaching zero rapidly as—~ rather than a continuum. Nevertheless, the analogy with con-
[9]. Let the systen® be the “cavity” | =[0,a] and the bath servative systems is still not apparent: Is there a natural inner
B be (a,«), wherep(x) =1. Energy is exchanged betweSn product(with which to do projections and thus to prove the
andB only through the boundary=a. We impose the out- uniqueness of expansioftsls there a norm to scale wave
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functions (noting thatf, diverges at spatial infinijy Can % . A
perturbation theory be formulatethoting that the usual (‘I’|‘1>>:J'O (" o+ 4" p)dx. (4)
proofs require an inner product to define orthogong?it@an

the theory be second quantized? This paper shows that Iowever on account of the assumed asymptotic behavior
these questions have natural answers in the language of . * ymp '
BB e integral is convergent.

For outgoing waves, we consider only the spateof
such vectorg®) defined on[0,~) that satisfy the outgoing
condition ¢=— ¢’ for x>a. The bath variables are elimi-
nated simply but exactly by projecting to the spatkeof

Though not rigorously founded upon a genuine quantunyectors |®) defined onl and that satisfyp=—¢’' at x
theory NHHs with BBs are nevertheless well developed as &a The QNMS are r|ght e|genvectors ofl: |Fn>
postulatory system[2,3]. Consider a spac®& on which a =(f,,})T=(f,,—iw,pf,)T. The duality transformation is
non-hermitian operatoH and a conjugate Iine*ar duality D(¢nl,,¢2)T= _”i’(qs,é ':z),lr)"T
trgnsformaﬂonD are gef'?ed'D(a@HB'%)_a. D|®)-+ For open systems, a crucial concept is the inner product
A*D¥), such thalDH=H'D [17]. The BB consists of the  hetween one vector and the dual of another, to which we
two set of eigenvectorgF,)eW and [G,)=D|F,)eW  give a compact notation
=D(W) satisfying HI[F,)=w,|Fy), HT|Gn>:w:|Gn>1
where the two eigenvalues are related by duality. By project- © .
ing the eigenvalue equations @G, and |F,) it follows (‘P,<1>>E<D‘If|<1>>=if (Yp+yd)dx, (5
easily that{G,|F,,)=0 for m#n. It is usually assumed that 0
these eigenstates are complete, so that any vector can b
expanded ag®)=3a,|F,), with a,=(G,|®)(G,|F,),
leading immediately to the resolution of the identity and of
the time-evolution operator

PHENOMENOLOGICAL NON-HERMITIAN
HAMILTONIANS AND BIORTHOGONAL BASES

Which is linear in both vectors and cross multiplies the two
components, properties to be emphasized below. This bilin-
ear map plays the role of the inner product for conservative

systems.
|F (Gl Our notation does not distinguish between functitsesy
E (G |F ) (1) |®@)) defined o 0,») and their restrictions tb; the former
nitn are inU and the latter are ilV, with the association between

them being many to one. As written in E(p), the inner

o iHt_ 2 [Foye (G, 2) product involves the wave functions outside.e., it appears
n (GulFn) to be defined orJ rather thanw. However, one can com-
pletely eliminate the bath degrees of freedom: Because of the
which in principle solves all the dynami¢48]. outgoing conditions, the integrand om,¢) reduces to a
total derivative and Eq5) can be written purely in terms of
BIORTHOGONAL BASIS FOR THE WAVE EQUATION the inside variablef27]

BBs are widely used in many disciplines, for example, in N
the theory of waveletgl9] and to describe excited molecular (¥, )= i{ fa (Jb+ bd)dx+pat)pa™) . (6)
systemdg4,20]. The left and right eigenvectors of the Max- 0
well operator are typically used to represent the Green’s
function for em fields in open cavitie{§1—23 or to evaluate The surface term is the only remnant of the outside. Thus Eqg.
Fox-Li states[24]. Here we seek a parallel with quantum (6) can be regarded as a bilinear mag loosely an inner
mechanics, similar to earlier works for generalized oscilla-Product defined orW [27]. The somewnhat peculiar structure
tors[25] and the classical wave equatiomithout dissipation ~ (€.g., the cross multiplication between the two components
due to leakage[26]. The problem at hand, where there is and the appearance of the surface feismow seen to arise
dissipation due to outgoing waves, was formulated in thighaturally from Eq.(4) upon the introduction of the duality

manner recenthf27] and is briefly sketched below, espe- transformation. In the limit where the escape of the waves is
cially as it relates to the BB. small, the generalized norm of an eigenvectby, (F,,) re-

duces to 2, times the conventional norm; this is the reason
for choosing the phase convention or The ability to nor-
malize QNM wave functions is nontrivial sindg diverges
at spatial infinity and a naive expression suchfg§f ,|2dx
would not be appropriate.

( 0 p(X)l) The diagonal version &,®) for the special case of
=i

It is natural to introduce the conjugate momentufn

=p(x)di¢ and the two-component vectbtb>=(¢,<}5)T. In
terms of this, the dynamics can be cast into the Sdinger
equation with the NHH

(3)  QNMs was introduced by Zeldovidi29] in a form that in-
volved (a) ¢ outsidel (so that it is defined okJ rather than
. W) and (b) regularization of the divergent integral rather
The identificationg = pd; ¢ follows from the evolution equa- than a surface term; it was later recast into the f¢énand
tion [28]. generalized to three dimensions and em fi¢RH. The off-
The natural definition of an inner product betweléh)  diagonal form @,®) was later introduced27]. Here, by
=(,)" and|®)=(,¢)T on[0,2) is relating the discussion to biorthogonal states and the duality
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transformation, it is seen that these concepts emerge natu- DISCUSSION

rally, including the specific form of Eq6). .
An inner product equivalent to E¢6) has also been dis- We have established an exact correspondence between

cussed extensively from other perspecti{/@$,32. In these phenome.nologic_al NHHS a”‘?' waves in a class of open Sys-
works, the inner product is defined §0.) rather than a tems. This relationship provides a well-founded realization

finite interval, with the consequent divergeneeg., for the ~©f NHHS. Because we start with a Hamiltonian system and
inner product between two QNMs each growing exponen!€move the bath degrees of freedom without approximations,
tially at infinity) handled either(@ by a regulating factor these open systems can be second quanfi@gH In other
exp(—ex?), with e tending to zero from abovep) analytic words, one can discuss photons in open cavities using BBs,
continuation in the wave numbét or (c) complex rotation ~Which makes this class of examples unique and interesting.
in the coordinatex. Each of these procedures has its limita- The relationship also places these open systems into a well-
tions; in contrast, Eq(6) makes no reference to the outside known and convenient framework. Thus the linear space
or bath and is computationally convenient and manifestlystructure, orthogonality, and completeness can all be derived
finite. naturally by transcribing usual derivations for conservative
Under this bilinear mapH is symmetric: @,H®) systems and everywhere replacing the inner product by
=(®,H¥), which follows very simply fromDH=H'D. (¥,®).
This key property is analogous to the Hermiticity ldf for The formalism discussed here also applies to the Klein-
conservative systems. It is nontrivial, in that surface termgsordon equation with a potenti&(x) [13], which applies,
that arise in the integration by parts are exactly compensategimong other things, to linearized gravitational waves propa-
by the surface terms in Ed6). This symmetry property gating away from a black hole. The first-order perturbation
leads, in the usual way, to the orthogonality of nondegenerresult for the QNM frequencies has been used to understand

ate eigenfunctions. the shifts in the gravitational wave frequencies when a black
The completeness relatiofl) is a dyadic equation. Its hole is surrounded by an accretion sH&B8].
(1,2) and (1,1) components lead to the sum r{igzg The wave equation discussed here may be regarded as a
physical realization of BBs for open systems. Many other
D fa(X)faly) o inequivalent realizations arise when one considers outgoing
- 20, waves in a spherically symmetric three-dimensional system;

each angular momentuimleads to realizations in which the
1 surface terms in the inner product involvesadial deriva-
2 S 0fa(Y)p(0) =i8(x=y) (M tives[36].

" However, the entire formalism refers to systems described
for x,y e, which have been derived and discussed extenpy second-order differential equations, so that two sets of
sively [27]. initial data, namely and ¢, are required, and the outgoing

The completeness and orthogonality relationships estaigondition is expressed as a constraint between them. The
lish the QNMs as a BB and moreover allow the time evolu-formalism doesotapply in its entirety to systems described
tion to be solved agdP(x,t))=3,a,e "“n|F,), wherea,= by first-ordgr differential equations, e.g,decays described
(G|®(x,0))/2w, . This is adiscreteandexactrepresentation by the Schrdinger equation with Gamow boundary condi-
of the dynamics, even thougdhs open to an infinite universe tion. In any event, the Schdinger equation formally gives
with a continuum of states. Completeness is not proved itinbounded signal speeds and does not possess outgoing and

most other applications of NHHs to physical systems. incoming sectors related by time reversal; thus the concept of
outgoing waves is actually quite different. Nevertheless, if

one is interested only in frequency domain problems, e.g.,
eigenvalue problems and time-independent perturbation
These notions allow much of the standard formalism intheory, then the formalism survives even in this case. This is
guantum mechanics to be carried over. As one example comrost easily appreciated by starting with the Klein-Gordon
sider time-independent perturbation theory. Lgj(x)"!  equation and simply relabeling®— .
be changed top(x) 1=po(x) {1+ wxV(X)], where |u| Using (¥,®) rather than the equivalent forgDW¥|®)
<1 andV(x) has support if. Then the perturbation to the allows all reference t® to be avoided. However¥(,®) is
eigenvalues and eigenfunctions can be written in the stara bilinear map(rather than being linear in the ket and con-
dard Rayleigh—Schainger form, in terms of aliscretese-  jugate linear in the bpa This property is quite general since
ries [27]. These formulas, though superficially identical to D is conjugate linear. However, in most applications of the
textbook formulas for conservative systems, are nontrivial irinner product (e.g., for projections it does not matter
two ways. First, the perturbative formulas applycmmplex whether the map is linear or conjugate linear in the bra; this
eigenvalues. Second, the use of resonances implies that thesewhy results from conservative systems can be carried over.
is no “background” and expressing the corrections in termsThe only property that is lost is the positivity ofb(®d),
of discrete modes also means that the small parameter @fhich is unsurprising for a dissipative system. Thus it is
expansion isu/|Aw|~ uals, which would not have been useful to think of the states of quantum dissipative systems
apparent in terms of the states of the continuum. The derivaas vectors in a linear spat¥ endowed with such a bilinear
tion of these results simply follows the conservative casanap, which is the generalization of the notion of a Hilbert
[everywhere replacing inner products by the bilinear mapspace. Time evolution is then generated by an opetdtor
(W,®)], and need not be repeated. that is symmetric.

PERTURBATION THEORY
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