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The aging process is a common phenomenon in engineering, biological, and physical systems. The hazard
rate function, which characterizes the aging process, is a fundamental quantity in the disciplines of reliability,
failure, and risk analysis. However, it is difficult to determine the entire hazard function accurately with limited
observation data when the degradation mechanism is not fully understood. Inspired by the seminal work
pioneered by Jaynes [Phys. Rev. 106, 620 (1956)], this study develops an approach based on the principle
of maximum entropy. In particular, the time-dependent hazard rate function can be established using limited
observation data in a rational manner. It is shown that the developed approach is capable of constructing and
interpreting many typical hazard rate curves observed in practice, such as the bathtub curve, the upside down
bathtub, and so on. The developed approach is applied to model a classical single function system and a numerical
example is used to demonstrate the method. In addition its extension to a more general multifunction system is
presented. Depending on the interaction between different functions of the system, two cases, namely reducible
and irreducible, are discussed in detail. A multifunction electrical system is used for demonstration.
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I. INTRODUCTION

The aging process is a common phenomenon in many
engineering, biological, and physical systems. Modeling the
aging process is of critical importance for the evaluation of
reliability, availability, and safety of a system, and thus is
widely concerning. However, it is difficult to describe the
aging process microscopically due to its inherent complex and
stochastic nature. Consequently the lifetime of a component
or system, as the final outcome of the aging process, is also
random. The hazard rate function characterizing the time-
dependent nature of the aging process plays an important
role in reliability engineering [1]. Knowing the hazard rate
function allows for prediction of the lifetime distribution and
therefore the failure probability can be evaluated. Early and
systematical attempts in construction of the hazard function
can be traced back to the reliability study of military radar
systems [2]. The statistical analysis of component life testing
data has since become an engineering practice to estimate the
hazard rate function. The bathtub shape of the hazard rate
function is then widely observed and the mechanism of such
a shape is empirically explained.

To describe the above mentioned concept in detail, con-
sider a single function system with an uncertain lifetime T
as a random variable. The survival function, F (t ), is de-
fined as the probability that the lifetime T is greater than t ,
i.e., F (t ) = Pr(T � t ), where t ∈ (0,+∞). The correspond-
ing probability density function (PDF) for lifetime T = t is
obtained as p(t ) ≡ −dF (t )/dt with a normalizing constant
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∫ ∞
0 p(t )dt = F (0) − F (∞) = 1. The hazard rate function

x(t ) is then defined as

x(t ) ≡ − 1

F (t )

dF (t )

dt
= p(t )

F (t )
. (1)

The hazard rate is the failure rate of the system at time t
conditioning on the system at t is still functioning. Empirical
evidences show that for a number of systems, the hazard rate
function exhibits the so-called bathtub shape or U shape (the
solid curve shown in Fig. 2). The earliest bathtub shaped
hazard rate function appears in an actuarial life-table analysis
in 1693 [3,4]. The bathtub shape of the hazard rate function
implies that the failure mechanism of the system may be di-
vided into three phases: the infant mortality, random failures,
and wear-out failures.

Although the bathtub shape of hazard rate functions is
widely observed in many realistic components and systems,
the lack of underlying physical theory supporting the inter-
pretation leads to some criticisms [4]. Moreover, the hazard
rate functions that are not in bathtub shape are also observed
in some biological systems [5] and electronic systems [6].
Beside the areas of engineering science and biology, the aging
processes (especially in materials) are also widely concerned
in the area of material physics [7–14], including, but not
be limited to, the rupture of the fibrous materials [9,12],
the cracking of heterogeneous material [10,13], and physical
aging of colloidal glass [14].

The perspectives on the aging problems may be differ-
ent to engineers and physicists. The former usually focuses
on the degradation of the functioning systems and lifetime
distributions. The latter concerns the physical and statistical
laws in aging processes. The physical aging usually means the
dynamical relaxation of the systems [15–19]. The connections
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between the aging processes in different areas are also signi-
fied in, for example, Ref. [20] where a direct link between the
biological aging and the physical aging is established.

The hazard rate function is usually difficult to obtain due
to the lack of precise understanding of the physical mech-
anism and the limitation of information access. Statistical
analysis is one of the most common approaches to estimate
the hazard rate curves using lifetime testing data. A sufficient
amount of lifetime data are required to ensure a reliable
estimation of the hazard rate curve. A few methods have
been reported to fit the hazard rate curves based on Weibull
distributions, Lindley distributions, exponential distributions,
and its variants [21–23]. The modeling of the commonly seen
bathtub shaped failure rate curve is reviewed in Ref. [24] and
some recent development regarding this topic is discussed in
Refs. [25,26]. The performance of these methods relies on
the sufficiency of the experimental data and the choice of
distributions. Another approach to construct the hazard rate
function is based on modeling the physical mechanism of the
aging process [7–9]. This approach can provide a clear phys-
ical picture of the aging process and a close agreement with
experimental data is observed for relatively simple systems.
For systems with complex aging mechanisms this approach
is difficult to apply. Recently, entropy-based methods are
also reported to tackle the problems in the field of reliability
[27–36]. In Refs. [27–29], the authors considered remaining
lifetime and corresponding time-dependent residual entropy,
and investigated the lifetime distributions to maximize the
residual entropy in several conditions.

Although many studies have been reported on estimation
of the hazard rate curve, an approach built upon fundamental
principles of physics to construct the hazard rate function is
rarely seen. In addition, to the best of the authors’ knowledge,
there is no analytical modeling work reported on multifunc-
tion systems consisting of several individual components. In
view of this, the goal of this study is to develop an approach
to reliability problems based on the fundamental principle of
maximum entropy (MaxEnt), allowing for the construction of
the hazard rate function in a rational manner given available
data. This study extends the MaxEnt method to the time-
dependent cases. The principle of MaxEnt and the least-action
principle is compared to formulate the equation of motion
for the most probable hazard rate, i.e., the Euler-Lagrange
equation. Another focus of this study is to reveal the under-
lying connection between different shapes of the hazard rate
and the information processing. Both the model-dependent
and the data-dependent hazard rate shapes are investigated in
this study. In addition, the modeling of multifunction systems
consisting of multiple individual components is made using
the developed approach. A linear assumption is incorporated
to cope with the complexity introduced by multiple functions
in the system. Using the linear assumption, the hazard rate of
the system can be represented as a multidimensional matrix.
Depending on the interaction between each individual func-
tion, two cases, namely the reducible one and the irreducible
one, are derived using the proposed method. It demonstrates
a viable means for the bottom-up modeling of hazard rate
functions of complex systems.

This paper is organized as follows. In Sec. II, the principle
of MaxEnt is briefly reviewed. The variational technique is

applied to MaxEnt to formulate the dynamical equation of the
hazard rate. The equation of motion is solved to obtain the
most probable hazard rate function. In Sec. III, the modeling
of the hazard rate function for single function systems is
presented. Using a double-moment constraint, the modeling
problem is recast to a MaxEnt inference problem. It is shown
that the resulting model is capable of producing three different
shapes of the hazard rate curves: the bathtub shape, the
upside down bathtub shape, and the monotonically increasing
shape. The data dependence of the shapes is demonstrated
by using different model parameters. Furthermore, using a
quadruple-moment constraint allows the resulting model to
produce other shapes of the hazard rate function. Numerical
experiments of a single-function electrical system is used
to validate the effectiveness of the method. In Sec. IV, the
modeling of multifunction systems where the correlation is
among the components is presented. A two-lamp circuit is
used to demonstrate the modeling of multifunction systems.
Finally, conclusions are drawn in Sec. V.

II. MAXENT METHOD

A. Principle of maximum entropy (MaxEnt)

The concept of entropy was originally introduced by Clau-
sius to identify the reversible and irreversible processes in
thermodynamics. According to the view of Clausius, the
second law of thermodynamics states that the entropy of a
thermal-isolation system never decreases. Boltzmann, then,
associated the entropy to statistical quantities, laying out the
foundation of the modern statistical physics. Shannon [37]
developed the information theory which is based on a quantity
called Shannon entropy, S = −∑

i pi log pi, as a measure
of information loss or the ignorance of an observer. Jaynes
[38,39] combined the insights of both statistical physics and
information theory, and established the fundamental logic of
probabilistic inference. In his point of view, statistical physics
is only to do probabilistic inferences from limited information
based on the principle of MaxEnt. Jaynes [40] later compared
the MaxEnt method with other methods of inference, and
pointed out that it is applicable to inference problems with a
well-defined hypothesis space and noiseless incomplete data.

The principle of MaxEnt states that the most probable
distribution function is the one that maximizes the entropy
given testable information. A PDF p(t ) and its hazard rate
function x(t ) relate to each other through

p(t ) = x(t ) exp

[
−

∫ t

0
x(t ′)dt ′

]
. (2)

Note that Eq. (2) is just the solution to Eq. (1). Using Eq. (2),
the entropy S for a given PDF p(t ) can be expressed as

S = −
∫ ∞

0
p(t ) ln p(t )dt

= −
∫ ∞

0
Ẋ exp(−X ) ln[Ẋ exp(−X )]dt, (3)

where X = ∫ t
0 x(t ′)dt ′ and Ẋ = x(t ). The entropy in Eq. (3)

is called the differential entropy. A constant term ln(dt ) has
been neglected, and thus the term ln p(t ) has an abnormal
dimension. In Eq. (3) the measure in integral is set to dt . In
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general, the measure should be properly chosen according to
the prior knowledge.

Experimental data can be encoded into pieces of
testable information using statistical moments of any observ-
able time-dependent quantities gi(t ), i = 1, 2, . . ., i.e., ḡi =∫ ∞

0 p(t )gi(t )dt, i = 1, 2, . . .. To maximize the entropy based
on the testable information, the variational term of the entropy
can be used,

δS̄ = δ

(
−

∫ ∞

0
p(t ) ln p(t )dt − α

∫ ∞

0
p(t )dt

−
∑

i

βi

∫ ∞

0
gi(t )p(t )dt

)

= − δ

(∫ ∞

0
Ẋ exp(−X )

{
ln[Ẋ exp(−X )]

+ α +
∑

i

βigi(t )

}
dt

)
= 0, (4)

where α and βi, i = 1, 2, . . . are Lagrange multipliers.

B. Entropy as the action of hazard rate dynamics

The entropy in the above equation is the function of the
time dependent variable X = ∫ t

0 x(t ′)dt ′. To determine the
most probable hazard rate one may adopt the variational
principle. In this sense the concept of MaxEnt is similar to
the least-action principle.

One can see that the quantity S̃ = −S̄ is similar to the ac-
tion which governs the hazard rate dynamics. The “velocity”
Ẋ which minimizes the action is the most probable hazard
rate. We rewrite Eq. (4) in Lagrangian form explicitly to have

L[X, Ẋ , t] =Ẋ exp(−X )

{
ln[Ẋ exp(−X )] + α +

∑
i

βigi(t )

}
.

(5)

To maximize the action, X satisfies the Euler-Lagrange equa-
tion

d

dt

(
∂L
∂Ẋ

)
− ∂L

∂X
= 0, (6)

which is expressed explicitly as

Ẍ − Ẋ 2 + Ẋ
∑

i

βiġi(t ) = 0. (7)

The Lagrange multiplier α is related to the normalization and
does not appear in the above equation because the function∫

Ẋ exp(−X )dt is nothing but a constant. This equation of
motion governs the most probable hazard rate varying with
time. It should be noted that the constraints used for method
development are based on the lifetime statistics. The con-
straints can be loosely seen as pieces of information encoding
some features over the entire lifespan. Therefore, the con-
straints given above are not varying with time; therefore, the
resulting Lagrange multipliers are not time-varying quantities.
However when the constraints are time varying, the resulting
Lagrange multipliers will be time dependent. For example,
the following constraint is time dependent and can result in

a time-dependent Lagrange multiplier,∫ ti+1

ti

p(t )dt = ci,

where i = 1, 2, . . ., ti < ti+1 for any i, and ci can be evaluated
from the empirical probability. It is worth mentioning that
the method itself can deal with both the time-dependent and
time-independent constraints, as the underlying principle of
the MaxEnt only provides a mechanism to process the given
constraints as long as they are testable information.

Equation (5) should not be overlooked. Although on the
surface it appears as an algebraic manipulation, the signifi-
cance of the established dynamics should be emphasized here.
The hazard rate is originally a quantity in the statistical sense,
and the dynamical equations are usually governed by the
action in physical theories. Equation (5) relates the hazard rate
function to the dynamics of time-dependent aging processes.
In this sense, the hazard rate becomes a bridge that links the
statistical and the dynamical aspects of aging processes. In
other words, the entropy here is not only the measure of un-
certainty but also becomes the action that governs the hazard
rate dynamics. This remark is established based solely on one
fundamental physical principle, MaxEnt. Consequently, the
MaxEnt method provides a natural and rational way to treat
the problem of reliability more physically.

C. Most probable hazard rate and distribution

Take the moments of lifetime as the constraints, i.e., gi =
t i, and use the initial condition of gi(0) = 0 (i = 1, 2, . . .).
Solve Eq. (7) with certain initial conditions to obtain

Ẋ = x0 exp
( − ∑

i βigi
)

1 − x0
∫ t

0 exp
( − ∑

i βigi
)
dt ′ , (8)

where Ẋ (0) = x0 is the initial hazard rate. The function in
Eq. (8) has a singularity point denoted by tmax with the
following condition:

x0

∫ tmax

0
exp

(
−

∑
i

βigi

)
dt ′ = 1. (9)

Note that the definition of hazard rates Eq. (1) shows that
the hazard rates are always non-negative. The term Ẋ in
Eq. (8) is negative when t > tmax. It implies that only t � tmax

is allowable. This can be directly proved by verifying the
normalization condition. Substituting Eq. (8) into Eq. (2), for
t � tmax, the PDF p(t ) becomes

p(t ) = x0 exp

(
−

∑
i

βigi

)
. (10)

Equation (9) is nothing but a normalization condition, and
the singularity tmax is the maximum lifetime. The detailed
derivations and explanations of the maximum lifetime are
presented in Appendix A.

The above discussion shows that the physically allowable
hazard rate is

x ≡ Ẋ =
{

x0 exp(− ∑
i βigi )

1−x0
∫ t

0 exp(− ∑
i βigi )dt ′ , 0 � t < tmax,

0, t � tmax,
(11)

012106-3



DU, MA, WEI, GUAN, AND SUN PHYSICAL REVIEW E 101, 012106 (2020)

0x( )

x( τ )

maxx( t )
x

tτ0 maxt

FIG. 1. Illustration of alternative additional constraints.
x(0), x(tmax) are the alternative additional constraints at the
boundary. One can, in general, use the hazard rate at an arbitrary
time x(τ ) to obtain the solution.

where Ẋ (0) = x0 is the initial hazard rate and tmax is the
maximum lifetime. It follows from Eq. (2) that

p(t ) =
{

x0 exp
[ − ∑

i βigi(t )
]
, 0 � t < tmax,

0, t > tmax.
(12)

The normalization of p(t ) indicates that the maximum lifetime
tmax is related to the initial hazard rate x0 through Eq. (9) and
vice versa.

The hazard rate increases with time when t approaches tmax

given that tmax is finite. This feature plays an important role
in the bathtub shaped hazard rate function in the following
two aspects. First consider the initial hazard rate x0 and the
moment ḡi are observed information, and the maximum life-
time tmax and other features of the distribution are quantities to
be inferred. The following example illustrates this setting: the
maximum lifetime of humans is the variable of interest to be
inferred based on the information of infant mortality and the
average lifetime. Conversely given that the maximum lifetime
tmax and the moment ḡi are observed information, and the
initial hazard rate x(0) and other features of the distribution
are quantities to be inferred, a different inference problem is
formulated. For example, given the maximum lifetime tmax or
the average lifetime and its limit, an estimation on the initial
hazard rate can be made. In general these local information,
such as initial hazard rate x0 and the maximum lifetime tmax,
serves as the boundary condition of hazard rate dynamics, and
provides the necessary constraint in solving the hazard rate
function using MaxEnt. One can, in general, use the hazard
rate at an arbitrary time to do the inference. However, the
results of the inference usually depend on the choice of such
additional constraints, and are discussed in the next section.

The different choices of additional constraints are illus-
trated in Fig. 1. It is worth mentioning that the most probable
distribution of the lifetime can be obtained from the hazard
rate Ẋ by utilizing Eq. (2) or the equivalent Eq. (12). It can
also be determined directly using MaxEnt with necessary
constraints such as the maximum lifetime or an initial hazard
rate. It can be realized from Fig. 1 that the resulting distri-
bution functions using the two considerations are equivalent
if the observation error is omitted. The proof is presented in

Appendix A. This property is useful for the self-consistency
test of the method, which is discussed later.

III. SINGLE FUNCTION SYSTEMS

Following Eq. (1), the survival function F (t ) of a single
function system decreases with time as

dF

dt
= −x(t )F (t ), (13)

where F (t ) = ∫ t
0 p(t ′)dt ′ is a monotonically decreasing func-

tion and x(t ) � 0 is the hazard rate function.

A. Double-moment constraints

Recall that gi(t ), i = 1, 2, . . . denotes the random variables
which can be observed from experiments. Usually only a
small number of samples are available in practical problems.
In this case only the first order and second order moments
are reliable. Denote the first order and second order moments
as g1(t ) = t and g2(t ) = t2, respectively. Omitting the term
t in x(t ) and representing x(0) as x0 only for simplicity, the
equation of motion of the hazard rate becomes

ẋ − x2 + x(β1 + 2β2t ) = 0, (14)

where β1 and β2 are the Lagrange multipliers for the first
and second order moments, respectively. Given the initial
condition x(0) = x0 > 0, the solution to Eq. (14) is

x =
⎧⎨
⎩

x0 exp(−β1t − β2t2)

1 − x0
∫ t

0 exp(−β1t ′ − β2t ′2)dt ′ , 0 � t < tmax,

0, t � tmax.

(15)
The normalization requires

x0

∫ tmax

0
exp(−β1t − β2t2)dt = 1. (16)

Because tmax ∈ [0,∞) and exp(−β1t − β2t2) > 0, one has

x0

∫ ∞

0
exp(−β1t − β2t2)dt � 1. (17)

This is the necessary and sufficient condition to guarantee
that the solution is physically viable. If the above condition
is violated, the resulting PDF cannot be normalized and thus
is improper.

Conditions violating the inequality in Eq. (17) only occur
when β2 > 0. The inequality always holds because the inte-
gration

∫ ∞
0 exp(−β1t − β2t2)dt is divergent when β2 < 0. In

particular, for β2 > 0, the equality implies the resulting PDF
is a truncated Gaussian distribution.

Consider the triplet of (x0, β1, β2) which satisfies Eq. (17);
the most probable hazard rate function x(t ) can yield three
different types of shapes. Table I presents the three possible
shapes and corresponding domains of parameters. The de-
tailed derivations are presented in Appendix B. In the case
of β2 < 0, β1 > x0, the hazard rate functions are in bathtub
shapes. In the case of β2 > 0, x0

∫ ∞
0 exp(−β1t − β2t2)dt =

1, the hazard rate functions are in upside down bathtub shapes.
The hazard rate functions are associated with truncated
Gaussian distributions. In other physically viable cases, i.e.,
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TABLE I. Shapes of hazard-rate curves and the corresponding domains of parameters.

x0 � β1 x0 < β1

β2 < 0 monotonically increasing bathtub

β2 > 0 x0

∫ ∞
0 exp(−β1t − β2t2)dt = 1 x0

∫ ∞
0 exp(−β1t − β2t2)dt > 1

upside down bathtub monotonically increasing

β2 > 0, x0
∫ ∞

0 exp(−β1t − β2t2)dt > 1, the hazard rate func-
tions are monotonically increasing curves.

Figure 2 presents results of Eq. (14) with an initial con-
dition x0 = 1 for illustration. For example, the hazard rate
function associated with parameters β1 = −0.1 and β2 =
1.5989 is a monotonically increasing curve, satisfying the
condition of β2 > 0 and x0

∫ ∞
0 exp(−β1t − β2t2)dt > 1. The

parameters of the other two curves (the bathtub shape and
the upside down bathtub shape) also satisfy the conditions
yielding the two shapes. It should be noted that the quantities
which can directly be obtained from experimental data are not
the parameters of β1 and β2 but the moments of t̄ and t̄2.

Note that the number of the possible types of shapes
depends on the constraints. The double-moment (the first
and second order moments) constraint can yield hazard rate
functions in bathtub shapes, upside down bathtub shapes, and
the monotonically increasing curves. Figure 3 shows how the
shape of the curves varies with the first order and second order
moments. The numerical results show that if the point (t̄2, t̄ )
is located in the black region in Fig. 3, the resulting hazard
rate function function exhibits a bathtub shape; otherwise, the
hazard rate function is a monotonically increasing curve (in
the gray region). In this case the maximum lifetime is 1, i.e.,

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

x(
t)

 

 

β
1
=−0.1, β

2
=0.7979

β
1
=0, β

2
=0.7979

β
1
=3.3, β

2
=−1

FIG. 2. Hazard rate function x(t ) using a double-moment con-
straint with different (β1, β2) parameters, showing three different
shapes. The initial hazard rate x0 is set to 1. The parameters asso-
ciated with the three shapes are only for illustration purposes.

a finite quantity, and there is no hazard rate function in upside
down bathtub shapes.

B. Quadruple-moment constraints

The analysis of the hazard rate function with a quadruple-
moment constraint is similar to the previous one with a
double-moment constraint. Equation (7) implies that for a
quadruple-moment constraint the equation of motion of the
hazard rate function is written as

ẋ − x2 + x(β1 + 2β2t + 3β3t2 + 4β4t3) = 0, (18)

where βi, i = 1, . . . , 4 are parameters that need to be solved
given the moment constraints. The resulting hazard rate func-
tion x(t ) of the above equation has seven types of shapes
at most. The proof is presented in Appendix B. Besides the
three types of shapes shown in the double-moment case, the
quadruple-moment constraint is capable of generating W-
and upside down W-, N- and upside down N-shaped curves.
Figure 4 shows the additional possible four types of shapes of
the hazard rate function allowed by Eq. (18). The parameters
used in Fig. 4 are only for illustration purposes.

C. Illustration of MaxEnt: A circuit model

To demonstrate the performance of the MaxEnt method,
the aging problem of an electrical system is presented in this
section. As shown in Fig. 5 the electrical system contains the

0 0.05 0.1 0.15 0.2

0.2

0.4

0.6

0.8

 

E(t2)

 

E
(t

)

FIG. 3. Two regions of the hazard rate functions with different
first order moments E (t ) = t̄ and second order moments E (t2) = t̄2.
The maximum lifetime tmax is set to 1. The black region denotes the
domain generating monotonically increasing curves. The gray region
denotes the domain generate bathtub shapes.
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FIG. 4. Four additional shapes of the hazard rate function x(t )
with a quadruple-moment constraint. The initial hazard rate x0 is
set to 1. The parameters associated with the four shapes are only
for illustration purposes. These parameters satisfy the condition of
x0

∫ ∞
0 exp(−β1t − β2t2 − β3t3 − β4t4)dt � 1.

battery source, the lamp and the conducting wire. The term
E denotes the electromotive force of the source. The internal
resistances of the lamp and the conducting wire are denoted
by R and r, respectively. The resistance of the conducting
wire increases due to the heat generation. For demonstration
purposes, the regime where the temperature T is much higher
than the Debye temperature is considered, and the resistance
r ∝ T [41]. The aging process due to the heat generation of
the wire can be modeled with the thermodynamical consider-
ation by

C
dT

dt
= λr

(
E

R + r

)2

, (19)

where C is the heat capacity of the material of the conducting
wire. The right hand side of the above equation denotes the
remaining heat generated by the wire, and λ is a factor which
depends on the heat conduction between the wire and the
environment. With the high temperature approximation r ∝ T ,
the above equation becomes

dr

dt
= λ̃r

(
E

R + r

)2

, (20)

FIG. 5. Schematic of an electrical system consisting of the
source, the lamp, and the conducting wire.

where λ̃ is the effective ratio parameter. This equation de-
scribes the behavior of the time-dependent resistance r(t ).
One can see that the efficiency η = R/(r + R) of the circuit
decreases in the aging process. The system failure criterion
is defined as η � 50%. The aging process is stochastic
when r(0) and λ̃ are considered random variables. Numerical
experiments are made to generate data representing the actual
observed quantities. The initial resistance r(0) follows a PDF
of p[r(0)] ∝ exp[−	r(0)] in the interval [0.033,1]. The ratio
term λ̃ is considered as a uniform distribution in [1,
). The
first order and second order moments are used as constraints.
To investigate the performance of the method under different
distributions of r(0) and λ̃, different combinations of (
,	)
are used. The Kolmogorov distance [42] between the esti-
mated distribution pe and the simulated distributions ps is
used as a measure to evaluate the performance of MaxEnt.
The distance is defined as

ε =
∫

dt
1

2
|pe(t ) − ps(t )|. (21)

Results of the performance under different r(0) and λ̃ distribu-
tions are shown in Fig. 6(a). The hazard rate function results
associated with two arbitrarily chosen combinations of (
,	)
are presented in Fig. 6(b).

Results in Fig. 6 also show that there are regions where
the performance in terms of Kolmogorov distances is not
available. In these regions the double-moment constraints
are conflicted with the initial value of the hazard rate. In
addition, the estimated hazard rate function is compared with
the analytical one used to generate the simulated observation
data; however, in practice the actual (analytical) hazard rate
function is rarely known a priori. These two issues are due
to the fact that subjective choices of the evidences lead to
subjective results of the inference, and this fact is also related
to the correctness and consistency of the inference.

D. Self-consistency test of the MaxEnt method

To avoid the conflict between moments and the initial value
of the hazard rate, the hazard rate value at a proper time
x(τ ), τ > 0, instead of x(0), can be used. To illustrate the
influence of the initial value to the estimation result, consider
the region labeled as C in Fig. 6(a), which corresponds to
parameters 	 = 0.3 and 
 = 2.4. The hazard rate functions
obtained using four arbitrarily chosen times x(τ ), τ > 0 as
constraints are presented in Fig. 7. It shows that different local
information can lead to slightly different results.

The second issue relates to the correctness and consistency
of the inference. For any nontrivial hazard rate estimation
problems the true hazard rate is unknown; otherwise, it will
not be a problem at the first place. Therefore, measures are
needed to ensure the results obtained using the developed
method are reliable. One measure for the evaluation is to com-
pare results obtained using different choices of the additional
constraints. This measure can be made using Kolmogorov dis-
tance between two sets of results. The comparison can loosely
be seen as a self-consistency test. The average distance d̄
between a series of resulting PDFs with additional constraints
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FIG. 6. (a) Results of Kolmogorov distance ε between the es-
timated distribution and the simulated distributions with different
values of 	 and 
 and (b) results of the hazard rate function x(t )
associated with point “A” (	 = 0.27, 
 = 3) and point “B” (	 =
0.09, 
 = 5.4) in (a) for illustration.

of x(τ ) is defined as

d̄ = 1

2 × n!

n∑
i, j=1

∫
dt |p(i)

e − p( j)
e |. (22)

Similarly the average distances ε̄ between the resulting PDFs
and the analytical PDFs is

ε̄ ≡ 1

n

∑
i

εi = 1

2 × n

n∑
i=1

∫
dt

∣∣p(i)
e − ps

∣∣. (23)

Four different proper additional constraints for x(τ ), τ =
(0.1, 0.79, 1.02, 1.97), are arbitrarily chosen to obtain x(t )
for three points (A, B, and C) in Fig. 6(a). For each of the
points, four resulting PDFs p(i)

e , i = 1, 2, 3, 4 are obtained.
Results of the four resulting PDFs are used to evaluate d̄
and ε̄ using Eq. (22) and Eq. (23), respectively. Results are
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t
x

 

 

simulated data
τ=0.1
τ=0.79
τ=1.31
τ=2.01

FIG. 7. Inference results of the hazard rate functions obtained
using different x(τ ), τ > 0 as constraints. The same moment con-
straints are used.

presented in Table II. These numerical results indicate that ε̄

is positively correlated with d̄ , and thus the self-consistency
test is effective. In this section, the MaxEnt-based method for
modeling the hazard rate functions of single-function systems
is presented. It also serves as a basis for modeling the hazard
rate functions of multifunction systems which are discussed
next.

IV. MULTIFUNCTION SYSTEMS

A multifunction system is defined as a system providing
multiple functions, and each of the functions has its own
failure mechanism. The failure mechanisms of the functions
can be isolated or interacted. Consequently, the lifetimes
associated with these functions can be independent or cor-
related. Consider a system having n functions. The survival
probability of the i(i = 1, 2, . . . , n)th function is denoted
by Fi(t ). Given that the hazard rate functions of the system
are independent of the survival probabilities, the dynamic
equations of the system reduce to a set of linear differential
equations. Denote the hazard rate functions of the system
consisted of n functions as a n × n matrix χ . Extending the
definition of the hazard rate of the single function system in

TABLE II. Results of d̄ and ε̄ for points A, B, and C in Fig. 6
using four constraints of x(τ ), τ = 0.1, 0.79, 1.02, 1.97.

Point d̄ ε̄

A 0.0150 0.0533
B 0.0408 0.1089
C 0.0164 0.0715
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FIG. 8. Schematic of the reducible and irreducible cases for a
double-function system. The ellipse with the red borderline denotes
the event that the function a works, and the blue ellipse denotes
the event that the function b works. (1) The reducible case where
the event that the function a works and the event that the function
b works are not strongly correlated. In this case, the intersection
between the sets A and B does not affect the reducibility of the matrix
χ . (2) The irreducible case where the function b works only if the
function a also works, i.e., B ⊆ A.

Eq. (1) to a multidimensional case, the dynamic equations of
the system can be written using a matrix form as

dF

dt
= −χF, (24)

where F = (F1, F2, . . . , Fn)T and χ is a n × n hazard rate
matrix.

Note that the above equation is obtained based on the
condition that the hazard rate x or χ only depends on time
t and is independent of F . For single function systems, the
x(t ) and F (t ) are independent variables, because there is
no physical interaction or statistical correlation in sampling
during the aging processes. For multifunction systems, it
should be regarded as an approximation for the hazard rate.
A sufficient condition for the linear assumption to hold is
presented in Appendix D.

It is worth mentioning that the difference between a single-
variable hazard rate x and a multidimensional hazard rate
matrix χ is not only the dimension. The term x is only related
to the probability distribution (if one knows the PDF, then
x can directly be calculated and vice versa); however, the
term χ also encodes the information of the interaction among
different functions in the aging process. Depending on the
interaction, two cases are discussed below.

A. Reducibility of hazard-rate matrices

The nonincreasing nature of the survival probability Fi(t )
implies that

dFi

dt
� 0, (25)

and dFi/dt and Fi approach zero simultaneously. These two
basic properties will result in a constraint on the hazard rate
matrix χ .

To illustrate this consider the following simplest case: a
double-function system shown in Fig. 8. To avoid confusion,
the two functions are labeled by a and b. The ellipses A
and B represent the domains that functions a and b work,
respectively.

These are two typical cases of the double-function system.
The first one shown in Fig. 8(1) denotes the case that a and

TABLE III. Four states of a double-function system in a re-
ducible case.

States Function a Function b

1 Work Work
2 Work Break down
3 Break down Work
4 Break down Break down

b are not fully correlated. In this case the system has four
states listed in Table III, labeled by 1,2,3,4. Similarly, the
second case presented in Fig. 8(2) denotes that if the function
b works, then function a must work, i.e., B ⊆ A. In this case
the system has three states listed in Table IV, labeled by 1,2,3.
A typical example for this case is a series-parallel electric
circuit presented in Fig. 10, where the two functions of the
system are denoted by the two lamps. One can see that if lamp
2 works lamp 1 must work and thus this system contains only
three states. It can be shown that for the first case the hazard
matrix χ must be diagonal or said reducible. For the second
case χ is an upper triangular matrix or said irreducible.

Consider the first case; without loss of generality the initial
state of the system is assumed to be 2 in Table III. This initial
state corresponds to the following condition:(

Fa(0)
Fb(0)

)
=

(
1
0

)
. (26)

Because Fb(t ) is nonincreasing, Fb(t ) = 0. Since dFb/dt and
Fb approach zero simultaneously, one has

dFb

dt
= χbaFa(t ) = 0

and χba(t ) = 0. Similarly, assuming the initial state of the
system is state 3 in Table III, the initial condition is(

Fa(0)
Fb(0)

)
=

(
0
1

)
. (27)

Because Fa(t ) is nonincreasing, Fa(t ) = 0. As dFa/dt and Fa

approach zero simultaneously, one gets

dFa

dt
= χabFb(t ) = 0

and χab(t ) = 0. Therefore, in this case χ is diagonal.
The second case shown in Fig. 8(2) indicates Fa(t ) � Fb(t ).

Assuming the system is initially at state 2 in Table III, the
initial condition is (

Fa(0)
Fb(0)

)
=

(
1
0

)
. (28)

TABLE IV. Three states of a double-function system in an irre-
ducible case.

States Function a Function b

1 Work Work
2 Work Break down
3 Break down Break down
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FIG. 9. Schematic of reducible cases for an n-function system.
The ellipses Ai and Bi (i = 1, 2, 3) represent the sets that functions
ai and bi work, respectively. Here A3 ⊆ A1 ∩ A2 and B3 ⊆ B1 ∩ B2.
The hazard rate matrix is block diagonal. The intersection between
the sets Ai and Bj (i, j = 1, 2, 3) does not affect the reducibility of
the matrix χ .

Because Fb(t ) is nonincreasing, Fb(t ) = 0 and χba(t ) = 0.
However, χab may not necessarily be zero, because the condi-
tion, that dFa/dt and Fa approach zero simultaneously, always
holds when Fa(t ) � Fb(t ). Therefore, in this case χ is an upper
triangular matrix.

For the reducible case of an n-function system, we label the
functions by several classes a, b, c, d, . . .. In addition, for each
of the classes, e.g., the class a, there are individual functions
labeled by a1, a2, . . .. The state of a function in a only depends
on that particular function or other functions in the same class.
This relationship is illustrated in Fig. 9. In this way the classes
in the system are independent, resulting in a block diagonal
matrix, i.e.,

χ =

⎛
⎜⎝

χ (a) 0 · · ·
0 χ (b) · · ·
...

...
. . .

⎞
⎟⎠, (29)

where χ (a), χ (b), . . . denotes the hazard rate matrices of the
function classes a, b, . . ., respectively. χ (a), χ (b), . . . are ir-
reducible matrices. For the irreducible case of an n-function
system, there is at least one function whose set belongs to that
of all other functions.

Next the estimation of hazard rate matrices χ using the
MaxEnt method for reducible and irreducible cases is pre-
sented.

FIG. 10. Schematic of the two-lamp circuit problem. The two
functions are labeled by the two lamps. The series-parallel circuit
indicates that the hazard rate matrix for this system is irreducible.

B. MaxEnt for the reducible case

Using the above double-function system, the lifetimes of a
and b are denoted as ta and tb, respectively. For the reducible
case, the hazard rate matrix is diagonal:

χ =
(

χaa 0
0 χbb

)
. (30)

The two elements can directly be calculated from the marginal
distributions of t1 and t2 as

χ̇aa − χ2
aa − χaa

d ln pa(t )

dt
= 0,

χ̇bb − χ2
bb − χbb

d ln pb(t )

dt
= 0,

(31)

where pa and pb are the marginal distributions of t1 and t2. The
related joint distribution of p(ta, tb) is also derived and shown
in Appendix C. In this way, the double-function system can be
decomposed into two uncorrelated single-function systems.

C. MaxEnt for the irreducible case

The irreducible cases correspond to systems that cannot
be decomposed into isolated functions. The lifetimes of in-
dividual functions are correlated with each other due to the
logical relationship among these functions. Mathematically
the irreducible cases yield hazard rate matrices with off-
diagonal terms, e.g., for a double-function system

χ =
(

χaa χab

0 χbb

)
. (32)

The detailed derivations of the irreducible case are presented
in Appendix D. To demonstrate the main idea, one may
consider a system for which the following equation holds:

d

dt

(
Fa

Fb

)
= −

(
χaa χab

0 χbb

)(
Fa

Fb

)
. (33)

A typical example is a Markovian aging process. Note that
there are three states as shown in Table IV. The probability
for the system in the jth state at time t is denoted by q( j, t ).
The Markovian property leads to

dq( j, t )

dt
=

∑
i

κ ji p(i, t ), (34)

where κ is the transfer matrix and κ ji is the probability of
transition from state i to state j. Appendix D shows that
Eq. (33) holds when κ21 = 0. In this case,

χaa = κ23,

χab = κ13 − κ23,

χbb = κ13 + κ12.

(35)

It should be noted that the elements of κ except κ21 in the
above equation are unknown quantities and are to be estimated
by MaxEnt.

Recall that the lifetime of function a cannot be less than
that of function b. This constraint can be incorporated into
the joint distribution using the step function θ (ta − tb). The
second constraint is the physical condition that the probability
for the two functions breaking down simultaneously is finite
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when κ13 	= 0. The condition of κ13 	= 0 is the probability
of transition from the normal state to the failure state. This
constraint can be incorporated into the joint distribution using
the delta function δ(ta − tb). The detailed proof is given in
Appendix D. Based on the above constraints, the joint dis-
tribution is written

p(ta, tb) = (1 − μ)pN(ta, tb)θ (ta − tb)

+ μpA(ta)δ(ta − tb),
(36)

where θ (·) denotes the step function and δ(·) denotes the delta
function. In the above equation pN and

pA = 1

μ
κ13 exp

(∫ t

0
κ22dt

)
(37)

are both normalized PDFs; 0 < μ < 1 is the total probability
that the two functions break down simultaneously. pN and pA

can be determined by MaxEnt as

δS̄ = −
∫∫

D
pN(ta, tb)[ln pN(ta, tb) + αN]dtadtb

−
∫∫

D
pN(ta, tb)

[∑
i

βN,ihN,i(ta, tb)

]
dtadtb

−
∫

pA(t )

[
ln pA(t ) + αA +

∑
i′

βA,i′gA,i′ (t )

]
dt

= 0, (38)

where D denotes that the domain of ta > tb, αN, βN,i, αA, βA,i′

are the Lagrangian multipliers and pN and pA are independent
functions.

The connection between the hazard rate matrix and the
marginal distributions can then be constructed as the follow-
ing equations:

dχaa

dt
− χ2

aa

pN,a − pN,b

pN,a
− χaa

d ln pN,a

dt
= 0,

dχbb

dt
− χ2

bb − χbb
d ln pb

dt
= 0,

χab = μχbb
pA

pb
− χaa,

(39)

where pN,a and pN,b are the marginal distributions related
to the PDF of pN(ta, tb) and pb = (1 − μ)pN,b + μpA is the
marginal distribution related to the joint PDF of p(ta, tb). The
solution to the above equation is the resulting hazard rate
matrix of the system.

D. Two-lamp circuit model

A two-lamp circuit shown in Fig. 10 is used to represent a
double-function system for demonstration. The two functions
of the system are denoted by the two lamps. One can see that
if lamp 2 works lamp 1 must work. This dependence indicates
the system is irreducible. The degradation driving factor in the
problem is the heat generation of the two wires.

In the model the physical degradation is also related to the
temperature of the wires. The heat conductance between the
wires is also considered in this two-lamp circuit model.

The equation of heat conductance is assumed as

dT1

dt
= −ϒ̃T1 + ϒ̃T2,

dT2

dt
= −ϒ̃T2 + ϒ̃T1,

(40)

where T1(2) denote the temperature of wire 1(2) and ϒ̃ is
assumed as a material dependent constant. For demonstration
purposes, the regime where the temperatures are much higher
than the Debye temperature is considered. The resistance is
proportional to the temperature [41], i.e., r1, r2 ∝ T , and the
resistances follow the equation

dr1

dt
= −ϒr1 + ϒr2 + �1,

dr2

dt
= −ϒr2 + ϒr1 + �2,

(41)

where the first two terms in the right hand side represent
the heat conduction between the two wires. The term ϒ is
assumed as a material dependent constant, and the term �1(2)

represents the heat generation of the two wires. The heat gen-
eration of wire 1(2) is proportional to its power I2

1(2) × r1(2),
where I1(2) denote the electric current in wire 1(2). Using
Kirchhoff’s law, the electric current in the circuit model can
be directly calculated, and is presented in Appendix E. The
heat generation variables read

�1 = 
̃1r1

(
(2R + r2)

3R2 + 2(r1 + r2)R + r1r2

)2

,

�2 = 
̃2r2

(
R

3R2 + 2(r1 + r2)R + r1r2

)2

,

(42)

where R is the overall resistance of the lamps and the resistor.

̃1(2) is the effective ratio parameter. For illustration purposes,
let 2
̃1 = 
̃2 ≡ 
̃.

The terms pN,1, pN,2, and pA can be estimated separately.
Note that in this case Eq. (36) indicates that pN,1(0) = 0. This
prior knowledge leads to the breaking down of the problem.
To avoid that a nonlinear measure of the integral of t , i.e.,
dt → t dt , is added. This modification of the measure is
equivalent to the maximization of the cross entropy. The proof
is as follows:∫

(−p ln p)ν(t )dt ≡ −
∫

pν(t ) ln
pν(t )

ν(t )
dt, (43)

where ν(t ) is the proper measure. Recall the constraint of∫
pν dt = 1. The variational term of the entropy is

δ

[∫
(−p ln p)ν dt − α

∫
pν dt

]

= δ

[
−

∫
pν ln

pν

ν
dt − α

∫
pν dt

]

= δ

[
−

∫
pν ln

pν

exp(−αν )ν
dt − αp

∫
pν dt

]

= δ

[
−

∫
p̃ ln

p̃

p0
dt − αp

∫
p̃ dt

]
, (44)
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where α = αp + αν and αp are Lagrange multipliers,
p0 ≡ exp(−αν )ν(t ) is a prior distribution which satisfies
exp(−αν )

∫
ν(t )dt = 1, and p̃ ≡ pν is the variational PDF.

Note that this modification requires prior knowledge about
hazard rates of the two functions and its time derivations near
t = 0.

To demonstrate the effectiveness of the method, numerical
experiments are made to simulate actual experimental data.
Parameters of R = 1, ϒ = 0.01, and (	 = 0.09,
 = 2) are
used to generate simulated data. In this setting the numerical
calculation yields μ ≈ 0.1266. In estimation χ (τ = 0.32) is
used as the additional constraint. The estimated results are
shown in Fig. 11, which are close to the simulated data.
These results indicate that the method combining the linear
assumption with the double-moment constraint is effective to
analyze a multifunction system.

V. CONCLUSIONS AND DISCUSSIONS

Inspired by statistical mechanics in physics, as a theory
of statistical inference, a MaxEnt approach to reliability is
developed in this study, allowing for constructing the hazard
rate function in a rational manner. The hazard rate function
is a fundamental quantity in the disciplines of reliability and
risk analysis, characterizing the aging process of a system. In
particular, the time-dependent hazard rate can fully describe
the dynamics of the aging system. The basic idea of the
developed method is to recast an estimation problem to a
probabilistic inference problem using the principle of max-
imum entropy. The most probable hazard rate function is the
one that maximizes the information entropy. Information such
as observed data in terms of statistical moments are used as
constraints to obtain the most probable hazard rate function.

It is shown that different shapes of hazard rate functions,
such as the widely observed bathtub shape in engineering,
upside down bathtub shape in biological system, and W/N
shapes can all be interpreted as the most probable hazard rate
under certain constraints. In addition to the single-function
system, the multifunction system consisting of multiple in-
dividual isolated and/or correlated functions is investigated
by extending the hazard rate function to a multidimensional
hazard rate matrix. For a system with isolated functions, it can
be reduced to a set of independent hazard rate functions and
yield a block diagonal hazard rate matrix. For a system with
correlated functions, the interaction terms yield off-diagonal
terms in the hazard rate matrix and the system is the so-called
irreducible system. The overall method is demonstrated using
numerical examples, and the effectiveness of the method is
verified for both single- and multifunction systems.

The application of the proposed methods in general in-
volves the following steps. (1) Process the observed lifetime
data as testable information, e.g., calculate the statistical mo-
ments; (2) choose several time points τ1, τ2, . . . and evaluate
the corresponding hazard rate x(τ1), x(τ2), . . . from the life-
time data; (3) use the hazard rate at one chosen time point and
obtain the parameters, i.e., the Lagrange multipliers, using the
testable information as constraints; (4) perform consistency
check following step (3) using other time points.

To understand the “physical” meaning of parameters, the
information beyond lifetime is necessary. In this paper, the
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FIG. 11. Comparisons of the estimated components of the hazard
rate matrix with the simulated data.

approach is independent of specific systems. This is based on
the assumption that no other information is accessed except
to the information of lifetime. In realistic applications, the
system may contain other information, e.g., lifetime data on
components, structures, and their correlations and so on. The
information can result in different hazard rate functions when
it is used as constraints. Moreover, the linear approximation is
applied in the multifunction cases. The linear approximation
may not be valid and the justification must be carefully made.
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The features of structures and correlations are also related
to nonlinearity of multicomponent systems. How to fuse the
hierarchical information using the proposed method should to
be further investigated.

In addition, Eq. (7) generates the PDFs belonging to
the exponential family. For specific cases, to generate PDFs
which do not belong to the exponential family, different
equations of motion should be considered. There are at
least two ways to achieve this. One is to adopt a nonlinear
measure in the integrals, which has been discussed in the
previous section. Another is to construct a distribution F (t ) =
exp(−X )φ(X ) where φ(X ) is a suitable function satisfying
dF/dt � 0, φ(0) = 1, such as F (t ) = exp(−X )(1 + X ).

The significance of the developed method lies in the fact
that (1) it provides a rational instrument to construct the
hazard rate function consistently given any available infor-
mation from experimental data, (2) it provides a statistical
mechanics-based approach to interpreting the generation of
different shapes of the hazard rate curves observed in the field
of reliability over the past few decades, and (3) it provides
a theoretical bridge linking the reliability engineering to one
of the most fundamental principles, MaxEnt, in physics. This
study lays out a possible pathway to the enlightened goal in
Ref. [36], which is “the reliability theory is a new science.”
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APPENDIX A: MOST PROBABILITY DISTRIBUTION AND
THE EQUATION OF MOTION OF THE HAZARD

RATE FUNCTION

In general, the entropy is given as

S = −
∫ tmax

tmin

p(t ) ln p(t )dt, (A1)

where tmin and tmax are the minimum and the maximum
lifetime, respectively. We maximize the entropy with moment
constraints using variations

δS̄ = δ

{
−

∫ tmax

tmin

dt ′ p(t ′) ln p(t ′) − βi

∫ tmax

tmin

dt ′gi(t
′)p(t ′)

−α

∫ tmax

0
dt ′(t ′)p(t ′)

}
= 0, (A2)

where ∫ tmax

tmin

dt ′gi(t
′)p(t ′), (A3)

with i = 1, 2, . . ., are the moments from observation.

The most probable distribution is

p(t ) =
{

1
Z exp

[ − ∑
i βigi(t )

]
, tmin � t � tmax,

0, else,
(A4)

where

Z =
∫ tmax

tmin

exp

[
−

∑
i

βigi(t )

]
dt (A5)

is the partition function or so-called normalizing constant in
probability.

The motion equation in Eq. (7) can be also derived from
the most probable distribution. We use

p(t ) = x exp(−X ), (A6)

where

X (t ) =
∫ t

tmin

x(t ′)dt ′, (A7)

to obtain

x(t ) exp[−X (t )] = 1

Z
exp

[
−

∑
i

βigi(t )

]
. (A8)

Its derivation with respect to time t reads

ẋ exp(−X ) − x2 exp(−X )

= 1

Z
exp

[
−

∑
i

βigi(t )

][
−

∑
i

βiġi(t )

]
. (A9)

Namely,

ẋ − x2 +
∑

i

βiġi(t )x = 0 (A10)

is obtained. By assuming tmin = 0 and gi(t ) satisfy gi(0) = 0,
the initial condition is given by x(0) = 1/Z . Finally, the
solution to Eq. (7) is

x(t ) = x0 exp
( − ∑

i βigi
)

1 − x0
∫ t

0 exp
( − ∑

i βigi
)
dt ′ . (A11)

We define a new function x̃ = x exp[
∑

i βigi(t )] and substi-
tute it into Eq. (7) to have

˙̃x = exp

[
−

∑
i

βigi(t )

]
x̃2. (A12)

Solving Eq. (A12) we obtain

1

x̃0
− 1

x̃t
=

∫ t

0
exp

[
−

∑
i

βigi(t
′)

]
dt ′. (A13)

The initial condition is x̃(0) = exp[−∑
i βigi(0)]x0 = x0.

From the above equation and x = x̃ exp[−∑
i βigi(t )], one

can verify Eq. (A11).

APPENDIX B: NUMBER OF INFLECTION POINTS

The most probable hazard rate function constructed using
a double-moment constraint can have at most one point of
inflection. The proof is given below.
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Rewrite Eq. (14) as

ẋ = x(x − β1 − 2β2t ), (B1)

where (̇) denotes d ()/dt . For x > 0 the points of inflec-
tion must be located at x = β1 + 2β2t . For convenience we
define a function y(t ) = β1 + 2β2t . Consider the function
x(t ) − y(t ), where x(t ) is the hazard rate function which
satisfies Eq. (14). The time derivative of x(t ) − y(t ) is

ẋ − ẏ = x(x − y) − 2β2, (B2)

where the hazard rate function satisfies x(t ) > 0.
For β2 < 0, if x(t0) − y(t0) � 0 with t0 > 0 then the above

equation implies that x(t ) − y(t ) > 0 with arbitrary t > t0,
i.e., the region x(t ) � y(t ) is the absorption domain for
Eq. (14) with β2 < 0. Therefore, there is at most one point of
inflection for β2 < 0. More precisely, for β2 < 0, x0 > 0 > β1

and for β2 < 0, x0 � β1 > 0, there is no point of inflection.
For β2 < 0, 0 < x0 < β1 there is one point of inflection and
the function is in bathtub shapes.

Similarly, for β2 > 0, if x(t0) − y(t0) � 0 with t0 > 0 then
the above equation implies that x(t ) − y(t ) < 0 with arbi-
trary t > t0, i.e., the region x(t ) � y(t ) is the absorption
domain for Eq. (14) with β2 > 0. Therefore, there is also
at most one point of inflection for β2 > 0. More precisely,
for β2 > 0, 0 < x0 � β1 and for β2 > 0, x0

∫ ∞
0 exp(−β1t −

β2t2)dt > 1, there are no points of inflection; for β2 > 0,

x0
∫ ∞

0 exp(−β1t − β2t2)dt = 1 there is one point of inflection
and the function is in upside down bathtub shapes.

The hazard rate for β2 > 0, x0 � β1 is monotonically de-
creasing; however, this condition violates Eq. (17). From the
above discussion, the shapes of x(t ) can be divided into three
types, i.e., the monotonically increasing, the bathtub shape,
and the upside down bathtub shape.

It can be shown, as follows, that the hazard rate func-
tion constructed using an n-moment constraint contains at
most n − 1 inflection points. For convenience, let y(t ) =∑

n=1 nβntn−1 and the time derivative of x(t ) − y(t ) reads

ẋ − ẏ = x(x − y) −
∑
n=2

n(n − 1)βntn−2. (B3)

The location of the absorption domain depends on the sign of
ẏ = ∑

n=2 n(n − 1)βntn−2. The function y(t ) here has at most
n − 2 inflection points, i.e., the function ẏ has at most n − 2
zero points.

We denote t1, t2, . . . , tn−2 as the zero points and 0 <

t1 < t2 < · · · < tn−2. The sign of ẏ in the time intervals
(ti, ti+1), i = 1, 2, . . . , n − 3 and intervals [0, 1), (tn−2,∞) re-
mains unchanged. In any one of these time intervals, x(t ) has
at most one inflection point, and therefore x(t ) has a total
of n − 1 inflection points at most. In addition, the n-moment
constraint is capable of generating 2n − 1 types of shapes. The
monotonically decreasing curve has been excluded because it
violates the normalization condition.

APPENDIX C: JOINT AND THE MARGINAL
DISTRIBUTIONS FOR REDUCIBLE AND IRREDUCIBLE

CASES IN A DOUBLE-FUNCTION SYSTEM

In the reducible cases, the marginal distributions related to
the joint PDF of p(t1, t2) can be obtained by MaxEnt,

S̄ = −
∫ ta,max

ta,min

∫ tb,max

tb,min

p(t1, t2)[ln p(t1, t2) − α]dt1dt2

−
∑

i

βi

∫ ta,max

ta,min

∫ tb,max

tb,min

hi(t1, t2)p(t1, t2)dt1dt2, (C1)

where α and βi, i = 1, 2, . . . are the Lagrangian multipliers
and hi(t1, t2) are the correlation functions. We maximize S̄ to
obtain the joint PDF for ti ∈ [ti,min, ti,max], i = a, b as

p(ta, tb) = 1

Z
exp

[
−

∑
i

βihi(ta, tb)

]
, (C2)

where Z =
∫ ta,max

ta,min

∫ tb,max

tb,min

p(ta, tb)dtadtb is the partition func-

tion. The marginal distributions are given as

pa(t ) =
∫ tb,max

tb,min

p(t, tb)dtb,

pb(t ) =
∫ ta,max

ta,min

p(ta, t )dta. (C3)

In the irreducible cases, we maximize the entropy in
Eq. (38) and obtain

pN(ta, tb) = 1

ZN
exp

[
−

∑
i

βN,ihN,i(ta, tb)

]
,

pA(t ) = 1

ZA
exp

[
−

∑
i

βA,igN,i(t )

]
.

(C4)

The marginal distributions pi(t ) = pN,i(t ) + pA,i(t ), i = a, b
are given as

pN,a(t ) = (1 − μ)
∫ tb,max

tb,min

dtb pN(t, tb),

pN,b(t ) = (1 − μ)
∫ ta,max

ta,min

dta pN(ta, t ),

pA,a(t ) = pA,b(t ) = μpA(t ),

(C5)

where μ is defined as before.

APPENDIX D: MARKOVIAN AGING PROCESS

We consider a Markovin process, and denote the probabil-
ity of the trajectory (i1, t1; i2, t2; . . .) as q(i1, t1; i2, t2; . . .). The
Markovian approximation is

q( jm+1, tm+1| jm, tm; jm−1, tm−1; . . . ; j0, t0)

= q( jm+1, tm+1| jm, tm), (D1)

where the conditional probability q(A|B) denotes the probabil-
ity of event A conditional on event B. The diffusion equation
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is
dq( j, t )

dt
= lim

	t→0

1

	t

∑
i

[q( j, t |i, t − 	t ) − δi, j]q(i, t − 	t ) =
∑

i

κ ji p(i, t ). (D2)

The joint PDF p(ta, tb) is related to the trajectory probability. In the irreducible cases, one has

p(ta, tb)	t2 = q(3, ta; 2, ta − 	t ; 2, ta − 2	t ; . . . ; 2, tb; 1, tb − 	t ; 1, tb − 2	t ; . . . ; 1, 0), (D3)

where q(3, ta; 2, ta − 	t ; . . .) is the probability of the trajectory. It is shown that

p(t, t )	t2 = q(3, ta; 1, ta − 	t ; 1, ta − 2	t ; . . . ; 1, tb; 1, tb − 	t ; 1, tb − 2	t ; . . . ; 1, 0)

= q(3, ta|1, ta − 	t )q(1, ta − 	t ; 1, ta − 2	t ; . . . ; 1, tb; 1, tb − 	t ; 1, tb − 2	t ; . . . ; 1, 0)

= q(3, ta|1, ta − 	t )q(1, ta − 	t |1, ta − 2	t ) . . . q(1,	t |1, 0)

= κ13(1 + κ22	t )t/	t	t . (D4)

Furthermore,

p(t, t − 	t ) = q(3, ta; 2, ta − 	t ; 1, ta − 2	t ; . . . ; 1, tb; 1, tb − 	t ; 1, tb − 2	t ; . . . ; 1, 0)
1

	t2

= q(3, ta|2, ta − 	t )q(2, ta − 	t ; 1, ta − 2	t ; . . . ; 1, tb; 1, tb − 	t ; 1, tb − 2	t ; . . . ; 1, 0)
1

	t2

= q(3, ta|2, ta − 	t )q(2, ta − 	t |1, ta − 2	t ) . . . q(1,	t |1, 0)
1

	t2

= κ23κ12(1 + κ22	t )t/	t−1	t2 1

	t2

= κ23κ12(1 + κ22	t )t/	t−1. (D5)

The above two equations imply that

p(t, t ) = lim
	t→0

κ13

	t
exp

(∫ t

0
κ22dt ′

)
= lim

t ′→t
δ(t − t ′)κ13 exp

(∫ t

0
κ22dt ′′

)
. (D6)

Comparing the above equation to Eq. (36), one has

μpA = κ13 exp

(∫ t

0
κ22dt ′

)
. (D7)

We rewrite the diffusion equation as

d

dt
q1 = I (2→1) − I (1→3) + I (3→1) − I (1→2),

d

dt
q2 = −I (2→1) + I (1→2) + I (3→2) − I (2→3),

d

dt
q3 = I (2→3) − I (3→2) − I (3→1) + I (1→3),

(D8)

where I (i→ j)(t ) = κ ji p(i, t ) is the current of probability from
i to j at time t .

The survival functions of a and b are denoted as Fa and Fb,
respectively. We denote the probability that the system is in
state i, i = 1, 2 without previously being in state 3 as Gi. Such
a condition leads to Fa = G1 + G2, and G1, G2, Fb satisfy the
following equations:

d

dt
G1 = −G1

q1
[I (1→2) + I (1→3)] + G2

q2
I (2→1),

d

dt
G2 = −G2

q2
[I (2→1) + I (2→3)] + G1

q1
I (1→2),

d

dt
Fb = −Fb

q2
[I (1→2) + I (1→3)]. (D9)

We rewrite the above equation as

d

dt

⎛
⎝G1

G2

Fb

⎞
⎠ =

⎛
⎝−κ12 − κ13 κ21 0

κ12 −κ21 − κ23 0
0 0 −κ12 − κ13

⎞
⎠

⎛
⎝G1

G2

Fb

⎞
⎠.

(D10)
If κ21 = 0, the above equation is reduced to

d

dt

(
Fa

Fb

)
=

(−κ23 κ23 − κ13

0 −κ13 − κ12

)(
Fa

Fb

)
. (D11)

The hazard rate matrix is

χ = −
(−κ23 κ23 − κ13

0 −κ13 − κ12

)
, (D12)

where the elements of the matrix are to be determined by
MaxEnt.

The result of Eq. (39) is obtained as follows. Consid-
ering the initial condition Fa(0) = 1, Fb(0) = 1, we rewrite
Eq. (D11) in integral form as

Fa = exp(−χaa)

[
1 −

∫ t

0
χab exp(χaa − χbb)dt ′

]
,

Fb = exp(−χbb).

(D13)
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With Fi = ∫ t
0 pi(t ′)dt ′, i = a, b, we take the time derivative of

the above equation to have

pa = χaa exp(−χaa)

[
1 −

∫ t

0
χab exp(χaa − χbb)dt ′

]

+ χab exp(−χbb),

pb = χbb exp(−χbb), (D14)

where pa = pN,a(t ) + pA,a(t ) and pb = pN,b(t ) + pA,b(t ) are
the marginal distributions shown in Eq. (C5). Combining the
above equations with Eq. (D7) and taking the time derivative
again, one can verify Eq. (39). Given ta,min = tb,min = 0 and
ta,max = tb,max = tmax, the solution to Eq. (39) is finally ob-
tained as

χaa = − pN,a∫ t
0 dt ′(pN,a − pN,b)

,

χbb = pb

1 − ∫ t
0 dt ′ pb

,

χab = μpA

1 − ∫ t
0 dt ′ pb

+ pN,a∫ t
0 dt ′(pN,a − pN,b)

. (D15)

APPENDIX E: POWER OF THE WIRES IN THE
TWO-LAMP CIRCUIT MODEL

Let P1(2) denote the power of wire 1(2). The term E denotes
the electromotive force of the source. The currents in wires 1
and 2 are

I1 = E/

[
R+r1+R(R + r2)

2R + r2

]
= E (2R + r2)

3R2 + 2(r1 + r2)R + r1r2
,

I2 = I1
R

2R + r2
= ER

3R2 + 2(r1 + r2)R + r1r2
. (E1)

Consequently,

P1 = I2
1 r1 ∝

(
2R + r2

3R2 + 2(r1 + r2)R + r1r2

)2

r1,

P2 = I2
2 r2 ∝

(
R

3R2 + 2(r1 + r2)R + r1r2

)2

r2. (E2)

We introducing an effective coefficient term to the above
equation to obtain Eq. (42).
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FIG. 12. Estimated death rate curve for fruit fly.

APPENDIX F: BIOLOGICAL EXAMPLE: FRUIT FLY

Using the data in Table III in Ref. [43], the first and
second moments of the lifetime of the fruit fly are obtained
as E (t ) = 17.12, E (t2) = 349.73, and tmax = 100. Using the
double-moment model, the estimated death rate of the fruit fly
is presented in Fig. 12. The death rate curve is in upside down
bathtub shape, which coincides qualitatively with the result in
Ref. [43].

APPENDIX G: DETAILS IN NUMERICAL CALCULATION

To obtain the solution to the equation of motion numeri-
cally, a fourth order Runge-Kutta method with a time step of
0.01 is used with the chosen parameters shown in the main
body of the text. To sample the lifetime data in simulation
of the single- and two-lamp model, the plain Monte Carlo
method is used (100 000 samples for each case). To esti-
mate the Lagrange multipliers, the standard Newton-Raphson
method is applied with a convergence criterion such that all
relative errors are less than 1 × 10−4.

[1] M. Rausand and A. Høyland, System Reliability Theory: Mod-
els, Statistical Methods, and Applications (John Wiley & Sons,
New York, 2004).

[2] D. M. Boodman, J. Oper. Res. Soc. Am. 1, 39 (1953).
[3] E. Halley, Philos. Trans. R. Soc. London 17, 596 (1693).
[4] G.-A. Klutke, P. C. Kiessler, and M. A. Wortman, IEEE T.

Reliab. 52, 125 (2003).
[5] O. R. Jones et al., Nature (London) 505, 169 (2014).
[6] K. L. Wong, Qual. Reliab. Eng. Int. 5, 29 (1989).
[7] B. D. Coleman, J. Appl. Phys. 29, 968 (1958).
[8] W. I. Newman and S. L. Phoenix, Phys. Rev. E 63, 021507

(2001).
[9] S. Santucci, L. Vanel, and S. Ciliberto, Phys. Rev. Lett. 93,

095505 (2004).

[10] F. Kun, H. A. Carmona, J. S. Andrade Jr., and H. J. Herrmann,
Phys. Rev. lett. 100, 094301 (2008).

[11] N. Yoshioka, F. Kun, and N. Ito, Phys. Rev. Lett. 101, 145502
(2008).

[12] S. Lennartz-Sassinek, I. G. Main, Z. Danku, and F. Kun, Phys.
Rev. E 88, 032802 (2013).

[13] L. Viitanen, M. Ovaska, S. K. Ram, M. J. Alava, and P.
Karppinen, Phys. Rev. Appl. 11, 024014 (2019).

[14] X. G. Peng and G. B. McKenna, Phys. Rev. E 93, 042603
(2016).

[15] T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad,
and P. Svedlindh, Phys. Rev. Lett. 75, 4138 (1995).

[16] L. Laloux and P. LeDoussal, Phys. Rev. E 57, 6296
(1998).

012106-15

https://doi.org/10.1098/rstl.1693.0007
https://doi.org/10.1098/rstl.1693.0007
https://doi.org/10.1098/rstl.1693.0007
https://doi.org/10.1098/rstl.1693.0007
https://doi.org/10.1109/TR.2002.804492
https://doi.org/10.1109/TR.2002.804492
https://doi.org/10.1109/TR.2002.804492
https://doi.org/10.1109/TR.2002.804492
https://doi.org/10.1038/nature12789
https://doi.org/10.1038/nature12789
https://doi.org/10.1038/nature12789
https://doi.org/10.1038/nature12789
https://doi.org/10.1002/qre.4680050108
https://doi.org/10.1002/qre.4680050108
https://doi.org/10.1002/qre.4680050108
https://doi.org/10.1002/qre.4680050108
https://doi.org/10.1063/1.1723343
https://doi.org/10.1063/1.1723343
https://doi.org/10.1063/1.1723343
https://doi.org/10.1063/1.1723343
https://doi.org/10.1103/PhysRevE.63.021507
https://doi.org/10.1103/PhysRevE.63.021507
https://doi.org/10.1103/PhysRevE.63.021507
https://doi.org/10.1103/PhysRevE.63.021507
https://doi.org/10.1103/PhysRevLett.93.095505
https://doi.org/10.1103/PhysRevLett.93.095505
https://doi.org/10.1103/PhysRevLett.93.095505
https://doi.org/10.1103/PhysRevLett.93.095505
https://doi.org/10.1103/PhysRevLett.100.094301
https://doi.org/10.1103/PhysRevLett.100.094301
https://doi.org/10.1103/PhysRevLett.100.094301
https://doi.org/10.1103/PhysRevLett.100.094301
https://doi.org/10.1103/PhysRevLett.101.145502
https://doi.org/10.1103/PhysRevLett.101.145502
https://doi.org/10.1103/PhysRevLett.101.145502
https://doi.org/10.1103/PhysRevLett.101.145502
https://doi.org/10.1103/PhysRevE.88.032802
https://doi.org/10.1103/PhysRevE.88.032802
https://doi.org/10.1103/PhysRevE.88.032802
https://doi.org/10.1103/PhysRevE.88.032802
https://doi.org/10.1103/PhysRevApplied.11.024014
https://doi.org/10.1103/PhysRevApplied.11.024014
https://doi.org/10.1103/PhysRevApplied.11.024014
https://doi.org/10.1103/PhysRevApplied.11.024014
https://doi.org/10.1103/PhysRevE.93.042603
https://doi.org/10.1103/PhysRevE.93.042603
https://doi.org/10.1103/PhysRevE.93.042603
https://doi.org/10.1103/PhysRevE.93.042603
https://doi.org/10.1103/PhysRevLett.75.4138
https://doi.org/10.1103/PhysRevLett.75.4138
https://doi.org/10.1103/PhysRevLett.75.4138
https://doi.org/10.1103/PhysRevLett.75.4138
https://doi.org/10.1103/PhysRevE.57.6296
https://doi.org/10.1103/PhysRevE.57.6296
https://doi.org/10.1103/PhysRevE.57.6296
https://doi.org/10.1103/PhysRevE.57.6296


DU, MA, WEI, GUAN, AND SUN PHYSICAL REVIEW E 101, 012106 (2020)

[17] A. Dechant, E. Lutz, D. A. Kessler, and E. Barkai, Phys. Rev. X
4, 011022 (2014).

[18] P. Lunkenheimer, R. Wehn, U. Schneider, and A. Loidl, Phys.
Rev. Lett. 95, 055702 (2005).

[19] S. Boettcher, D. M. Robe, and P. Sibani, Phys. Rev. E 98,
020602(R) (2018).

[20] Y. T. Lou, J. F. Xia, W. Tang, and Y. Chen, Phys. Rev. E 96,
062418 (2017).

[21] H. Pham and C. D. Lai, IEEE T. Reliab. 56, 454 (2007).
[22] D. V. Lindley, J. R. Stat. Soc.: Ser. B 20, 102 (1958).
[23] Z. Ahmad, G. G. Hamedani, and N. S. Butt, Pak. J. Stat. Oper.

Res. 15, 87 (2019).
[24] C. D. Lai, M. Xie, and D. N. P. Murthy, Handbook Stat. 20, 69

(2001).
[25] R. Jiang, Reliab. Eng. Syst. Safe. 119, 44 (2013).
[26] R. Jiang, Int. J. Perform. Eng. 9, 569 (2013).
[27] N. Ebrahimi, Sankhyā Ser. A 58, 48 (1996).
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