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Minimal energy cost to initialize a bit with tolerable error
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Landauer’s principle imposes a fundamental limit on the energy cost to perfectly initialize a classical bit,
which is only reached under the ideal operation with infinitely long time. The question on the cost in the practical
operation for a bit has been raised under the constraint by the finiteness of operation time. We discover a raise-
up of energy cost by L2(ε)/τ from the Landaeur’s limit (kBT ln 2) for a finite-time τ initialization of a bit
with an error probability ε. The thermodynamic length L(ε) between the states before and after initializing in
the parametric space increases monotonously as the error decreases. For example, in the constant dissipation
coefficient (γ0) case, the minimal additional cost is 0.997kBT/(γ0τ ) for ε = 1% and 1.288kBT/(γ0τ ) for ε =
0.1%. Furthermore, the optimal protocol to reach the bound of minimal energy cost is proposed for the bit
initialization realized via a finite-time isothermal process.
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I. INTRODUCTION

Initializing memory is a necessary process in computation
[1–6] for further information processing and inevitably re-
quires an expense of energy. Landauer derived a fundamental
limit of energy cost for such a process that a minimal kBT ln 2
(kB is the Boltzmann constant) heat will be dissipated to the
environment of temperature T for erasing one bit information
[1,7–11]. Such a limit is only reached with two idealities,
infinitely long operation time and perfect initialization, which
are unfortunately impossible for practical devices.

However, in real-world circumstances, initializing bits in
finite time is critical for speeding up computation processes.
A finite-time Landauer’s principle was, in turn, proposed to
reveal that the corresponding energy cost is significantly in-
creased with the decrease of the erasure time [11–17] and the
first ideality is overcome. Besides the classical computation,
information erasure is also essential for quantum computation
whose basic unit is the quantum bit (qubit) [5,18–20]. When
the qubit is initialized to a desired state, there are unavoidable
errors in practice. Errors also occur in the implementation of
gate operations. To ensure the overall low error, the lower
error of initialization allows more quantum gate operations. A
critical error probability is typically required in the quantum
computation process, e.g., 1% for error correction [21–23].
Therefore, the second ideality is not necessary.

It is, therefore, natural to ask what is the minimal energy
cost to initialize a bit with tolerable errors within finite time?
In a recent study, Zhen et al. [24] answered this question by
presenting a lower bound on the energy cost of a bit reset. It
should be noted that, in addition to the lower bound of the
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energy cost itself, how to achieve the minimal energy cost
is another important question that needs to be explored in
practical initialization of bits. In this paper, we tackle this
problem by exploiting the geometry framework of quantum
thermodynamics [25–31] to study the finite-time information
erasure in a bit. The erasure here is realized by driving the bit
in a thermal bath.

This work is organized as follows. In Sec. II, we utilize
the master equation to study the work cost for erasing the
information of a bit. When driving is not applied infinitely
slowly, the additional work required in the erasure process is
obtained. In Sec. III, we first quantify the additional work
with the thermodynamic length L (depending on the error
probability ε), which serves as an important geometric quan-
tity to characterize nonequilibrium dissipation [25–31]. Then
we discover an analytical trade-off relation among the energy
cost, erasure time, and error probability with the asymptotic
behavior of L. Furthermore, for applications, we demonstrate
the error-probability-dependent optimal erasure protocol to
achieve the minimal energy cost for bit initialization. The
numerical validations of the trade-off are also presented. In
Sec. IV, we discuss the temperature dependence of the total
work cost for initializing the bit. The conclusion and a discus-
sion are given in Sec. V.

II. WORK COST FOR INITIALIZING A BIT

A classical bit or a qubit can be physically modeled as a
two-level system, and the information encoded by the logical
state “0” (“1”) is represented by the ground state |g〉 (excited
state |e〉) of the two-level system. Before the erasure process,
we assume that the bit contains one bit of information and
stays at the maximum mixed state ρi = (|e〉〈e| + |g〉〈g|)/2. In
the ideal erasure, the bit is restored into the logical state “0”
perfectly, namely ρ f = |g〉〈g|. However, in a practical process,
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FIG. 1. Schematic of finite-time information erasure for a bit.
The ground state and excited state of the bit represent the logical
states “0” and “1,” respectively. The energy level spacing of the bit
λ is first tuned from λ0 = 0 to λ f = λm when it is in contact with
a thermal bath of temperature T . Then the energy level spacing of
the bit is tuned back to 0 quantum adiabatically. In the ideal erasure
process with λm → ∞, the bit is completely erased to the logical
state “‘0” with the population in the logical state “1” pe = 0.

the bit is generally erased to ρ f = ε|e〉〈e| + (1 − ε)|g〉〈g| with
an error probability ε.

To implement the initialization, the energy-level spacing
of the two-level system is tuned by a control parameter λ(t )
under the Hamiltonian H (t ) = λ(t )σz/2 with the Pauli matrix
σz = |e〉〈e| − |g〉〈g|. The Planck’s constant is taken as h̄ = 1
hereafter for brevity. As illustrated in Fig. 1, the entire infor-
mation erasure process is designed with two steps as follows.

(i) Population reduction by increasing the energy-level
spacing λ from λ0 = 0 to λm. The bit is coupled to a thermal
bath of inverse temperature β = 1/(kBT ).

(ii) Energy reset by quantum adiabatically decreasing the
energy-level spacing of the bit back to λ0 with no thermal
bath. The first step is designed to reduce the population in the
excited state and the second step aims to restore the system’s
Hamiltonian for future operations.

Since quantum coherent operations are not involved in
the above erasure process, there is no fundamental difference
between the initialization of qubits and classical bits in our
case. It is worth noting that, at the beginning and the end
of the above erasure process, the energy-level spacing of the
bit is set to λ0 = 0. The two logical states of the bit are
degenerate in energy. To distinguish the bit states for further
computational operations, an additional degree of freedom is
needed, such as an electrical charge in the case of charge
bits. The following discussion does not rely on this degree
of freedom since it does not affect the energy cost of interest
during the bit initialization process.

The total work performed in the erasure process with dura-
tion τ is W (τ ) = ∫ τ

0 Ẇ dt with the erasure power Ẇ ≡ tr(ρḢ )
[32,33], which is explicitly written as

Ẇ = λ̇(t )

2
[2pe(t ) − 1]. (1)

The probability for the bit on the excited state pe(t ) is gov-
erned by the master equation [34] ṗe = L (pe). For the bit in

contact with a bosonic heat bath, L (pe) reads [34]

L (pe) = γ {n(λ) − [2n(λ) + 1]pe}, (2)

where n(λ) = 1/(eβλ − 1) is the average particle number of
the bath mode with energy λ and the dissipation coefficient
γ = γ (λ) is determined by the bath spectral density [34].

A. Work done in the quasistatic erasure process

The work done in the quasistatic erasure process is equal to
the free energy change 	F between the states of the bit before
and after initializing. In the quasistatic population reduction
process, the bit always satisfies the thermal equilibrium distri-
bution peq

e (λ) = e−βλ/(1 + e−βλ).
When the energy-level spacing of the bit is tuned

from λ0 → λm, the corresponding quasistatic work W (1)
qs ≡∫ λm

λ0
[peq

e (λ) − 1/2]dλ is obtained as

W (1)
qs = β−1 ln

(
1 + e−βλ0

1 + e−βλm

)
− 1

2
(λm − λ0). (3)

Then the energy level spacing of the bit is tuned back to λ0

adiabatically in the energy reset process, and the work done
W (2)

qs ≡ ∫ λ0

λm
[peq

e (λm) − 1/2]dλ is

W (2)
qs = e−βλm

1 + e−βλm
(λ0 − λm) + 1

2
(λm − λ0). (4)

Therefore, the total quasistatic work done in these two pro-
cesses Wqs ≡ W (1)

qs + W (2)
qs is

Wqs = 	F = β−1[ln 2 − S(ε)]. (5)

Here, we chose λ0 = 0 and defined ε ≡ e−βλm/(1 + e−βλm )
as the error probability. S(ε) = −ε ln ε − (1 − ε) ln(1 − ε) is
the Shannon entropy of the final state and β−1 ln 2 is the work
cost in the ideal erasure process (ε = 0) as stated by Lan-
dauer’s principle [1]. Since the entropy S(ε) is an increasing
function for 0 � ε � 1/2, more work is required to achieve
lower error probability (smaller ε).

B. Irreversible work and irreversible power

To evaluate the finite-time effect, we define the irreversible
work

Wir (τ ) ≡ W (τ ) − 	F =
∫ τ

0
Ẇir (t )dt . (6)

Here, the irreversible power [30,31] is

Ẇir = λ̇(t )
{

pe(t ) − peq
e [λ(t )]

}
, (7)

and peq
e [λ(t )] = e−βλ(t )/[1 + e−βλ(t )] is the excited-state pop-

ulation in the instantaneous thermal equilibrium distribution.
Finding the minimal energy cost for erasing the information
stored in a bit is now converted to deriving the lower bound of
the irreversible work.

With the instantaneous equilibrium distribution, Eq. (2) is
rewritten as [

1 + 1 − 2peq
e (λ)

γ τ

d

dt̃

]
pe = peq

e (λ), (8)
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with the dimensionless time t̃ ≡ t/τ . The series expansion
solution of this equation with respect to γ τ follows as:

pe =
[

1 + 1 − 2peq
e (λ)

γ τ

d

dt̃

]−1

peq
e (λ) (9)

=
∑
n=0

[
−1 − 2peq

e (λ)

γ τ

d

dt̃

]n

peq
e (λ). (10)

In the slow-driving regime with γ (λ)τ � 1, we obtain the
excited population pe(t ) to the first order of 1/(γ τ ) as

pe ≈ peq
e (λ) − 1 − 2peq

e (λ)

γ

∂ peq
e

∂λ
λ. (11)

The irreversible power Ẇir = λ̇(t )(pe − peq
e ) is thus explicitly

obtained as

Ẇir = βγ −1 (1 − e−βλ)e−βλ

(1 + e−βλ)3 λ2. (12)

The typical form of the dissipation coefficient γ = γ0λ
α will

be used in the following discussion, where γ0 is a con-
stant, and α ∈ [0, 1), α = 1, and α > 1 correspond to the
sub-Ohmic, Ohmic, and super-Ohmic spectrums of the bath,
respectively [35,36].

III. MINIMAL WORK COST AND OPTIMAL
ERASURE PROTOCOL

The irreversible work Wir is bounded from below by
Wir � L2/τ with the thermodynamic length L ≡ ∫ τ

0

√
Ẇirdt

[25–31,37,38], which is the geometric distance in the para-
metric space and independent of the specific erasure protocol
of λ(t ).

According to Eq. (12), with the typical dissipation co-
efficient γ (λ) = γ0λ

α , the thermodynamic length of the
population reduction process is explicitly obtained in terms
of ε as

L(ε) =
√

β (α−1)γ −1
0 fα (ε) (13)

with the dimensionless function

fα (ε) ≡
∫ ln (ε−1−1)

0

√
(1 − e−x )e−x

xα (1 + e−x )3 dx. (14)

The upper limit of the integral in Eq. (14) reflects the depen-
dence of L(ε) on the error probability ε.

The precise lower bound for irreversible work is denoted
as

W min
ir (ε) ≡ L2(ε)

τ
. (15)

Particularly, in the constant dissipation coefficient case
(α = 1), W min

ir = 0.997kBT/(γ0τ ) for ε = 1% and W min
ir =

1.288kBT/(γ0τ ) for ε = 0.1%.

A. Trade-off among work cost, erasure time,
and error probability

Utilizing the asymptotic behavior of the thermodynamic
length (see Appendix A for a detailed proof)

L(ε) ≈ L(0) − 2
√

β (α−1)γ −1
0 ε ln−α (ε−1), (16)

with L(0) the thermodynamic length for the perfect erasing
(ε = 0), the bound on the irreversible work Wir � L2(ε)/τ
becomes

Wirτ

L2(0)
+ μα

√
ε ln−α (ε−1) � 1. (17)

Here, the O(ε) term was ignored and μα ≡ 4/ fα (0) is a di-
mensionless constant determined solely by the bath spectrum.

The above Eq. (17) quantitatively reveals a trade-off rela-
tion among irreversible work Wir , erasure time τ , and error
probability ε. For the special case of the perfect erasing
(ε = 0), such a trade-off recovers the result Wir � L2(0)/τ
obtained in the recent studies on the finite-time Landauer’s
principle [7,11,13–16,39,40]. A similar result was obtained in
a recent study [24]. Differently, in this work, we take use of the
thermodynamic length to characterize the minimal work cost
for bit initialization and will focus on how to geometrically
determine the optimal protocol to achieve this lower bound.

In addition, we emphasize here that Eq. (17) serves as the
overall lower bound for irreversible work in the slow-driving
regime since the approximation of the thermodynamic length
in Eq. (16) is always smaller than the exact thermodynamic
length for arbitrary ε (see Appendix A for details).

We plot the analytical lower bound

W̃ min
ir ≡ L2(0)[1 − μα

√
ε ln−α (ε−1)]

τ
(18)

of Eq. (17) as the surface in Fig. 2(a) for the Ohmic spectrum
case with α = 1. In the simulation, we always use the fol-
lowing parameters: γ0 = 1 and β = 1. The monotonicity of
the surface indicates that more extra energy cost is required to
accomplish the erasure with higher accuracy and shorter oper-
ation time. The trade-offs associated with the sub-Ohmic and
super-Ohmic spectrum cases are illustrated in Appendix B.

B. Optimal erasure protocol

The optimal erasure protocol λ(t ) applied to initializ-
ing the bit for minimal work cost satisfies

√
Ẇir = L(ε)/τ

[25–31,37,38], which is explicitly written as, by utilizing
Eq. (12),

dλ

dt̃
= L(ε)

[
β(1 − e−βλ)e−βλ

γ0λα (1 + e−βλ)3

]− 1
2

, (19)

where t̃ ≡ t/τ is the dimensionless time.
The exact optimal protocol is numerically obtained by

solving the above differential equation with the boundary
conditions λ(t̃ = 0) = 0 and λ(t̃ = 1) = λm. In Fig. 2(b), we
illustrate the optimal protocols for cases with α = 1 for ε =
10−1 (black solid curve), ε = 10−2 (blue dashed curve), and
ε = 10−4 (red dash-dotted curve), respectively. The optimal
protocols in the cases with α = 0, 2 are demonstrated in Ap-
pendix B.
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FIG. 2. (a) Analytical trade-off among irreversible work, erasure
time τ and error probability ε in the Ohmic spectrum case (α = 1).
The surface is plotted with the analytical lower bound (W̃ min

ir ) of
Eq. (17) with f1(0) = 0.9433 [Eq. (A1)]. (b) Optimal protocol of λ(̃t )
in the Ohmic spectrum case (α = 1) with different error probabilities
ε. The black solid curve, blue dashed curve, and red dash-dotted
curve represent the optimal protocol for ε = 10−1, ε = 10−2, and
ε = 10−4, respectively. The scaling of the optimal protocol in the
initial stage λ(̃t 
 1) ∼ t̃ is illustrated in the inset figure. The pa-
rameters β = 1 and γ0 = 1 are used to plot this figure.

In the initial stage (t̃ = t/τ 
 1) of the population reduc-
tion process, noticing λ(t̃ ) 
 1, Eq. (19) is approximated as

dλ

dt̃
≈ L(ε)β−1

√
8γ0λ

α−1
2 . (20)

By straightforward calculation, one obtains the optimal proto-
col

λ(t̃ 
 1) = [2(3 − α)2γ0β
−2L2(ε)]

1
3−α t̃

2
3−α , (21)

where the power exponent of t̃ is only determined by the bath
spectrum parameter α. This implies that, in the initial stage
(t̃ 
 1) of the erasure process, the optimal protocols scale
as λ ∼ t̃2/(3−α). The inset figure shows the optimal protocol
λ ∼ t̃ in the present case (α = 1). We stress that the solution
of Eq. (19) with respect to t̃ is independent of the erasure
time. Therefore, for given erasure processes (fixed α, ε) with
different duration τ , the required optimal protocol λ(t ) can be

FIG. 3. (a) Irreversible work as a function of the erasure time τ

in the Ohmic spectrum case (α = 1), where ε = 10−4 is fixed. The
red squares represent the exact minimal irreversible work associated
with the optimal erasure protocol. The blue dot curve (green triangle
curve) is obtained numerically with the erasure protocol chosen as
λ(t ) = λm(t/τ )2 (λ(t ) = λmt/τ ), where λm = β−1 ln(ε−1 − 1). The
red dashed curve is plotted with the analytical lower bound W̃ min

ir .
(b) Minimal irreversible work as a function of error probability ε in
the case with α = 1, where τ = 200 is fixed. The red squares are
obtained numerically with the optimal erasure protocol, while the
black dash-dotted curve and red dashed curve represent the precise
lower bound W min

ir = L2(ε)/τ and the analytical lower bound W̃ min
ir ,

respectively. The additional work 	Wir (ε) required to reduce the
error probability ε by an order of magnitude is plotted in the inset
figure. In this figure, we use β = 1 and γ0 = 1.

directly obtained by performing variable substitution t̃ → t/τ
on the fixed optimal protocol (with respect to t̃).

C. Numerical validations of the trade-off

We solve the exact minimal irreversible work numerically
from Eqs. (2) and (7) to validate the analytical trade-off in
Eq. (17). The irreversible work is illustrated in Fig. 3(a)
as a function of the erasure time with ε = 10−4. The red
squares represent the numerical results corresponding to the
optimal erasure protocol and the analytical lower bound
W̃ min

ir is plotted with red dash-dotted curve. The analytical
trade-off, exhibiting the typical 1/τ -scaling of irreversibility
[7,11,26,41–48], is in good agreement with the numerical
results in the long-time regime of γ0τ � 1. In the short-time
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regime (beyond the slow-driving regime), the higher-order
terms of 1/(γ0τ ) in the expansion of Ẇir cannot be ignored
anymore, and thus the minimal irreversible work deviates
from the 1/τ scaling [45,46,49].

To demonstrate the dependence of irreversible work on the
erasure protocol, the exact numerical irreversible work related
to two erasure protocols, λ(t ) = λm(t/τ )2 and λ(t ) = λmt/τ
[λm = β−1 ln(ε−1 − 1)], are illustrated with the blue dotted
curve and green triangle curve, respectively. The irreversible
work corresponding to these two protocols are larger in com-
parison with the minimal irreversible work achieved with the
optimal protocol (red squares). Since the irreversible work
cannot be less than that associated with the optimal protocol
with any erasure protocol, we denote the light gray area below
the red squares as the inaccessible regime of the irreversible
work. In this sense, the light red area above the red squares is
accessible.

The exact minimal irreversible work as a function of the
error probability is marked with the red squares in Fig. 3(b)
for fixed duration τ = 200. The irreversible work increases
for lower the error probability. Similar to Fig. 3(a), the two
areas separated by the red squares (achieved with the optimal
protocol) represent the accessible and inaccessible regions.
The black dash-dotted curve represents the precise bound of
the irreversible work W min

ir characterized by the exact thermo-
dynamic length, which agrees well with the exact numerical
results in the entire plotted range of ε. The fact that the
red dashed curve (W̃ min

ir ) approaches to the black dash-dotted
curve (W min

ir ) in the low error probability regime (ε 
 1) is
consistent with the approximation condition used to obtain
Eq. (17).

In addition, we introduce the following normalized quan-
tity

	Wir (ε) ≡ W min
ir (ε) − W min

ir (10ε)

W min
ir (0)

(22)

to evaluate the additional work required to reduce the error
probability ε by an order of magnitude. As demonstrated
in the inset figure of Fig. 3(b) 	Wir decreases rapidly
with the error probability. We remark that it typically re-
quires less additional work to reduce the error probability
in the low-ε regime, noticing the plateau at the ε � 10−4

region.
The numerical results confirm that the analytical trade-off

(red dashed curve) approaches the precise lower bound (black
dash-dotted curve) with the error probability ε 
 1. Beyond
the regime ε 
 1 or γ τ � 1, one can observe from Figs. 2(a)
and 2(b) that all the exact minimal irreversible work (red
squares) locates above the red dashed curve. This implies
that our analytical trade-off (17) may have a wider applicable
scope beyond the slow-driving regime.

IV. OPTIMAL BATH TEMPERATURE FOR MINIMAL
WORK COST

Unlike the quasistatic work done [Eq. (5)] for the initial-
izing bit that is linearly dependent on the bath temperature,
the temperature dependence of the irreversible work is deter-
mined by the specific bath spectrum as implied by Eq. (13).

This inspires us to discuss the temperature dependence of the
minimal work cost in the erasure process in this section.

Combining Eqs. (5), (6), (13), and (15), the minimal work
cost W min(τ ) ≡ 	F + W min

ir in the erasure process, in terms
of the thermodynamic length, follows as

W min(τ ) = β−1Sera + L2(ε)

τ
(23)

= β−1Sera + β (α−1)γ −1
0 f 2

α (ε)

τ
, (24)

where Sera ≡ ln 2 − S(ε). For given erasure time τ , in the sub-
Ohmic and Ohmic spectrum cases with α � 1, the work done
is a monotonically increasing function of the temperature T .
Thus, the minimal work cost tends to zero at zero temperature.

However, for arbitrary α > 1, W min has a lower bound,
which is achieved with ∂W min/∂β = 0, namely,

−β−2Sera + (α − 1)
β (α−2)γ −1

0 f 2
α (ε)

τ
= 0. (25)

The optimal temperature is solved from this equation as

β−1
α =

[
(α − 1) f 2

α (ε)

γ0τSera

] 1
α

≡ T̃α, (26)

where the Boltzmann constant is taken as kB = 1 for brevity.
Therefore, when the bath temperature is set as the above
optimal one, the minimal work cost is

W min
α ≡ W min|T =T̃α

= αT̃ Sera

α − 1
, (27)

which decreases with τ 1/α . This indicates that we can choose
suitable bath temperature to reduce the work cost for erasing
information in the bit. Particularly, in the case with α = 2, the
minimal work cost, i.e., W min

2 = 2 f2(ε)
√

Sera/γ0τ , decreases
with

√
τ .

V. CONCLUSION AND DISCUSSIONS

In summary, we studied the finite-time information erasure
in a bit with tolerable errors. A trade-off among irreversible
work, erasure time, and error probability is obtained for
nonequilibrium erasure processes. This trade-off relation,
characterized by the thermodynamic length, reveals that re-
ducing the erasure time and error probability requires an
additional energy cost. For practical purposes, we found the
optimal erasure protocol associated with the minimal work
cost to initialize a bit. The exact numerical calculations val-
idate the trade-off and show that it is quite tight in the
long-time regime with low error probability. In addition, we
also discussed the optimal bath temperature, determined by
the bath spectrum, for the minimal work cost. The presented
results hold for both classical bits and qubits without coher-
ence.

These findings indicate that the spectrum of the bath, by
affecting the dissipation dynamics, has important influences
on the initialization of the bits. To achieve the minimal energy
consumption, it is necessary to choose the optimal erasure
protocol and set the optimal temperature of the bath ac-
cording to different bath spectrum. This study shall bring
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additional insights to the practical optimization of informa-
tion processing in computation. As possible extensions, the
influences of different bath spectrum, quantum coherence of
the qubit [17,39,50], and fast-driving of the erasure process
[11,31,51,52] on the trade-off and the optimal erasure pro-
tocol obtained in the current work can be taken into future
consideration.
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APPENDIX A: ASYMPTOTIC EXPRESSION OF THE
THERMODYNAMIC LENGTH

In this section, we discuss the asymptotic expression of the
thermodynamic length L(ε) with respect to ε. For the perfect

erasure ε = 0, we have L(0) =
√

β (α−1)γ −1
0 fα (0) with

fα (0) =
∫ ∞

0

√
(1 − e−x )e−x

xα (1 + e−x )3 dx =
⎧⎨⎩1.1981 α = 0,

0.9433 α = 1,

1.0914 α = 2.

(A1)

For general erasure processes, fα (ε) can be reexpressed in
terms of fα (0) as fα (ε) = fα (0) − Iα (ε) with

Iα (ε) ≡
∫ ∞

ln (ε−1−1)

√
(1 − e−x )e−x

xα (1 + e−x )3 dx. (A2)

We further use a new integral variable y ≡ e−x to rewrite
Eq. (A2) as

Iα (ε) =
∫ ε

0
(− ln y)−α/2

√
(1 − y)

y(1 + y)3 dy, (A3)

FIG. 4. L(0) − L(ε) as functions of ε with α = 0, 1, 2. In this
plot, we choose β = 1, γ0 = 1.

which is expanded into series form with respect to y as

Iα (ε) =
∫ ε

0
(− ln y)−α/2

[
1√
y

− 2
√

y + O
(
y

3
2
)]

dy. (A4)

Noticing √
(1 − y)

y(1 + y)3 �
√

1

y
, (A5)

we find Iα (ε) is bounded from below by the first term of its
series expansion as

Iα (ε) �
∫ ε

0
(− ln y)−α/2 1√

y
dy (A6)

= 2
√

ε[ln(ε−1)]−
α
2 − α

∫ ε

0

[ln (y−1)]
− α

2 −1

√
y

dy (A7)

� 2
√

ε[ln(ε−1)]−
α
2 . (A8)

FIG. 5. Analytical trade-off among irreversible work, erasure
time τ and error probability ε in (a) sub-Ohmic spectrum case
(α = 0) and (b) super-Ohmic spectrum case (α = 2). The surface is
plotted with the analytical lower bound (W̃ min

ir ) of Eq. (17) and the
parameters β = 1 and γ0 = 1 are used to plot this figure.
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FIG. 6. Optimal protocol of λ(t̃ ) in the cases with (a) α = 0 and
(b) α = 2 for different error probability ε. The black solid curve,
blue dashed curve, and red dash-dotted curve represent the optimal
protocols for ε = 10−1, ε = 10−2, and ε = 10−4, respectively. The
scaling of the optimal protocol in the initial stage λ(̃t 
 1) ∼ t̃2/(3−α)

is illustrated in the inset figure. In this plot, γ0 = 1 and β = 1 are
used.

Therefore, the thermodynamic length L(ε) =√
β (α−1)γ −1

0 fα (ε) has a lower bound as

L(ε) =
√

β (α−1)γ −1
0 [ fα (0) − Iα (ε)] (A9)

�
√

β (α−1)γ −1
0

[
fα (0) − 2

√
ε(− ln ε)−α/2

]
(A10)

= L(0) − 2
√

β (α−1)γ −1
0 ε ln−α (ε−1). (A11)

We stress that this inequality for L(ε) is quite tight in the
low error probability regime (ε 
 1). As shown in Fig. 4, the
asymptotic expression

L(ε) ≈ L(0) − 2
√

β (α−1)γ −1
0 ε ln−α (ε−1), (A12)

of the thermodynamic length (lines) agrees well with the exact
numerical results (dots) obtained from Eq. (13).

APPENDIX B: TRADE-OFFS AND OPTIMAL ERASURE
PROTOCOLS FOR α = 0, 2

The trade-offs associated with the sub-Ohmic (α = 0) and
super-Ohmic (α = 2) spectrum case are illustrated in Fig. 5.
By numerically solving Eq. (19), the exact optimal protocols
for α = 0, 2 are plotted in Fig. 6. The scaling λ ∼ t̃2/(3−α)

in the initial stage (t̃ = t/τ 
 1) is illustrated in the inset
figures.
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