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Quantum heat engine with ideal gas has been well studied, yet the role of interaction was seldom explored.
We construct a quantum Otto heat engine with N repulsive bosons in a one-dimensional (1D) hard wall box.
With the advantage of exact solution using the Bethe ansatz, we obtain not only the exact numerical result of
efficiency in all interacting strength c but also analytical results for strong interaction. We find the efficiency
η approaches to the one of noninteracting case ηnon = 1 − (L1/L2 )2 for strong interaction with the asymptotic
behavior η ∼ ηnon − 4(N − 1)L1(L2 − L1)/(cL3

2). Here L1 and L2 are two trap sizes during the cycle. Such
a phenomenon reflects the duality between 1D strongly repulsive bosons and free fermions. We observe and
explain the appearance of a minimum efficiency at a particular interacting strength c and study its dependence
on the temperature.

DOI: 10.1103/PhysRevE.98.062119

I. INTRODUCTION

In classical thermodynamics, piston model with ideal gas
serves as a prototype to realize heat engines with different
cycles, such as the Carnot and the Otto cycles [1,2]. The
noninteracting gas makes it feasible to obtain very simple
results for efficiency as well as other properties [1]. Such
simplicity also enables direct extensions of similar discus-
sions in quantum region to show unique features of quantum
thermodynamics with single particles as well as few identical
particles with or without interaction [3–10]. The difficulty
arises when the interaction changes the energy spectrum in
a complicated way for designing the quantum heat engine
cycle. Recently, Bengtsson et al. explored the effect of the
attractive interaction with exact numerical simulation and
showed the increase of work output in the Szilard engine
[11]. However, it remains unclear how the work conversion is
affected by interactions in the widely used heat engine cycles,
e.g., quantum Otto cycle.

In order to show the effect of internal interaction on the
efficiency, we construct a quantum Otto heat engine with
one-dimensional (1D) repulsive Bose gas in a hard wall box
[12–14]. We concentrate on the effect of internal interaction
of the working medium [15,16]. Quantum Otto cycle is a
simple and feasible cycle in quantum thermodynamics [3,17]
and has been studied extensively in many quantum systems
[9,10,18–24]. The advantage of our model is its exact solution
with the Bethe ansatz [12,25], which allows the analytical
results to show the effect of interaction in quantum ther-
modynamics. We find that the efficiency of the heat engine
first decreases, reaches to the minimum value, and, finally,
approaches to the initial value along with the increasing of the
interacting strength c. For strong interaction, the recovery of
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the efficiency is explained by the Bose-Fermi duality [26,27].
We observe a dip for the efficiency with particular interacting
strength. We also study how temperature affects the dip of the
efficiency.

This paper is organized as follows. In Sec. II, we introduce
the solution of a 1D interacting Bose gas in a hard wall box
by the Bethe ansatz and build the quantum Otto heat engine
on this model. In Sec. III, we give the asymptotic efficiency
for large interacting strength and the numerical efficiency for
any interacting strength. The Bose-Fermi duality is discussed
on the efficiency of the Otto heat engine. We associate
the efficiency with the ratios of the energy for different
states and study the efficiency at different temperatures. The
perturbation result for small interacting strength is calculated
in the Appendix.

II. QUANTUM OTTO HEAT ENGINE
WITH REPULSIVE BOSONS

In this section, we design the quantum Otto heat engine
with 1D repulsive Bose gas in a hard wall box. The efficiency
of the quantum Otto cycle for different interacting strength c is
studied to explore the effect of the interaction on the quantum
heat engine.

The Hamiltonian for N repulsive bosons in a 1D hard wall
box is

H (L, c) =
N∑

i=1

p2
i

2m
+ c

m

∑
i<j

δ(xi − xj ) + V ({xi}), (1)

where pi and xi are the momentum and coordinate for ith
particle with mass m. The interacting strength c is positive for
repulsive interaction. The trap potential V ({xi}) is the infinite
square potential

V ({xi}) =
{

0 ∀ 0 � xi � L

∞ ∃ xi < 0, or xi > L
. (2)
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Eigenstates can be obtained with the Bethe ansatz [12] for the
current trap as ψ{ki }({xi}) = ∑

P a(P ) exp(i
∑N

l=1 kP (l)xl ),
0 � x1 � x2, . . . ,� xN � L, with the superposition coeffi-
cient a(P ). We are interested in the thermodynamic property
and skip the concrete form of a(P ), whose explicit form can
be found in Ref. [12]. The boundary condition gives the Bethe
equation for the wave vectors as

kiL = πni +
∑
j �=i

(
arctan

c

ki − kj

+ arctan
c

ki + kj

)
. (3)

The eigenstate |{ni}〉 is represented by a set of ordered num-
ber 1 � n1 � n2 � · · · � nN , and the wave vectors satisfy
1 � k1 � k2 � · · · � kN . The corresponding energy for the
eigenstate |{ni}〉 is

E
(L,c)
{ni } = 1

2m

N∑
i=1

k2
i . (4)

For noninteracting case c = 0, Eq. (3) becomes kiL = πni ,
which gives the momentum for free bosons in the in-
finite square potential [2]. The total energy is E

(L,0)
{ni } =

(π2/2mL2)
∑N

i=1 n2
i .

With given trap size L and interacting strength c, the
density matrix for the system at the equilibrium state with
temperature T is ρ = ∑

{ni } p{ni }(T ,L, c)|{ni}〉〈{ni}|. The
probability p{ni }(T ,L, c) on the eigenstate |{ni}〉 is

p{ni }(T ,L, c) = e
−

E
(L,c)
{ni }
kB T

Z(T ,L, c)
, (5)

with the partition function Z(T ,L, c) =∑
{ni } exp[−E

(L,c)
{ni } /kT ]. The internal energy of the system is

U (T ,L, c) = ∑
{ni } p{ni }E

(L,c)
{ni } .

Figure 1(a) shows the entropy-temperature (S-T ) diagram
for the classical Otto cycle. The current quantum Otto cycle
consists four strokes similar to the classical Otto cycle, il-
lustrated on the entropy-energy (S-〈H 〉) diagram in Fig. 1(b).
Since the temperature of the state 1,3 may not be well defined,
we include the S-〈H 〉 diagram for the quantum Otto heat
engine, with 〈H 〉 as the internal energy for a general state.
Here the entropy is evaluated with the von Neumann entropy
S = −Tr[ρ ln ρ] for all later discussions. The four strokes are
specified as follows.

Stroke I (1 → 2): Isochoric heating. Initially, the sys-
tem does not necessarily stay at a thermal equilibrium
state. The internal energy of the system at state 1 is U1 =∑

{ni } p
(1)
{ni }E

(L1,c)
{ni } . With the fixed trap size L1, the system

contacts with the hot reservoir and reaches the thermal equi-
librium state with temperature T2. The internal energy at state
2 is U2 = ∑

{ni } p
(2)
{ni }E

(L1,c)
{ni } with the equilibrium occupation

p
(2)
{ni } = p{ni }(T2, L1, c) = exp [−E

(L1 ,c)
{ni }
kBT2

]/Z(T2, L1, c). The in-
ternal energy increases by absorbing heat from the hot reser-
voir Q1 = U2 − U1 > 0.

Stroke II (2 → 3): Quantum adiabatic expansion. Dur-
ing the process, the system is isolated from any reser-
voir, and the trap size increases from L1 to L2 slowly in
order to keep the occupation number unchanged, namely
p

(3)
{ni } = p

(2)
{ni }. In this process, the internal energy decreases

T
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FIG. 1. (a) Entropy-temperature (S-T ) diagram for the classical
Otto heat engine. (b) Entropy-energy (S-〈H 〉) diagram for the quan-
tum Otto heat engine. In both subfigures, the red (right) and blue
(left) solid lines with arrows are isochoric processes contacting to
the cold and hot reservoir with the corresponding trap size as L1 and
L2, while the black (up and down) solid lines are adiabatic processes.

from U2 = ∑
{ni } p

(2)
{ni }E

(L1,c)
{ni } to U3 = ∑

{ni } p
(3)
{ni }E

(L2,c)
{ni } to ex-

port work W1 = U3 − U2 = ∑
{ni } p

(2)
{ni }[E

(L2,c)
{ni } − E

(L1,c)
{ni } ] <

0. After the expansion, the system usually reaches a nonequi-
librium state, without well-defined temperature [3].

Stroke III (3 → 4): Isochoric cooling. Similarly to stroke
I, the trap size is fixed at L2. The system contacts with the
cold reservoir and reaches the thermal equilibrium state with
temperature T4. The occupation is p

(4)
{ni } = p{ni }(T4, L2, c) =

exp [−E
(L2 ,c)
{ni }
kBT4

]/Z(T4, L2, c), and the internal energy is U4 =∑
{ni } p

(4)
{ni }E

(L2,c)
{ni } . The internal energy decreases by releasing

heat to the cold reservoir Q2 = U4 − U3 < 0.
Stroke IV (4 → 1): Quantum adiabatic compressing. Sim-

ilarly to stroke II, the system is isolated from any reservoir,
and the trap size decreases from L2 to L1 slowly to keep
the probability p{ni } as a constant, namely p

(1)
{ni } = p

(4)
{ni }. The

system reaches a nonequilibrium state as the initial state of
stroke I. The internal energy increases by performed work
W2 = U1 − U4 = ∑

{ni } p
(4)
{ni }[E

(L1,c)
{ni } − E

(L2,c)
{ni } ] > 0.

III. EFFICIENCY AND INTERACTION

For large interacting strength c, we have the expansion of
Eq. (3) to the first order of 1/c as

kiL = π (ni + i − 1) −
∑
j �=i

(
ki − kj

c
+ ki + kj

c

)
, (6)

where we have used the expansion arctan (x) = π
2 sgn(x) −

1
x

+ o( 1
x2 ) for large x. The additional phase (i − 1)π in
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Eq. (6) comes from the summation of j when j < i.
Equation (6) gives the solution for the wave vector ki =
π (ni + i − 1)/(L + 2(N − 1)/c). The asymptotic energy for
the eigenstate |{ni}〉 is

E
(L,c)
{ni } = π2

2m

∑N
i=1 (ni + i − 1)2[
L + 2(N−1)

c

]2 . (7)

The energy ratios for eigenstates with different trap size have
the same value,

E
(L2,c)
{ni }

E
(L1,c)
{ni }

=
[

L1 + 2(N−1)
c

L2 + 2(N−1)
c

]2

. (8)

Therefore, the internal energy for the initial state and the final
state of the quantum adiabatic processes has the same ratio as

U3

U2
= U4

U1
=

[
L1 + 2(N−1)

c

L2 + 2(N−1)
c

]2

. (9)

With the unchanged occupation number p
(3)
{ni } = p

(2)
{ni } and

p
(4)
{ni } = p

(1)
{ni } in quantum adiabatic processes, the extracted

work for the quantum Otto cycle is

Wout = −W1 − W2

=
∑
{ni }

[
p

(2)
{ni } − p

(4)
{ni }

][
E

(L1,c)
{ni } − E

(L2,c)
{ni }

]
, (10)

which should be positive to ensure a valid heat engine. For
large interacting strength c, we derive the positive work
condition by Eq. (8)

T2

T4
>

[
L2 + 2(N−1)

c

L1 + 2(N−1)
c

]2

. (11)

The efficiency η = Wout/Q1 is written explicitly as

η =
∑

{ni }
[
p

(2)
{ni } − p

(4)
{ni }

][
E

(L1,c)
{ni } − E

(L2,c)
{ni }

]
∑

{ni }
[
p

(2)
{ni } − p

(4)
{ni }

]
E

(L1,c)
{ni }

. (12)

In the following numerical calculations, we use Eq. (12) to
calculate the exact efficiency. At the strong interaction limit,
we obtain the efficiency as

η = 1 −
[

L1 + 2(N−1)
c

L2 + 2(N−1)
c

]2

≈ ηnon − 4L1(L2 − L1)

L3
2

(N − 1)

c
. (13)

Such efficiency approaches the one of noninteracting bosons
or fermions ηnon = 1 − L2

1/L
2
2, the same for the single-

particle quantum Otto heat engine [3]. The first order of the
deviation is ∼N/c, proportional to the particle number or the
particle density in the box. The recovery of the efficiency
at strong coupling limit is caused by the duality between
fermions and interacting bosons in the 1D case [12,27]. Such
duality shows the match between energy levels of strong
repulsive interacting bosons and noninteracting fermions or
vice versa. We show this duality on the efficiency of the
quantum Otto heat engine.

0.5 1 5 10 50 100
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750

FIG. 2. Log-linear plot for the efficiency η for the quantum
Otto heat engine with different interacting strength c. We consider
three cases with the particle number as N = 2, 3, 4, and choose the
temperature as T2 = 50, T4 = 8. For all numerical calculations, the
mass and the cutoff of the quantum number are set as m = 1 and
ncut = 20, and the trap size is always set as L1 = 1, L2 = 2. The
solid line is the analytical result of the asymptotic efficiency for large
c by Eq. (13), while the dots are the exact numerical result.

For small interacting strength c, we have calculated the
efficiency for two interacting bosons in perturbation. The
energy E(L,c)

n1,n2
to the first order of the interacting strength c is

E(L,c)
n1,n2

= 1

2m

π2
(
n2

1 + n2
2

)
L2

+
(

2 − 1

2
δn1,n2

)
c

mL
+ o(c).

(14)

We keep all terms in Eq. (12) to the first order of the
interacting strength c. The efficiency is obtained as

η = ηnon + 1

2

L2 − L1

L2
2

∑
n δpc=0

n,n∑
n1,n2

δpc=0
n1,n2

E
(L1,0)
n1,n2

c

m
+ o(c),

(15)

where δpc=0
n1,n2

= p(2)
n1,n2

− p(4)
n1,n2

is the difference of two
equilibrium occupations of the state (n1, n2) for two free
bosons. The derivation of Eqs. (14) and (15) is attached in the
Appendix. We compare the efficiency derived by Eq. (15) and
the exact numerical result in Fig. 5 under weak interaction
limit in the Appendix, which shows the perturbation works
well when cL1 < 0.1.

To validate our result in Eq. (13), we compare it to the
exact numerical result in Fig. 2. The efficiency for heat engine
with different numbers N = 2, 3, 4 of bosons are plotted as
functions of interacting strength c. For the exact numerical
calculation, we set the mass and the Boltzmann constant as
m = 1, kB = 1, and choose a cutoff ncut = 20 for the energy
level index ni , namely ni � ncut. We have verified that the
cutoff is large enough to obtain convergent result for the
temperature we have considered T � 250. We calculate the
energy levels E

(L1,c)
{ni } and E

(L2,c)
{ni } by exactly solving Eq. (3)

with the trap size as L1 = 1 and L2 = 2 and obtain the
probability p

(2)
{ni } and p

(4)
{ni } for the equilibrium states 2 and 4

with the temperature T2 = 50 and T4 = 8 for the hot and cold
reservoirs, respectively. The exact efficiency is evaluated via
Eq. (12) with the probability p

(j )
{ni }, j = 2, 4 and the energy

levels E
(Lj ,c)
{ni } , j = 1, 2. Figure 2 shows that the numerical
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FIG. 3. (a) The ratio of the energy λ{ni }(L1, L2) =
1 − E

(L2,c)
{ni } /E

(L1,c)
{ni } with different interacting strength c for

two interacting bosons N = 2. We show the ratio for the
state with the quantum number (n1, n2) = (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3), (3, 3). The solid lines with different markers
are the ratios for six corresponding energy levels and the efficiency
of noninteracting case ηnon = 1 − L2

1/L
2
2 = 0.75. The red dots are

the minimum point of the ratio, including energy levels not plotted.
(b) The efficiency for different temperature T1 and T2 and two-state
approximation result. The solid lines with different markers are the
exact numerical result for different temperature T1 and T2, where
the blue dashed line shows the the minimum point of the efficiency.
The black solid line is derived by the two-level approximation from
Eq. (17). The result of two-level approximation matches well with
the one at low-temperature limit T4 = 0.5, T2 = 2.5.

result matches the analytical result by Eq. (13) well for the
large interacting strength.

Interestingly, the curve for efficiency shows a dip with
particular interacting strength c in Fig. 2. To understand the
appearance of such dip, we rewrite the efficiency in Eq. (12) as

η =
∑

{ni }
[
p

(2)
{ni } − p

(4)
{ni }

]
E

(L1,c)
{ni } λ{ni }(L1, L2)∑

{ni }
[
p

(2)
{ni } − p

(4)
{ni }

]
E

(L1,c)
{ni }

, (16)

where λ{ni }(L1, L2) = 1 − E
(L2,c)
{ni } /E

(L1,c)
{ni } is a ratio of the

energy, similar to the Otto efficiency for a two-level heat
engine [3]. In Fig. 3(a), we plot the ratio λ{ni }(L1, L2) as
a function of the interacting strength c for different energy
levels {ni}. The curves for different energy levels show
dips with different positions. For low temperature, since the
particle occupation on higher energy levels can be neglected,
we use a two-level approximation to calculate the efficiency,

η = 1 − �2

�1
, (17)
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FIG. 4. (a) Efficiency-interaction curve with different tempera-
ture of the hot reservoir T2. The temperature of the hot reservoir T2

changes from 50 to 250, while the temperature of the cold reservoir
is fixed at T4 = 8. The solid lines with different markers represent the
efficiency η for different temperature T2. The blue dashed line shows
the the minimum point of the efficiency for different temperature
T2. (b) Minimum-efficiency point with different T2. We extract the
coordinate of the minimum point for different T2 in Fig. 4(a). The
blue solid line and the red dashed line give the minimum efficiency
ηmin and the interacting strength c for the the minimum point for
different T2 respectively.

where only the ground state and the first excited state are
considered with the energy gap �i = E

(Li,c)
(2,1) − E

(Li,c)
(1,1) , i =

1, 2. Figure 3(b) shows that the efficiency derived with
two-level approximation matches with the exact numerical
result at low-temperature limit T2 = 2.5, T4 = 0.5. For high
temperature, the efficiency contains more of a contribution
from high energy levels, and the efficiency approaches the
noninteracting case ηnon.

The efficiency of this Otto heat engine is affected by the
temperature of the reservoirs. This property is different from
the single-particle quantum Otto heat engine [3]. In Fig. 4, we
study the temperature effect by modulating the temperature of
the hot reservoir T2 from 50 to 250 with the fixed temperature
of the cold reservoir at T4 = 8. Figure 4(a) shows that the
efficiency η is larger for higher temperature T2 as expected.
The minimum point of the efficiency for different temperature
T2 is plotted with blue dashed line. To figure out how the
temperature T2 affects the minimum point of the efficiency,
we plot both the efficiency ηmin and the interacting strength
c of the minimum point with different temperature T2 in
Fig. 4(b). The interacting strength c (the red dashed line)
and the efficiency ηmin (the blue solid line) for the minimum
efficiency become larger when T2 increases, which matches
the minimum point of λ{ni }(L1, L2) in Fig. 3. The behavior of
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the efficiency with different temperature T2 matches with the
change of λ{ni }(L1, L2) of the corresponding energy levels.

IV. CONCLUSION

We have studied the quantum Otto heat engine with 1D
repulsive Bose gas in a hard wall box to reveal the effect
of interaction on the efficiency. For weak interaction, we
conclude that the efficiency of the Otto heat engine is lower
than the noninteracting case. For strong interaction, the ef-
ficiency approaches to its initial value, which is explained
by the Bose-Fermi duality for 1D interacting Bose gas. With
a given interacting strength, the efficiency decreases when
the temperature of the reservoirs is lower. By calculating
the ratio of the energy λ{ni }(L1, L2), we have explained the
appearance of the minimum value of efficiency as the function
of the interacting strength c. For the low-temperature case,
the two-level approximation gives a good result with different
interacting strength. For the high-temperature case, the contri-
bution for high energy levels shifts the minimum position of
the efficiency.
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APPENDIX: WEAK INTERACTION LIMIT

In this Appendix, we derive the result in the weak interac-
tion limit for two interacting bosons. We expand Eq. (3) to the
first order of c and obtain the equations for k1 and k2,

(k1 + k2)L = π (n1 + n2) + 2
c

k1 + k2
+ o(c)

(k1 − k2)L = π (n1 − n2) + 2
c

k1 − k2
+ o(c). (A1)

For n1 �= n2, the solutions for k1 and k2 to the first order of c

are

k1 = π

L
n1 + 2

c

π

n1

n2
1 − n2

2

+ o(c)

k2 = π

L
n2 − 2

c

π

n2

n2
1 − n2

2

+ o(c). (A2)

The corresponding energy is

E(L,c)
n1,n2

= π2

2mL2

(
n2

1 + n2
2

) + 2
c

mL
+ o(c). (A3)

For n1 = n2, the solution is

k1 = π

L
n1 + c

2πn1
+

√
c

2L
+ o(c)

k2 = π

L
n1 + c

2πn1
−

√
c

2L
+ o(c). (A4)

The corresponding energy is

E(L,c)
n1,n2

= π2

mL2
n2

1 + 3c

2mL
+ o(c). (A5)

The general result of the energy is

E(L,c)
n1,n2

= 1

2m

π2
(
n2

1 + n2
2

)
L2

+
(

2 − 1

2
δn1,n2

)
c

mL
+ o(c).

(A6)

From the expansion of the exponential

e
−

E
(L1 ,c)
{ni }
kB T2 = e

−
1

2m

π2 (n2
1+n2

2 )

L2
kB T2

[
1 −

(
2 − 1

2δn1,n2

)
c

mL

kBT2

]
+ o(c),

(A7)

we calculate the expansion for the probability as

pn1,n2 (T ,L, c)

= pn1,n2 (T ,L, 0)

{
1+

1
2

[
δn1,n2−

∑
j pj,j (T ,L, 0)

]
kBT2

c

mL

}

+ o(c). (A8)

The difference of the population in Eq. (12) is expanded to the
first order of the interacting strength

p
(2)
{ni } − p

(4)
{ni } = δpc=0

n1,n2
+ �n1,n2c + o(c), (A9)

with

δpc=0
n1,n2

= pn1,n2 (T2, L1, 0) − pn1,n2 (T4, L2, 0) (A10)

Exact result

Pertubation result
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0.74992

0.74994

0.74996

0.74998

0.75000

FIG. 5. The efficiency of quantum Otto heat engine with two
interacting bosons for small c. The parameters are same as Fig. 2.
The red dashed line is obtained by Eq. (15), while the blue solid line
is exact result solved by the Bethe equation.
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and

�n1,n2 = 1

2

{
pn1,n2 (T2, L1, 0)

[
δn1,n2 − ∑

j pj,j (T2, L1, 0)
]

kBT2mL1

−pn1,n2 (T4, L2, 0)

[
δn1,n2 − ∑

j pj,j (T4, L2, 0)
]

kBT4mL2

}
.

(A11)

δpc=0
n1,n2

and �n1,n2 are independent on the interacting strength
c. Finally, we obtain the efficiency for weak interaction as

η = 1 − L2
1

L2
2

+ 1

2

L2 − L1

L2
2

∑
n δpc=0

n,n∑
n1,n2

δpc=0
n1,n2

E
(L1,0)
n1,n2

c

m
+ o(c).

(A12)

Figure 5 shows the perturbation result by Eq. (A12)
and the exact numerical result under weak interaction
limit. The slope is verified to be negative

∑
n δpc=0

n,n /∑
n1,n2

δpc=0
n1,n2

E(L1,0)
n1,n2

< 0. The perturbation result shows that
the efficiency linearly decreases for small c.
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