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Extrapolating the thermodynamic length with finite-time measurements
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The thermodynamic length, though providing a lower bound for the excess work required in a finite-time
thermodynamic process, is determined by the properties of the equilibrium states reached by the quasistatic pro-
cess and is thus beyond the direct experimental measurement. We propose an experimental strategy to measure
the thermodynamic length of an open classical or quantum system by extrapolating finite-time measurements.
The current proposal enables the measurement of the thermodynamic length for a single control parameter
without requiring extra effort to find the optimal control scheme, and is illustrated with examples of the quantum
harmonic oscillator with tuning frequency and the classical ideal gas with changing volume. Such a strategy shall
shed light on the experimental design of the lacking platforms to measure the thermodynamic length.
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I. INTRODUCTION

Optimization of thermodynamic processes is of great im-
portance in finite-time thermodynamics [1–3] to minimize the
dissipation [4,5] and to improve the performance of heat en-
gines [6–16]. The extent to which the optimization is achieved
is discovered to be limited by the geometric properties of
the space of thermodynamic equilibrium states [17–22] and
provides a criterion for the amelioration of specific control
schemes. For a finite-time process with the operation time τ ,
the optimization is realized by minimizing the entropy pro-
duction [7,23–25] or the excess work Wex [5,26,27], which is
bounded as Wex � L2/τ [20,21,28–31] at the long-time limit.
The thermodynamic length L, appearing constantly in both
classical and quantum systems [3,21,31–39], is related to the
geometric metric of the equilibrium states [21,30,31,40–42].

However, it remains a challenge to practically measure the
length in thermodynamic processes. To obtain the geometry
metric, one needs the exact equilibrium thermal states along
the path of the control parameters [20,43] through infinitely
slow isothermal processes, but the measurement errors are
greatly amplified with the longer operation time. In this paper,
we propose to measure the thermodynamic length by extrap-
olating a few data points of a finite-time version L(τ ), which
has the property to retain the thermodynamic length L at
the long-time limit. The measurement procedure is illustrated
with examples of both the quantum harmonic oscillator with
tuning frequency and the classical ideal gas with changing
volume.

The rest of the paper is organized as follows. In Sec. II
we define a finite-time version of the thermodynamic length
for generic tuned open quantum systems (also applicable
in classical systems). The finite-time thermodynamic length
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converges to the thermodynamic length at the long-time limit,
and the convergence is independent of the protocol for a single
control parameter. In Sec. III we propose an extrapolation
method to measure the thermodynamic length for the system
with a single control parameter, and illustrate this method
with examples of the quantum harmonic oscillator with tuning
frequency and the classical ideal gas with changing volume.
The conclusion is given in Sec. IV. Relevant derivations and
discusses are given in the Appendices.

II. FINITE-TIME THERMODYNAMIC LENGTH

We consider an open quantum system with the control
parameter λ(t ) tuned from the initial value λ(0) = λ0 to the
final value λ(τ ) = λτ in a finite-time process with duration τ .
The system state is described by the density matrix ρ(t ) (0 <

t < τ ), which evolves under the time-dependent Hamiltonian
H (t ) = H[λ(t )] via the time-dependent Markovian master
equation [44]

ρ̇ = Lλ(t )ρ, (1)

where Lλ(t ) is the quantum Liouvillian super-operator. In
quantum thermodynamics, the rate of the performed work,
namely, the power, is Ẇ = Tr(ρḢ ) [45,46]. In a quasistatic
isothermal process with infinite operation time, the system
evolves along the trajectory of the equilibrium state ρeq(t ) =
exp[−βbH (t )]/Tr{ exp[−βbH (t )]} with the inverse temper-
ature βb = 1/(kBTb) of the bath, and the performed work
of the whole process is W(0) = ∫ λτ

λ0
Tr(ρeq∂H/∂λ) dλ. In a

finite-time isothermal process, the excess work Wex(τ ) =∫ τ

0 Pex(t ) dt is utilized to evaluate the dissipation with
the excess power Pex(t ) = Ẇ (t ) − Ẇ(0)(t ), where Ẇ(0)(t ) =
Tr[ρeqḢ ] is the quasistatic part of the work rate. One im-
portant progress [20,28,30] in finite-time thermodynamics is
the discovery of the geometric bound of the excess work with
the thermodynamic length as Wex(τ ) � L2/τ , and the equality
is saturated by the optimal protocol with the constant excess
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power. The direct measurement of thermodynamic length L
requires the infinitely slow isothermal processes [20,43].

In quantum thermodynamics, the thermodynamic length L
is explicitly [21]

L =
∫ λτ

λ0

√
Tr

[
∂H

∂λ
L −1

λ

(
∂ρeq

∂λ

)]
dλ, (2)

which contains the Drazin inverse L −1
λ of the super-operator

[47,48]. For the diagonalizable super-operator, the Drazin
inverse is explicitly obtained as follows. The eigendecom-
position is Lλ = ∑

� �P� with the eigenvalues � and the
projections P� in the super-space of the density matri-
ces. The null eigenvector is the instantaneous equilibrium
state satisfied Lλ[ρeq(λ)] = 0. The Drazin inverse is then
written as L −1

λ = ∑
� �=0 �−1P� , where the inverses of the

nonzero eigenvalues �−1 determines different dissipation
timescales [47,48]. Detailed discussions about the Drazin in-
verse are given with an example of the two-level system in
Appendix B.

For the measurement, we define a finite-time thermody-
namic length as

L(τ ) =
∫ τ

0

√
Pex(t ) dt . (3)

The two following properties of the finite-time thermody-
namic length allows measuring the thermodynamic length by
extrapolating finite-time measurements.

(i) The convergence limτ→∞L(τ ) = L: In a slow isother-
mal process, the state of the system evolves near the
equilibrium state, and the solution to Eq. (1) is expanded in
the series [49] as

ρ(t ) =
∞∑

n=0

(
L −1

λ(t )

d

dt

)n

ρeq(t ). (4)

For a given protocol λ(t ) = λ̃(t/τ ), the series expansion of
the excess power is obtained as

Pex(t ) = Tr

{
∂H̃ (s)

∂s

∞∑
n=1

1

τ n+1

(
L −1

λ̃(s)

∂

∂s

)n

[ρ̃eq(s)]

}
, (5)

where s = t/τ is the rescaled dimensionless time. Equation
(5) is invalid at the beginning of the isothermal process. Its
validity requires the evolution time larger than the typical
dissipation timescale. For the slow process, the lowest-order
term with n = 1 dominates the summation, and the finite-time
thermodynamic length approaches the thermodynamic length
at the long-time limit.

(ii) The protocol independence of the limit limτ→∞L(τ ):
For the system with only one control parameter, the limit of
the finite-time thermodynamic length limτ→∞L(τ ) is inde-
pendent of the protocol, which implies the thermodynamic
length can be measured without necessarily using the op-
timal protocol. For multiple control parameters, the limit
limτ→∞L(τ ) indeed relies on the path of the protocol.
The minimal thermodynamic length is only reached by the
geodesic path, and the optimized protocol is to tune the control
parameter with the constant velocity of the thermodynamic
length [21].

Quantum? No

Yes

  Extrapolation to obtain 
the thermodynamic length

    Free energy
landscape

or

FIG. 1. Flowchart for measuring the thermodynamic length L
with finite-time extrapolation. The excess power is evaluated with
the performed work rate Ẇ (t ) and the quasistatic work rate Ẇ(0)(t ) at
each moment of the finite-time process.

III. MEASURING THE THERMODYNAMIC LENGTH
THROUGH EXTRAPOLATION

The thermodynamic length is the long-time limit of the
finite-time thermodynamic length. In the following, we pro-
pose an extrapolation method to measure the thermodynamic
length for the system with a single control parameter. The
flowchart of the method is shown in Fig. 1. The measure-
ment of the finite-time thermodynamic length L(τ ) requires
the excess power Pex(t ) of the whole process. The power
Ẇ (t ) (0 < t < τ ) in a finite-time process is measured through
the conjugate force f (t ) = Tr[ρ∂λH] for a classical system
via Ẇ (t ) = λ̇(t ) f (t ) or the tomography of the density matrix
ρ(t ) for a quantum system via Ẇ (t ) = Tr(ρḢ ). With the
given protocol λ̃(s) of the control parameter, the quasistatic
work rate Ẇ(0)(t ) = Tr(ρeqḢ ) = λ̇∂λFeq(λ) is obtained with
the landscape of the equilibrium free energy Feq(λ), which can
be typically obtained from finite-time processes via Jarzyn-
ski’s equality [50].

Assuming the length L(τ ) as a smooth function of the
operation time τ , we expand L(τ ) into the Laurent series

L(τ ) = L +
∞∑
j=1

a j

τ j
. (6)

The operation time τ needs to be chosen notably larger than
the dissipation timescale to ensure the validity of Eq. (5).
By measuring the finite-time thermodynamic length under
the given operation time, we extrapolate the function as
L(τ ) = L +∑N

j=1 a jτ
− j with the cutoff N . The thermody-

namic length L is estimated with the extrapolation τ → ∞.
We apply the current strategy to measure the thermodynamic
length with two examples, the quantum harmonic oscillator
and the classical ideal gas system.
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A. Quantum harmonic oscillator with tuned frequency

We consider the quantum Brownian motion with the
Hamiltonian H (t ) = p̂2/(2m) + mω(t )2x̂2/2 in a tuned har-
monic potential with the frequency ω(t ) as the control
parameter in the finite-time isothermal process. At the high-
temperature limit, the evolution of the reduced system is
described by the Caldeira-Leggett master equation [44,51],
i.e., ∂tρ = Lω(t )ρ. The quantum Liouvillian super-operator is
explicitly

Lω(t )ρ = −i[H (t ), ρ] − iκ[x̂, { p̂, ρ}] − 2mκ

βb
[x̂, [x̂, ρ]], (7)

where the frequency-independent damping rate κ is induced
by the Ohmic spectral of the heat bath [44,51].

With the infinite dimension of the Hilbert space for a
harmonic oscillator, it is difficult to solve the evolution
of the density matrix by calculating the Drazin inverse of
the super-operator directly. An alternative way is to solve
the finite-time dynamics via a closed Lie algebra [52,53]
with the thermodynamic variables, the Hamiltonian H (t ),
the Lagrange L(t ) = p̂2/(2m) − mω(t )2x̂2/2, and the correla-
tion function D(t ) = ω(t )(x̂ p̂ + p̂x̂)/2. The closed differential
equations of the expectations of the thermodynamic variables
〈H (t )〉 = Tr[ρ(t )H (t )], 〈L(t )〉 = Tr[ρ(t )L(t )], and 〈D(t )〉 =
Tr[ρ(t )D(t )] are obtained from Eq. (7) as

d

dt

⎛
⎝〈H〉

〈L〉
〈D〉

⎞
⎠ =

⎛
⎝−2κ + ω̇

ω
−2κ − ω̇

ω
0

−2κ − ω̇
ω

−2κ + ω̇
ω

−2ω

0 2ω −2κ + ω̇
ω

⎞
⎠
⎛
⎝〈H〉

〈L〉
〈D〉

⎞
⎠

+ 2κkBTb

⎛
⎝1

1
0

⎞
⎠. (8)

The derivation to Eq. (8) is presented in Appendix C.
The performed work rate of the tuned harmonic oscillator

is Ẇ = ω̇/ω(〈H〉 − 〈L〉). In a quasistatic isothermal process,
the system evolves along the equilibrium states with the av-
erage internal energy 〈H〉 = kBTb and the average Lagrange
〈L〉 = 0, and the quasistatic work rate is Ẇ(0)(t ) = kBTbω̇/ω.
In a finite-time process, the finite-time thermodynamic length
L(τ ) is explicitly

L(τ ) =
∫ τ

0

[
ω̇

ω
(〈H〉 − 〈L〉 − kBTb)

]1/2

dt . (9)

The thermodynamic length of the tuned harmonic oscilla-
tor is obtained by Eq. (2) as

L =
√

kBTb

2κ

∣∣∣∣∣
[

sinh−1

(
ω

2κ

)
−
√

1 + 4κ2

ω2

]∣∣∣∣∣
ωτ

ω=ω0

∣∣∣∣∣, (10)

where ω0 and ωτ are the initial and final frequencies of the
harmonic potential. The detailed derivation of the thermody-
namic length is given in Appendix C. The optimal protocol
ωop(t ) = ω̃op(t/τ ) satisfies(

1

2κ
+ 2κ

ω̃2
op

)1/2 1

ω̃op

dω̃op

ds
= const. (11)

In the underdamped limit κ/ω � 1, the thermodynamic
length approximates L ≈ √

kBTb/(2κ )| ln ωτ/ω0|, and the

FIG. 2. Finite-time extrapolation to measure the thermodynamic
length for the quantum Brownian motion in a tuned harmonic po-
tential. With the current chosen parameters, the black dotted line
presents the thermodynamic length L = 0.864. It is approached by
the extrapolated functions with N = 3 for both the linear (blue
dashed curve) and the optimal (green solid curve) protocols. The
inset shows the excess work in a slow process is bounded as Wex(τ ) �
L2/τ (black dotted line), which is saturated by the optimal protocol
at the long-time limit.

optimal protocol is the exponential protocol ω̃op(s) =
ω0 exp[s ln(ωτ/ω0)]. In the overdamped limit κ/ω 
 1, the
thermodynamic length approximates L ≈ √

2κkBTb|(ωτ −
ω0)/(ω0ωτ )|, and the optimal protocol is the inverse protocol
ω̃op(s) = ω0ωτ/[(ω0 − ωτ )s + ωτ ].

We exemplify the finite-time extrapolation method to
obtain the thermodynamic length of the tuned harmonic os-
cillator through numerically solving the relaxation dynamics
with the linear protocol ω̃li(s) = ω0 + (ωτ − ω0)s and the
optimal protocol ω̃op(s). In the numerical calculation, the fre-
quency is tuned from ω0 = 1 to ωτ = 2 with the temperature
kBTb = 1 and the damping rate κ = 1. In Fig. 2 the extrap-
olated functions (curves) with N = 3 are obtained from 10
sets of data (markers) with the operation time τ ranging from
6.4 to 9.9 for the linear (blue dashed line) and the optimal
(green solid line) protocols as Lli (τ ) = 0.864 + 0.0128/τ −
0.0464/τ 2 − 0.145/τ 3 and Lop(τ ) = 0.864 − 0.00471/τ −
0.0448/τ 2 − 0.168/τ 3. The two extrapolated functions both
give the consistent thermodynamic length identical to the the-
oretical result L = 0.864 by Eq. (10), as illustrated with the
dotted black line. Therefore, the current extrapolation method
enables the measurement of the thermodynamic length in
relatively short time without finding the optimal protocol. The
inset shows the τ−1 scaling of the excess work. The excess
work of both the linear (blue dashed) and the optimal (green
solid) protocols is indeed bounded by the thermodynamic
length (black dotted line), and the bound is saturated by the
optimal protocol.

B. Compression of classical ideal gas

The extrapolation method is applicable in classical systems
with the strategy shown in Fig. 1. We consider the finite-time
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compression of the classical ideal gas in a cylinder, which
is in contact with a heat bath at the temperature Tb. By
compressing the piston, the volume of the cylinder changes
with the performed work rate Ẇ = −pV̇ , where p and V are
the pressure of the gas and the volume of the cylinder. As
derived in Ref. [54], the temperature T of the classical ideal
gas satisfies

dT

dt
= −nRT

CV

1

V

dV

dt
− γ (T − Tb), (12)

where n is the number of moles of gas and R is the ideal gas
constant, γ is the cooling rate in Newton’s law of cooling,
assumed as a constant in the following discussion, and CV is
the heat capacity at the constant volume, e.g., CV = 3nR/2 for
the single-atom ideal gas. In a finite-time isothermal process,
the excess power is obtained as Pex(t ) = −nR(T − Tb)V̇ /V .
The finite-time thermodynamic length is measured as

L(τ ) =
∫ τ

0

√
−[p(t ) − p(0)V (0)

V (t )
]V̇ (t ) dt . (13)

At the long-time limit, the thermodynamic length L is theo-
retically obtained as

L =
√

(nR)2Tb

γCV

∣∣∣∣ ln
Vτ

V0

∣∣∣∣, (14)

where V0 and Vτ are the initial and final volume of the cylinder.
For a long-time compression process, the optimal protocol
with the constant excess power is obtained as the exponential
protocol Ṽop(s) = V0(Vτ /V0)s, which is consistent with the
result obtained by the stochastic thermodynamics [55].

In Fig. 3 the finite-time thermodynamic lengths (markers)
for given protocols are numerically obtained for the isother-
mal processes with the operation time τ ranging from 11.0
to 20.0, where the parameters are set as nR = Tb = γ =
1 and CV = 1.5. We adopt the linear protocol Ṽli(s) = 1 −
s/2 (blue dashed curve) and the optimal protocol Ṽop(s) =
2−s (green solid curve) to compressing the volume of the
cylinder from V0 = 1 to Vτ = 0.5. Setting the cutoff N =
3, the extrapolated functions of the two protocols are ob-
tained as Lli (τ ) = 0.566 − 0.318/τ + 0.010/τ 2 − 0.146/τ 3

and Lop(τ ) = 0.566 − 0.216/τ − 0.199/τ 2 − 0.111/τ 3. The
extrapolations with different protocols lead to the same value,
matching the theoretical result L = 0.566 (black dotted line)
given by Eq. (14).

To clarify the importance of the extrapolation, we consider
the experimental measurement errors, e.g., the calibration er-
rors and electronic noise. These errors dominate the results
during the direct measurement of the thermodynamic length
due to the fundamental properties of the integration over the
vanishing measurement kernel, namely Pex(t ) ∼ 0 for any t ∈
[0, τ ] in a long-time process. Here we consider the measured
pressure contains 10−5 calibration error. Such a small error is
amplified with the increase of the operation time, as illustrated
by the thin curves in Fig. 3. The extrapolation is the only
method overcome the above problem by measure the finite-
time thermodynamic length with the short-time experimental
data affected by these errors. The detailed discussion is left
for Appendix D.

workheat

FIG. 3. Finite-time extrapolation to measure the thermodynamic
length for the compression of the classical ideal gas in a cylinder.
We adopt the linear protocol (blue dashed curve) and the optimal
protocol (green solid curve) to compress the volume of the cylinder to
one half. With the current chosen parameters, the length extrapolated
with the two protocols match the exact thermodynamic length L =
0.566 (black dotted line) by Eq. (14). The thin curves show the effect
of the calibration error on the finite-time thermodynamic length,
where we consider 10−5 calibration error to exist in the measured
pressure.

Using examples of both the quantum harmonic oscillator
and the classical ideal gas, we demonstrate the proposed ex-
trapolation method for measuring the thermodynamic length
for typical systems with a single control parameter. The quan-
tum harmonic oscillator has been potentially realized with the
trapped ion [56,57], and the classical ideal gas system will be
tested with our recently designed apparatus [54].

IV. CONCLUSION

The thermodynamic length is crucial in the optimization of
finite-time thermodynamic processes, yet remains challeng-
ing to be practically measured in experiments. We propose
to measure the thermodynamic length via the finite-time ex-
trapolation method. The protocol-independent property of the
current measurement strategy benefits to practically measure
the thermodynamic length directly with simple and realizable
control schemes in possible experimental platforms. The cur-
rent measurement proposal shall pave the way for measuring
the thermodynamic length with various experimental plat-
forms, which is still lacking for the finite-time thermodynamic
studies.
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APPENDIX A: CONVERGENCE OF THE FINITE-TIME
THERMODYNAMIC LENGTH

We demonstrate the convergence of the finite-time ther-
modynamic length L = limτ→∞L(τ ). Plugging the series
expansion of the excess power by Eq. (5) into Eq. (3), the
finite-time thermodynamic length is rewritten as

L(τ ) =
∫ 1

0

√√√√ ∞∑
n=1

Tr

[
∂H̃ (s)

∂s
τ 1−n

(
L −1

λ̃(s)

∂

∂s

)n

ρ̃eq(s)

]
ds.

(A1)

With the increasing control time τ , the term with n = 1 is
independent of τ and dominates the summation, and leads to
the thermodynamic length

L =
∫ 1

0

√
Tr

[
∂H̃

∂s

(
L −1

λ̃(s)

∂

∂s

)
ρ̃eq

]
ds (A2)

=
∫ 1

0

√
[λ̃′(s)]2Tr

[(
∂H

∂λ

)(
L −1

λ̃(s)

∂ρ̃eq

∂λ

)]
ds (A3)

=
∫ λ1

λ0

√
Tr

[(
∂H

∂λ

)(
L −1

λ

∂ρeq

∂λ

)]
|dλ|. (A4)

The last integral shows L is independent of the protocol λ̃(s)
for tuning a single control parameter.

APPENDIX B: TWO-LEVEL SYSTEM WITH TUNED
ENERGY SPACING

In this section, we show the example of the two-level
system with the tuned energy spacing. The Drazin inverse of
the super-operator is obtained directly for the optimization of
the protocol. The system Hamiltonian of the two-level system
reads

H (t ) = E (t )

2
(|e〉〈e| − |g〉〈g|), (B1)

where the energy spacing E (t ) is the control parameter. The
state of the two-level system is represented with the density
matrix

ρ(t ) =
(

ρee ρeg

ρge ρgg

)
. (B2)

With the coupling to the heat bath, the evolution is gov-
erned by the time-dependent master equation

ρ̇ = LE (t )(ρ), (B3)

where LE (t ) is in the Lindblad form

LE (t )(ρ) = −i[H (t ), ρ] +
∑
i=±

γi(t )D(σi)[ρ], (B4)

with the transition operators σ+ = |e〉〈g|, σ− = |g〉〈e| and the
dissipation super-operator

D(σ )[ρ] = σρσ † − 1
2σ †σρ − 1

2ρσ †σ. (B5)

The time-dependent transition rates are γ+(t ) = γ (t )N (t ) and
γ−(t ) = γ (t )[N (t ) + 1] with the average phonon number

N (t ) = 1

eβbE (t ) − 1
. (B6)

The spontaneous emission rate γ (t ) relies on the bath spectral
as

γ (t ) = γ0E (t )α. (B7)

Equation (B4) extends the well-known Lindblad master
equation [44] for the tuned two-level system via the time-
dependent energy spacing E (t ). This approximation is suit-
able for a long-time isothermal process with slowly tuned
control parameters.

Rewriting the density matrix into a vector

ρ = (ρee ρgg ρeg ρge)T
, (B8)

the super-operator is presented in the matrix form as

LE (t ) =

⎛
⎜⎜⎜⎜⎜⎝

−γ (N + 1) γ N 0 0

γ (N + 1) −γ N 0 0

0 0 −γ (N + 1
2 ) − iE 0

0 0 0 −γ (N + 1
2 ) + iE

⎞
⎟⎟⎟⎟⎟⎠, (B9)

with the eigenvalues � = 0,−γ (N + 1/2) ± iE , and γ (2N + 1). The Drazin inverse of the super-operator is obtained as

L −1
E (t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− (N+1)
γ (2N+1)2

N
γ (2N+1)2 0 0

(N+1)
γ (2N+1)2 − N

γ (2N+1)2 0 0

0 0 1
−γ (N+ 1

2 )−iE
0

0 0 0 1
−γ (N+ 1

2 )+iE

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B10)

At the time t , the instantaneous equilibrium state is

ρeq(t ) = ( N (t )
2N (t )+1

N (t )+1
2N (t )+1 0 0

)T
. (B11)
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FIG. 4. The optimal protocols of tuning the energy spacing Ẽ (s)
of the two-level system with different bath spectral α = 0.5, 1, and 2.
The optimal protocols are obtained by numerically solving Eq. (B15)
with the parameters βb = 1 and γ0 = 1.

The off-diagonal terms of the density matrix remain zero
ρeg(t ) = ρ∗

ge(t ) = 0 during the whole isothermal process. The
excess power to the first order is

P[1]
ex (t ) = Tr

[
dH (t )

dt
L −1

E (t )

(
dρeq(t )

dt

)]
(B12)

= βbĖ2

4γ

tanh
(

1
2βbE

)
cosh2

(
1
2βbE

) . (B13)

The thermodynamic length follows as

L =
∫ Eτ

E0

√
βb

4γ0Eα

tanh
[

1
2βbE (t )

]
cosh2

[
1
2βbE (t )

] dE . (B14)

At the long-time limit, the optimal protocol Ẽ (s) is obtained
with the constant excess power P[1]

ex (t ) = const, namely,

βb

4γ0Ẽ (s)α
tanh

[
1
2βbẼ (s)

]
cosh2

[
1
2βbẼ (s)

][dẼ (s)

ds

]2

= const. (B15)

Figure 4 shows the tuning of the energy spacing Ẽ (s) with s
ranging from 0 to 1. We solve the optimal protocols for differ-

ent bath spectral, the sub-Ohmic α = 0.5 (dashed curve), the
Ohmic α = 1 (dotted curve), and super-Ohmic α = 2 (dash-
dotted curve) with the inverse temperature βb = 1 and the
dissipation strength γ0 = 1.

With the Ohmic spectral α = 1 of the bath, we exem-
plify the extrapolation method to measure the thermodynamic
length of the two-level system. The energy spacing is
tuned from E0 = 1 to Eτ = 2 with the linear and the opti-
mal protocols. Figure 5(a) shows the measured finite-time
thermodynamic length L(τ ) = ∫ τ

0

√
Pex(t ) dt (markers) with

the duration ranging from 10.0 to 19.0. With the cutoff
N = 3, the extrapolated functions are obtained for the two
protocols as Lli(τ ) = 0.495 − 0.000284/τ − 0.0179/τ 2 −
0.0307/τ 3 and Lop(τ ) = 0.495 − 0.0136/τ − 0.0500/τ 2 −
0.0130/τ 3. They both approach the thermodynamic length
(black dotted line) with the increasing duration τ . Figure 5(b)
shows the τ−1 scaling of the excess work at the long-time
limit. The excess work is bounded by the thermodynamic
length as Wex � L2/τ . The excess work done with the optimal
protocol matches the lower bound given by the thermody-
namic length (black dotted line).

APPENDIX C: QUANTUM BROWNIAN MOTION
IN A TUNED HARMONIC POTENTIAL

1. Differential equations of the average values

We first derive the differential equation (8) of the aver-
age values of the internal energy 〈H (t )〉 = Tr[ρ(t )H (t )], the
Lagrange 〈L(t )〉 = Tr[ρ(t )L(t )] and the correlation function
〈D(t )〉 = Tr[ρ(t )D(t )]. According to the Caldeira-Leggett
master equation [44,51], the time derivative of the internal
energy is calculated as

d〈H〉
dt

= mω(t )ω̇(t )Tr[ρ(t )x̂2] + Tr{Lω(t )[ρ(t )]H (t )}, (C1)

where the upper dot denotes the time derivative, namely,
ω̇(t ) = dω/dt . With the similar calculation of time
derivatives for the Lagrange and the correlation function,

FIG. 5. Finite-time extrapolation for the two-level system with the tuned energy spacing. (a) Finite-time thermodynamic lengths for the
linear and the optimal protocols. Through measuring the finite-time thermodynamic length with short duration (markers), the thermodynamic
length can be approached by the extrapolated functions of both protocols. (b) The τ−1 scaling of the excess work. For a long-time process, the
optimal protocol (green solid line) consumes less excess work and saturates the lower bound given by the thermodynamic length (black dotted
line).
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we obtain the differential equations of average values as

d〈H〉
dt

= ω̇

ω
(〈H〉 − 〈L〉) − 2κ (〈H〉 + 〈L〉) + 2κkBTb, (C2)

d〈L〉
dt

= − ω̇

ω
(〈H〉 − 〈L〉) − 2ω〈D〉− 2κ (〈H〉+ 〈L〉)

+ 2κkBTb, (C3)

d〈D〉
dt

= ω̇

ω
〈D〉 + 2ω〈L〉 − 2κ〈D〉, (C4)

which are Eq. (8). Let us rewrite Eq. (8) into a compact form

d

dt
φ = M(t )φ + f (t ), (C5)

with the vector φ = (〈H〉 〈L〉 〈D〉)T and the function
f (t ) = 2κkBTb(1 1 0)T. The matrix M(t ) is

M(t ) =
⎛
⎝−2κ + ω̇

ω
−2κ − ω̇

ω
0

−2κ − ω̇
ω

−2κ + ω̇
ω

−2ω

0 2ω −2κ + ω̇
ω

⎞
⎠, (C6)

the inverse of which is obtained as

M−1=

⎛
⎜⎜⎜⎜⎝
− ( ω̇

ω
−2κ)2+4ω2

4( ω̇
ω
−2κ)(2κ ω̇

ω
−ω2 )

ω̇
ω
+2κ

4(ω2−2κ ω̇
ω )

ω( ω̇
ω
+2κ)

2( ω̇
ω
−2κ)(ω2−2κ ω̇

ω )
ω̇
ω
+2κ

4(ω2−2κ ω̇
ω )

2κ− ω̇
ω

4(2κ ω̇
ω
−ω2 )

ω

2(ω2−2κ ω̇
ω )

ω( ω̇
ω
+2κ)

2( ω̇
ω
−2κ)(2κ ω̇

ω
−ω2 )

ω

2(2κ ω̇
ω
−ω2 )

2κ ω̇
ω

( ω̇
ω
−2κ)(2κ ω̇

ω
−ω2 )

⎞
⎟⎟⎟⎟⎠.

(C7)

2. Solution of slow tuning

With the existence of the inverse M−1, we rewrite the
differential equation as

φ = −M−1 f + M−1 d

dt
φ. (C8)

Using the perturbative expansion approach in Ref. [49], the
solution for the slow tuning is

φ = −
∞∑

n=0

(
M−1 d

dt

)n

M−1 f , (C9)

where the time derivative d/dt acts on both M−1 and f . For
the slow tuning satisfied

ω̇

κω
� 1,

κω̇

ω3
� 1, (C10)

the term with n = 0 dominates the summation in Eq. (C9),
namely,

φ ≈ −M−1 f = kBTb

⎛
⎜⎜⎝

κ[2ω2+ ω̇
ω

( ω̇
ω
−2κ )]

(2κ− ω̇
ω

)(ω2−2κ ω̇
ω )

κω̇
2κω̇−ω3

− 2κω̇

(2κ− ω̇
ω

)(ω2−2κ ω̇
ω )

⎞
⎟⎟⎠. (C11)

Keeping the first order of ω̇/(κω), κω̇/ω3, and ω̇/ω2, we
obtain

φ[1] ≈ kBTb

⎛
⎝1 + κ ω̇

ω3 + 1
2κ

ω̇
ω

−κ ω̇
ω3

− ω̇
ω2

⎞
⎠. (C12)
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FIG. 6. The τ−1 scaling of the excess work for tuning the fre-
quency of the harmonic oscillator. We compare the excess work in the
linear protocol (blue dashed curve) and the optimal protocol (green
solid curve). The frequency is tuned from ω0 = 1 to ωτ = 2 with the
temperature kBTb = 1, and the dissipation rate is set as κ = 1. For
the slow process, the lower bound of the excess work L2/τ is given
by the thermodynamic length with L = 0.864.

The terms with the change of the frequency ω̇ contributes to
the τ−1 scaling of the excess work at the long-time limit.

The power for tuning the frequency is

Ẇ (t ) = ω̇

ω
(〈H〉 − 〈L〉), (C13)

and the quasistatic work rate is Ẇ(0)(t ) = kBTbω̇/ω. Plugging
Eq. (C12) into the power, we obtain the excess power Pex(t ) =
Ẇ (t ) − Ẇ(0)(t ) to the lowest order of ω̇ as

Pex(t ) ≈ kBTb
ω̇2

ω2

(
1

2κ
+ 2κ

ω2

)
, (C14)

which leads to the thermodynamic length

L =
∫ ωτ

ω0

√
kBTb

(
1

2κ
+ 2κ

ω2

)∣∣∣∣dω

ω

∣∣∣∣. (C15)

3. Numerical result of the excess work

In Fig. 6 we show the numerical result of the excess work
corresponding to the inset of Fig. 2. We consider the linear
protocol (blue dashed curve) with ω̃li(s) = ω0 + (ωτ − ω0)s
and the optimal protocol (green solid curve) with ω̃op(s)
solved by Eq. (11). For the slow tuning with long duration,
the excess work satisfies the τ−1 scaling and is bounded by
the thermodynamic length as Wex � L2/τ . The lower bound
(black dotted line) is saturated by the optimal protocol.

APPENDIX D: COMPRESSION OF CLASSICAL
IDEAL GAS

Our recent experimental setup for validation of the τ−1

scaling of the excess work with the ideal gas [54] can be
used to apply the current strategy to measure the thermody-
namic length. Here we show the theoretical derivation of the
thermodynamic length and the excess work for the finite-time
compression.
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FIG. 7. The τ−1 scaling of the excess work for the finite-time
compression of the ideal gas. The linear protocol Ṽli (s) = V0 + (Vτ −
V0 )s and the exponential protocol Ṽop(s) = V0(Vτ /V0 )s are consid-
ered. The parameters are set as nR = Tb = γ = 1 and CV = 1.5, and
the volume is tuned from V0 = 1 to Vτ = 0.5. The black dotted line
shows the lower bound of the excess work Wex � L2/τ given by
the thermodynamic length L = 0.566, saturated by the exponential
protocol.

Defining the temperature difference u = T − Tb, we
rewrite Eq. (12) as

du

dt
= −nR

CV
(Tb + u)

V̇

V
− γ u. (D1)

The series expansion solution is obtained as

u =
∞∑

n=0

(
− 1

nR
CV

V̇
V + γ

d

dt

)n( − nRTb
CV

V̇
V

nR
CV

V̇
V + γ

)
. (D2)

The power of the compression is Ẇ = −pV̇ = −nRTV̇ /V .
In the quasistatic process, the temperature of the gas is
the same as that of the bath, i.e., T = Tb, and the qua-
sistatic work rate is Ẇ(0)(t ) = −nRTbV̇ /V . For the slow tuning
nRV̇ /(γCV V ) � 1, the term with n = 0 dominates the sum-
mation in Eq. (D2), and the temperature difference to the
lowest order is u[0] = −nRTbV̇ /(γCV V ). The excess power
Pex = Ẇ − Ẇ(0)(t ) approximates

Pex ≈ (nR)2Tb

γCV

(
V̇

V

)2

, (D3)

with the excess work

Wex ≈
∫ τ

0

(nR)2Tb

γCV

(
V̇

V

)2

dt . (D4)

The thermodynamic length follows as

L =
∫ τ

0

√
(nR)2Tb

γCV

(
V̇

V

)2

dt, (D5)

which gives Eq. (14).
In Fig. 7 we show the numerical result of the excess work

for the finite-time compression of ideal gas. The excess work
exhibits the τ−1 scaling during the slow compression process.
The compression with the exponential protocol (green solid
curve) consumes the lower excess work compared to that of
the linear protocol (blue dashed curve) with the given duration

τ . The lower bound L2/τ (black dotted line) is saturated by
the optimal protocol as the exponential protocol.

1. Errors in measurements

In experiments, the pressure p(t ) of the gas and the volume
of the cavity V (t ) are measured during the compression [54].
According to Eq. (3), the finite-time thermodynamic length is
obtained through

L(τ ) =
∫ τ

0

√
−
[

p(t ) − p(0)V (0)

V (t )

]
V̇ (t ) dt . (D6)

Yet errors inevitably exist in the measurements, and hinder to
extract the precise result of the thermodynamic length. The
effect of the errors is more remarkable with a longer duration,
since the excess power becomes too small to be measured. As
an illustration, we consider the measurements of the pressure
contain two kinds of errors, the systematic error (caused by
the pressure sensor calibration) or the random error (caused
by the electronic noise of devices).

(1) Systematic error: If the systematic error exists, the
measured pressure is

pmea(t ) = preal(t ) + δp. (D7)

With 10−5 systematic error in the pressure, the long time
limits of the measured finite-time thermodynamic length devi-
ates from the thermodynamic length (horizontal black dashed
line), as shown by the thin curves in Fig. 3. We take the real
part of the finite-time thermodynamic length since the square
root may be imaginary induced by the error.

(2) Random error: We consider the measured pressure con-
tains the random error

pmea(t ) = preal(t ) + �p(t ). (D8)

To reveal the effect of �p(t ), we simulate it as a Gaussian
white noise with the standard deviation σ = 10−3 and zero
mean value 〈�p(t )〉 = 0. We assume the pressure is mea-
sured with the interval δt = 0.1. The measured pressure is
considered as the interpolation by Eq. (D8) with �p(t ) at

FIG. 8. The measured finite-time thermodynamic length L(t )
with the random error. The standard deviation of the random error is
σ = 10−3. The solid and the dashed curves present the extrapolation
functions of the optimal and the linear protocols, while the markers
show the corresponding simulated results with the random errors.
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each moment. Notice that the random error �p(t ) may also
lead to the imaginary square root. The real part of the finite-
time thermodynamic length is shown in Fig. 8. The solid and
the dashed curves present the extrapolation functions of the
optimal and the linear protocols, while the markers show the
corresponding simulated results with the random errors. For

each operation time τ , we simulate the compression process
20 times, where in each time we generate a different random
error �p(t ). The results show that the effect of the random er-
ror increases with the longer operation time τ , which hinders
the precise measurement of the finite-time thermodynamic
length of slow isothermal processes.
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