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Universal constraint for efficiency and power of a low-dissipation heat engine
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The constraint relation for efficiency and power is crucial for the design of optimal heat engines operating
within finite time. We find a universal constraint between efficiency and output power for heat engines operating
in the low-dissipation regime. Such a constraint is validated with an example of a Carnot-like engine. Its
microscopic dynamics is governed by the master equation. Based on the master equation, we connect the
microscopic coupling strengths to the generic parameters in the phenomenological model. We find the usual
assumption of low-dissipation is achieved when the coupling to thermal environments is stronger than the
driving speed. Additionally, such a connection allows the design of a practical cycle to optimize the engine
performance.
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I. INTRODUCTION

For a heat engine, efficiency and power are the two key
quantities for evaluating its performance during converting
heat into useful work. To achieve high efficiency, one has
to operate the engine in a nearly reversible way to avoid
irreversible entropy generation. In thermodynamic textbook,
the Carnot cycle is an extreme example of such a manner
with which the fundamental upper bound of efficiency ηC =
1 − Tc/Th is achieved with an infinite long operation time [1].
Such a long time reduces the output power, which is defined as
converted work over operation time. Generally, efficiency re-
duces as power increases, or vice versa. Such a constraint rela-
tionship between efficiency and power is critical for the design
of optimal heat engines. Attempts to find such a constraint
were initialized by Curzon and Ahlborn with a general deriva-
tion of the efficiency at the maximum power (EMP) ηEMP

CA =
1 − √

Tc/Th [2–4]. The EMP of heat engines has attracted
much attention and has been studied by different approaches
in theory, such as the Onsager relation [5–7] and stochas-
tic thermodynamics [8,9] with various systems [10–14],
and in experiments [15,16]. Esposito et al. discussed the low-
dissipation Carnot heat engine by introducing the assumption
that the irreversible entropy production of finite-time isother-
mal process is inversely proportional to time [17], and they
obtained a universal result of the upper and lower bounds of
the EMP via optimization of the dissipation parameters.

Further efforts are made to find a universal constraint rela-
tion between efficiency and power. Several attempts have been
pursued from both the macrolevel [18–20] and the microlevel
[21–23] with different models. For a low-dissipation heat
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engine, a simple constraint relation between efficiency η and
output power P ,

η̃ + (1 − ηC)P̃

2(1 +
√

1 − P̃ ) − ηCP̃
� 1, (1)

has been suggested [19], where η̃ ≡ η/ηC is the normalized
efficiency with the Carnot efficiency and P̃ ≡ P/Pmax is the
dimensionless power normalized with the maximum output
power Pmax. It is straightforward to show with Eq. (1) that
an engine reaches the Carnot bound η̃ � 1 at zero normalized
output power P̃ = 0, and the efficiency at maximum power is
recovered η̃ � 1/(2 − ηc ) with P̃ = 1, as shown in Fig. 1.

Though the analytical derivation of Eq. (1) is limited only
to extreme regions of P̃ � 0 and P̃ � 1 in Ref. [19], the con-
straint Eq. (1) works well for all P̃ , which is checked numer-
ically in the same reference. In this work, we give a succinct
analytical derivation of this constraint in the whole region 0 �
P̃ � 1. Furthermore, we obtain a detailed constraint relation
Eq. (13) which also depends on a dimensionless parameter ζ

representing the imbalance between the coupling strengths to
the cold and hot heat baths. This detailed constraint relation
can provide more information than Eq. (1) about how the
heat engine parameters affect the upper bound of efficiency at
specific output power. In the derivation, we keep temperatures
of both hot and cold baths and cycle endpoints fixed while
changing only operation time.

To validate our results, we present the exact efficiency
and output power of a Carnot-like heat engine with a simple
two-level atom as the working substance. Each point in Fig. 1
shows a particular heat engine cycle with different operation
time. In this example, the evolution of the engine is exactly
calculated via a master equation, which will be shown below.
Our model connects microscopic physical parameters in the
cycle to generic parameters in many previous investigations.
All points follow below our constraint curve.
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FIG. 1. Constraint on normalized efficiency η̃ ≡ η/ηC and out-
put power P̃ ≡ P/Pmax. The orange curve shows the constraint
relation of Eq. (1). Dots show the normalized efficiency and output
power of a simple two-level atomic heat engine. The gray dotted
curve shows the lower bound, which will be derived below. The
red circle denotes the Carnot efficiency ηC; the green triangle marks
the maximum power efficiency obtained in Ref. [17]. The gray area
represents the bound derived in Ref. [19].

II. GENERAL DERIVATION

In a finite-time heat engine cycle, we divide the heat
exchange Qx with the high (x = h) and low (x = c) tem-
perature baths into reversible Q(r )

x = Tx�Sx and irreversible
Q(i)

x = −Tx�S (i)
x parts, namely, Qx = Q(r )

x + Q(i)
x , where

�S (i)
x is the irreversible entropy generated. For the reversible

part, we have �Sc = −�Sh. The low-dissipation assumption
[8,17,24–28] has been widely used in many recent studies of
finite-time cycle engines,

Tx�S (i)
x = Mx

tx
, (2)

where tx is the corresponding operation time. Mx is deter-
mined by the temperature Tx , the coupling constant to the
bath, but the cycle endpoints, however, are not dependent on
operation time tx . We will show clearly its dependence on
microscopic parameters in the following example of a two-
level atom. The power and efficiency are obtained simply as
P = (Qh + Qc )/(th + tc ) and η = W/Qh, where W = Qh +
Qc is the converted work. They can be further expressed via
Eq. (2) and the fact Q

(r )
h + Q(r )

c = ηCQ
(r )
h as

P =
ηCQ

(r )
h − Mh

th
− Mc

tc

th + tc
, (3)

η =
ηCQ

(r )
h − Mh

th
− Mc

tc

Q
(r )
h − Mh

th

. (4)

Applying the inequality a/x + bx � 2
√

ab to Eq. (3), then
we obtain a simple relation between Q

(r )
h and P as

ηCQ
(r )
h = P (th + tc ) + Mh

th
+ Mc

tc
� 2

√
MP, (5)

which defines the maximum output power

Pmax ≡
(
ηCQ

(r )
h

)2

4M
, (6)

with M = (
√

Mh + √
Mc )2. We remark here that the inequal-

ity Eq. (5) becomes equality only when th(c) = √
Mh(c)/Pmax,

which directly leads to the EMP derived in Ref. [17]. This
inequality results in Pmax because it reduces the right side of
the equality to its infimum and all the operation times th(c)

are eliminated completely. To obtain a universal constraint on
efficiency and power, we should properly lose this inequality.

We notice the following fact: a convex function f (x)
defined on domain X satisfies

λf (x1) + (1 − λ)f (x2) � f [λx1 + (1 − λ)x2], (7)

∀x1, x2 ∈ X and ∀λ ∈ [0, 1]. If we choose the convex function
as f (x) = 1/x and set x1 = th/

√
Mh, x2 = tc/

√
Mc, and λ =√

Mh/M , it is not hard to find
Mh

th
+ Mc

tc
� M

tc + th
. (8)

Taking Eq. (8) into Eq. (3), we obtain a constraint on τ ≡
th + tc as

Pτ 2 − ηCQ
(r )
h τ + (

√
Mh +

√
Mc )2 � 0. (9)

Thus, the total operation time τ is bounded by τ− � τ � τ+,
with

τ± = ηCQ
(r )
h

2P
(1 ±

√
1 − P̃ ). (10)

Here P̃ ≡ P/Pmax is the dimensionless power with Pmax given
in Eq. (6).

In this work, we are mainly concerned with the upper
bound of the efficiency η̃+ for a given power P̃ and fixed
engine setup, i.e., fixed Mh(c) and Th(c) (the lower bound η̃− is
presented in Appendix A). The problem of finding the upper
bound now becomes an optimization problem:

η̃+ = arg max(η̃) subject to τ � τ+. (11)

Because Eq. (4) is an increasing function of both th and tc, the
upper bound must be achieved under the condition τ = τ+.
Physically, this fact can be understood as that the efficiency
increases as the total operation time increases. Therefore,
the solution of this optimization problem is given by the
condition of unique solution of Eq. (4) and th + tc = τ+.
Straightforwardly, a quadratic equation for tc can be obtained
by taking th + tc = τ+ into Eq. (4):

t2
c +

[
(1 − η̃ηC )Mh − Mc

(1 − η̃)ηCQ
(r )
h

− τ+

]
tc + Mcτ+

(1 − η̃)ηCQ
(r )
h

= 0.

(12)
The requirement of unique solution of Eq. (12) [the geo-
metrical explanation of this requirement can be found after
Eq. (A4) in Appendix A] is equivalent to that the discriminant
of the above equation is zero. This immediately results in
another quadratic equation for η̃+, the solution of which gives
the upper bound of efficiency for given power and is written
explicitly as

η̃+ = (1 +
√

1 − P̃ )2

(1 +
√

1 − P̃ )2 + [
1 − (1+ζ )2

4 ηC
]
P̃

+ (1 − ζ 2)P̃ (1 +
√

1 − P̃ ){
(1 +

√
1 − P̃ )2 + [

1 − (1+ζ )2

4 ηC
]
P̃

}2
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×
{
1 −

√
ηC

2

[
(1 + ζ )2

4
ηC − ζ

]
(1 −

√
1 − P̃ ) + 1 − ηC

− (1 + ζ )

4
ηC(1 −

√
1 − P̃ )

}
. (13)

Here we define a dimensionless parameter

ζ =
√

Mh − √
Mc√

Mh + √
Mc

∈ [−1, 1], (14)

which characterizes the asymmetry of the dissipation with
two heat baths. In the low-dissipation region, η̃+ gives the
highest efficiency when the power and the heat engine setup
are assigned. This upper bound is quite tight according to the
simulation results (Appendix A). Moreover, in a wide region
of P̃ this bound is attainable with properly chosen th and tc,
though it is not a supremum for all the P̃ .

Usually, we cannot know exactly the heat engine parame-
ters; therefore, it is useful to find a universal upper bound for
all possible ζ . As a function of ζ , the analytical proof of the
monotonicity of η̃+ is tedious. Instead, we numerically veri-
fied that η̃+ is an increasing function in the whole parameter
space; see Appendix B. Thus, the overall bound is reached
at ζ = 1, i.e., Mh � Mc. We note that a formally similar
bound was also obtained in a minimal nonlinear irreversible
heat engine model [19,20]. However, the bound given in that
model is not equivalent to Eq. (1). The definition of Pmax in
that model is different from Eq. (6) and depends on th and
tc, which can be verified by mapping the parameters herein
back to ones in the low-dissipation model [29]. The detailed
discussion can be found in Appendix C.

Besides the upper bound, our method also leads to the
lower bound for efficiency at arbitrary given output power,

2η̃ +
√

1 − P̃ � 1. (15)

The curve for the lower bound is illustrated as the gray dotted
curve in Fig. 1. All the simulated data with two-level atom are
above this curve. The detailed derivation for the lower bound
is also presented in Appendix A.

We want to emphasize here that this lower bound is differ-
ent from the lower bound in [Eq. (33)] of Ref. [19]. The latter
one describes the minimum value for maximum efficiency
at arbitrary power, which can be derived from Eq. (13) by
choosing ζ = −1. Yet, the lower bound we obtained in Eq.
(A3) determines the minimum possible efficiency for the
arbitary given value of power.

To achieve the maximum efficiency at given normalized
power P̃ , we adjust three parameters: the operation times th
and tc during contact with both hot and cold baths, and the en-
tropy generation ratio ζ , while fixing the temperatures Th, Tc,
and the reversible heat exchange Q

(r )
h . The derivation leaves

a question about adjusting ζ , namely, tuning Mh and Mc. In
our previous discussion, Mh and Mc are phenomenologically
assumed without connecting to the physical parameters. In our
example of a two-level atomic heat engine, tuning Mx (x =
h, c) is achieved via changing the coupling constant of the
heat engine to baths. We now switch to a specific Carnot-like
quantum heat engine with a two-level atom.

FIG. 2. Carnot-like cycle with four strokes. (i) [0, th] quasi-
isothermal process in contact with a hot bath. (ii) [th, th + δ] adi-
abatic process. (iii) [th + δ, tc + th + δ] quasi-isothermal process.
(iv) [tc + th + δ, tc + th + 2δ] adiabatic process in contact with a
cold bath. The blue solid curve shows the change of energy spacing
ω(t ), and the orange dotted curve shows the evolution of the excited
state population.

III. VALIDATION WITH TWO-LEVEL
QUANTUM HEAT ENGINE

A quantum heat engine with a two-level atom is the sim-
plest engine to illustrate the relevant physical mechanisms
[30,31]. Here we design a Carnot-like cycle with a two-level
atom, whose energy levels (the excited state |e〉 and ground
state |g〉) are tuned by the outside agent to extract work,
namely, H = 1

2ω(t )σz, where σz = |e〉〈e| − |g〉〈g| is the Pauli
matrix in the z direction. The finite-time cycle consists of
four strokes. Operation time per cycle is τ = th + tc + 2δ,
where th (tc) is the interval of the quasi-isothermal process
in contact with the hot (cold) bath and δ is the interval of the
adiabatic process. The quasi-isothermal process returns to the
normal isothermal process at the limit th(c) → ∞. The cycle
is illustrated with Fig. 2:

(i) Quasi-isothermal process in contact with hot bath [0 <

(t mod τ ) < th]: The energy spacing change linearly de-
creases as ω(t ) = ωi

h + vht , where vh = εh/th is the changing
speed with both ωi

h and ω
f

h = ωi
h + εh fixed. The change of

energy spacing is shown as the solid-blue curve in Fig. 2.
The linear change of the energy spacing is one of the simplest
protocols.

(ii) Adiabatic process [th < (t mod τ ) < th + δ]: The en-
ergy level spacing is further reduced from ω

f

h to ωi
c, while

it is isolated from any heat bath. Since there is no transition
between the two energy levels, the interval δ of the adiabatic
process is irrelevant to the thermodynamical quantities. In the
simulation, we simply use δ = 0. The heat exchange is zero,
and the entropy of the system remains unchanged.

(iii) Quasi-isothermal process in contact with cold bath
[th + δ < (t mod τ ) < th + δ + tc]. The process is similar
to the first process, yet the energy spacing ω(t ) = ωi

c +
vc(t − th − δ) increases with speed vc = εc/tc and ends at
ω

f
c = ωi

c + εc.
(iv) Adiabatic process (th + δ + tc < (t mod τ ) < th +

2δ + tc). The energy spacing is recovered to the initial
value ωi

h.
The two-level atom operates cyclically following the above

four strokes, whose dynamics is described by the master
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equation

dpe(t )

dt
= −κ (t )pe(t ) + C(t ), (16)

where pe(t ) ≡ 〈e|ρ̂(t )|e〉 is the excited state population of
the density matrix ρ̂(t ), C(t ) = γ (t )n[ω(t )], and κ (t ) =
γ (t )(2n[ω(t )] + 1) with n[ω(t )] = 1/(exp[β(t )ω(t )] − 1) is
the mean occupation number of bath mode with frequency
ω(t ). The dissipative rate γ (t ) is a piecewise function which
is a constant γh (γc) during quasi-isothermal processes (i) and
(iii), and zero during the two adiabatic processes. The inverse
temperature β(t ) is also a piecewise function defined on
quasi-isothermal processes (i) and (iii) with values βh and βc,
respectively. In this work we assume the energy levels always
avoid crossing during the whole cycle; thus the quantum
adiabatic theorem guarantees the master equation does not
involve the contribution of coherence induced by nonadiabatic
transition [32–34]. In other words, the two-level quantum heat
engine we study here is working in the classical regime.

In the simulation, we have chosen an arbitrary initial state
and perform the calculation of both efficiency and output
power after the engine reaches a steady state, in which the
final state of stroke (iv) matches the initial state of stroke (i).
Different from the textbook Carnot cycle with an isothermal
process, the microscopic heat engine operates away from
equilibrium in the finite-time Carnot-like cycle with the quasi-
isothermal process. For infinite operation time (th, tc ), the
current cycle recovers the normal Carnot cycle.

To get efficiency and power, we consider the heat exchange
and work done in two quasi-isothermal processes. The in-
ternal energy change and work done in stroke (i) is �Uh =
Tr[H (th)ρ̃(th) − H (0)ρ̃(0)] and Wh = Tr[

∫ th
0

dH (t )
dt

ρ̃(t ) dt],
respectively. The total heat absorbed from the hot bath is given
via the first law of thermodynamics as Qh = �Uh + Wh. The
same calculation can be carried out for Qc in stroke (iii)
with the initial and final times are substituted by th + δ and
th + δ + tc. The work converted and the efficiency are defined
the same as in the general discussion. In our simulation, we
have fixed energy spacing of the two-level atom at the four
endpoints: ωi

h, ω
f

h , ωi
c, and ω

f
c .

To check the upper bound, we have generated the efficiency
and output power with different operation times. Each point
in Fig. 1 corresponds to a set of different operation times
(th, tc ). In all simulations, the operation times th and tc are
randomly generated. All points fall perfectly under the upper
bound shown in Eq. (1).

To be comparable with the general analysis above, it is
meaningful to check two key conditions: (1) low-dissipation
region with 1/t scaling of irreversible entropy production,
and (2) the value of tuning parameters ζ . To check the two
conditions, we first need to calculate the irreversible entropy
generation. Here we consider a generic quasi-isothermal pro-
cess starts at t = 0 and end at t = tf with ω(t ) = ω0 + εt/tf .
To simplify the discussion, we remove the index h and c

related to the bath. The solution to Eq. (16) is formally ob-
tained as pe(t ) = e− ∫ t

0 κ (t1 ) dt1 [pe(0) + ∫ t

0 e
∫ t1

0 κ (t2 ) dt2C(t1)dt1],
t ∈ [0, tf ]. The entropy change during the process is eval-
uated via the von Neumann formula S(ρ̂ ) = −kBTr[ρ̂ ln ρ̂]
as �S(tf ) = S(ρ̂(tf )) − S(ρ̂(0)). The irreversible entropy

FIG. 3. Irreversible entropy generation as a function of operation
time at the temperature of the hot bath β = 1/10 (orange) and the
cold bath β = 1/9 (blue). The points show the exact numerical
results, and lines show the analytical results of the high-temperature
limit (17).

production in this quasi-isothermal process reads �S (i) =
�S(tf ) − βQ, where exchange Q is obtained via Q =
�U + W .

At the high-temperature limit βω(t ) � 1, and for ω0 �
|ε|, namely, the linear response region, the irreversible en-
tropy production reads �S (i) ≈ (βε)2

4γ̃ tf
(1 − 1−e

−γ̃ tf

γ̃ tf
), where γ̃ ≡

2γ /(βω0) (see Appendix D). At long-time limit γ̃ tf � 1, we
keep only the leading term and get the normal assumption of
1/t behavior of entropy generation

�S (i) ≈ (βε)2

4γ̃ tf
. (17)

A general discussion about the 1/t form of the irreversible en-
tropy generation based on stochastic thermodynamics can be
found in Ref. [24]. We plot the irreversible entropy generation
as a function of contact time tf in Fig. 3. The points show
the exact entropy generation by solving Eq. (16). At short
time γ̃ tf < 1, the entropy deviates from the low-dissipation
region. Especially, in the extremely short contact time limit,
limtf →0 �S (i) = (βε)2/8 is a finite quantity instead of be-
ing divergent as in the 1/t assumption. To reach this low-
dissipation limit, we need either a large coupling γ between
system and bath or a long-time contact time tf > 1/γ̃ . In the
simulation, we have chosen the operation time th and tc to
fulfill this requirement.

Returning to the example of a two-level atomic Carnot-like
heat engine, the parameter Mx (x = h, c) is simply Mx ≡
β2

xω
i
xε

2
x/(8γx ), and γx is the only parameter available to the

tuning Mx . Therefore, the dimensionless parameter ζ for the
whole cycle can be tuned via γh and γc. In the simulation in
Fig. 1, we have the parameters ηC = 0.1 and ζ = 0.5. In this
region the upper bound is very close the one with ζ = 1.

We remark that the current proof of the upper bound
is based on an assumption of low-dissipation. Taking the
two-level atomic example, this assumption together with the
microscopic expression for Mx is guaranteed in the long-time
limit γ tf � β|ε| and with the requirement ω � |ε|. It is
interesting to note that low dissipation can be achieved with
large coupling strength γx , according to Eq. (17). However, it
remains open to obtain the universal bound for system beyond
the low-dissipation region, which will be discussed elsewhere.
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IV. CONCLUSION

In summary, we have derived the constraint relation be-
tween efficiency and output power of a heat engine working
under the so-called low-dissipation region. A general proof
of the constraint for the entire region of output power is
given. We also obtained a detailed constraint depending on
the dissipation to the hot and cold baths, which can provide
more information for a specific heat engine model. Moreover,
in a concrete example of a heat engine with a two-level
atom, we connect phenomenological parameters to the micro-
scopic parameters, such as coupling constants to baths. These
connections enable practical adjusting of the heat engine to
achieve the designed function via optimizing the physical
parameters and can be experimentally verified with a state-
of-art superconducting circuit system [35].

Note added. The irreversible entropy generation in Eq. (17)
is obtained for the case that the energy levels are linearly
tuned. Recently, we studied the irreversible entropy generation
of finite time isothermal process with arbitrary tuning proto-
cols for energy levels, the corresponding results are reported
in Ref. [36].
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APPENDIX A: LOWER BOUND OF EFFICIENCY

The lower bound is obtained via the constraint th + tc =
τ−; when we take this equation into Eq. (3), we have an
equation for th:

t2
h −

(
τ− + Mh − Mc

ηCQ
(r )
h − Pτ−

)
th + Mhτ−

ηCQ
(r )
h − Pτ−

= 0.

(A1)
This equation has only one solution,

th = 2(
√

Mh + √
Mc )2(1 + ζ )

ηCQ
(r )
h (1 +

√
1 − P̃ )

, (A2)

This solution together with Eq. (4) gives the lower bound of
efficiency:

η̃− = 1

2

1 −
√

1 − P̃

1 − 1
8ηC(1 + ζ )(1 +

√
1 − P̃ )

. (A3)

This lower bound gives the information on the worst efficiency
for a given low-dissipation heat engine at power P̃ . Similar to
η̃+, η̃− is not the infimum for all P̃ either.

As η̃− is obviously a decreasing function of ζ , the universal
lower bound is at ζ = −1, and thus we have

η̃ � 1
2 (1 −

√
1 − P̃ ). (A4)

FIG. 4. The curves P = P (th, tc ) and η = η(th, tc ) are plotted in
the enclosed blue line and open orange line, respectively; th + tc =
τ+ and th + tc = τ− are plotted with the green dashed line and red
dot-dashed line, respectively. In this example, we choose Mh = 9,
Mc = 1, Q

(r )
h = 10, ηC = 0.6, and P = 0.6Pmax, η = 0.95ηC .

Notice that the way we solve the lower bound is a little
different from that of the upper bound. For the lower bound,
we directly solve the constraint th + tc = τ− with Eq. (3),
instead of Eq. (4). This can be well understood by plotting
P = P (th, tc ) [Eq. (3)] and η = η(th, tc ) [Eq. (4)] on the
plane spanned by th and tc, as shown in Fig. 4. In the first
quadrant, P = P (th, tc ) appears as the blue closed curve and
η = η(th, tc ) as the orange open curve. The intersections of
P = P (th, tc ) and η = η(th, tc ) give the physically attainable
th and tc for given P and η. Two tangent lines th + tc = τ+
(green dashed line) and th + tc = τ− (red dot-dashed line)
sandwich P = P (th, tc ) in between. As η is an increasing
function of both th and tc, the larger η is, the farther curve
η(th, tc ) is from the origin of coordinates, and vice versa. With
this fact, it is not hard to see that all curves η(th, tc ) on the right
side of th + tc = τ+ have η larger than any possible η with P

given. Therefore, the curve η = η(th, tc ), which is a tangent
with th + tc = τ+, gives the least upper bound we can find.
On the other hand, the curve P = P (th, tc ) itself is already on
the right side for the tangent line th + tc = τ−, thus the tangent
point leads to the largest lower bound we can find.

To show how close the upper and lower bounds are to the
attainable η̃(P̃ ), we plot these two bounds with randomly
simulated points (P̃ , η̃) in Fig. 5. The upper and lower bounds
are calculated by Eq. (13) and Eq. (A3), respectively, and the
simulation points are plotted according to Eqs. (3) and (4) with
randomly chosen th and tc. We can see these two bounds are
quite tight that the simulated points are nearly saturated with
them.

APPENDIX B: THE MONOTONICITY OF η̃+

The upper bound of efficiency η̃+ is an increasing function
of ζ . As illustrated in the left panel of Fig. 6, the curves of
η̃+(ζ ) are in the order of increasing ζ from bottom to top. If ηC

is getting smaller, the difference of η̃+(ζ ) between different ζ

disappears gradually.
As the expression of η̃+ is complicated, the analytical

proof of its monotonicity is tedious and difficult. Instead, we
numerically calculate the derivative of η̃+(ζ ). As we can see
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FIG. 5. The upper (lower) bound with ηC = 0.1 and ηC = 0.9
are plotted with the red (blue) solid and red (blue) dashed line,
respectively, with (a) ζ = 0.5 and (b) ζ = −0.5. The gray dots and
green dots are plotted with random th and tc.

in the counterplot in the right panel of Fig. 6, ∂η̃+/∂ζ is
non-negative in the entire parameter region of P̃ and ζ , thus
η̃+ is indeed an increasing function of ζ and its maximum
value is at ζ = 1.

APPENDIX C: COMPARISON WITH THE MINIMALLY
NONLINEAR IRREVERSIBLE HEAT ENGINE MODEL

Based on the extended Onsager relations, a model named
the “minimally nonlinear irreversible heat engine” was pro-
posed to study the same problem about the relation between
efficiency and power. It is usually believed that the minimally
nonlinear irreversible heat engine and the low-dissipation heat
engine model are equivalent, since there is a one-to-one map-
ping between the parameters of the two models [29]. Recently,
a formally identical constraint as Eq. (1) is obtained by the
nonlinear irreversible heat engine model [20]. However, we
have to emphasize that, even though there is the equivalence of
the two models and the similar results they give, the bounds on
efficiency at the arbitrary power given by them are different.
The reason can be ascribed to that the optimization parameters
in the two models are essentially different.

Specifically speaking, the definition of the max power Pmax

in Ref. [20] is different from the one in this work. This can be
verified by mapping the Pmax of Eq. (11) in Ref. [20] from
the minimally nonlinear irreversible model back to the low-

FIG. 6. Upper panel: The upper bound η̃+ as a function of P̃ ;
the curves from bottom to top are in order of increasing ζ with ζ =
−1.0, 0.0, 0.5, 0.8, 1.0. Here we choose ηC = 0.8. Lower panel: The
derivative of ∂η̃+/∂ζ with respect to P̃ and ζ . From top to bottom,
the surfaces are plotted with decreasing ηC = 1.0, 0.8, 0.4, 0.0. It
can be seen the derivative is non-negative in the whole parameter
space, thus proving η̃+(ζ ) is an increasing function.

dissipation model. If we express Pmax in Ref. [20] with the
parameters in the low-dissipation model, it actually depends
on th and tc. Explicitly, in Ref. [20] Pmax is defined as

Pmax = q2L22η
2
C

4Tc

, (C1)

where L22 is one of the Onsager coefficients. The mapping
of the parameters of the two heat engine models is given in
Ref. [29] as

L22 = T 2
h Tc�S2

(Th�h + Tc�c/α)(α + 1)
, (C2)

α = tc/th. (C3)

In the tight-coupling case (q = 1), and with the notation
Mh(c) = Th(c)�h(c), we can see Eq. (C1) reads

Pmax = T 2
h �S2

(Th�h + Tc�c/α)(α + 1)

η2
C

4

= T 2
h �S2(

Mh

th
+ Mc

tc

)
(tc + th)

η2
C

4

=
(
ηCQ

(r )
h

)2

4
(

Mh

th
+ Mc

tc

)
(tc + th)

, (C4)

042112-6



UNIVERSAL CONSTRAINT FOR EFFICIENCY AND POWER … PHYSICAL REVIEW E 98, 042112 (2018)

which is obviously different from the max power in Eq. (6).
Therefore, Eq. (1) in this work and Eq. (22) in Ref. [20] are
intrinsically different.

It can be seen from Eq. (C4) that Pmax still depends on
th and tc in Ref. [20], and thus another step of optimization
with respect to α is needed to arrive at the real max power;
this fact is already indicated in Ref. [29]. We would like to
emphasize here that the equivalence of the two models means
only that there exists a mapping between parameters of these
two models, which does not imply the optimization processes
and the bounds are the same.

APPENDIX D: IRREVERSIBLE ENTROPY GENERATION

In this section, we show a detailed derivation of the irre-
versible entropy generation of a TLA in a quasi-isothermal
process. Here we focus on the case where the energy gap of
the TLA is linearly changed; this minimal model is enough
to illustrate the validity and limitations of the low-dissipation
assumption. The more general time-dependent cases will
be discussed elsewhere. The Born-Markov master equation
Eq. (16) is capable of the case that the Hamiltonian has no
level crossing. It can be formally solved as

pe(t ) = e− ∫ t

0 κ (t1 ) dt1

[
pe(0) +

∫ t

0
e
∫ t1

0 κ (t2 ) dt2C(t1) dt1

]
,

(D1)

where

C(t ) = γ

exp[βω(t )] − 1
and κ (t ) = γ coth

[
βω(t )

2

]
. (D2)

Integrated by parts, we have

pe(t ) = p0
e (t ) + βε

4tf

∫ t

0

e
− ∫ t

t1
κ (t2 ) dt2

cosh2
[

βω(t1 )
2

] dt1

+ [
pe(0) − p0

e (0)
]
e− ∫ t

0 κ (t1 ) dt1 . (D3)

Here we define

p0
e (t ) ≡ 1

exp[βω(t )] + 1
,

which is the excited state population when the TLA is equi-
librium with the heat bath. For the sake of simplification, we
assume the initial state of the finite-time isothermal process
is an equilibrium state, thus the last term of Eq. (D3) can be
ignored. Now we can discuss the high- and low-temperature
behavior of the irreversible entropy production in such a
process.

1. High-temperature limit

In the high-temperature limit, βω0 � 1, the integration in
Eq. (D3) is approximated as∫ t

0
κ (t1)dt1 = γ

(
t + 2tf

βε
ln

1 − e−βω(t )

1 − e−βω0

)
≈ γ

[
t + 2tf

βε
ln

(
1 + εt

ω0tf

)]
,

which can be further written as, with the assumption ω0 � |ε|,∫ t

0
κ (t1)dt1 ≈ γ t

(
1 + 2

βω0

)
≈ 2γ t

βω0
≡ γ̃ t. (D4)

Here we define an effective dissipative rate γ̃ which is the
inverse of β and ω0. Therefore, in the high-temperature limit
the excited population pe(t ) reads

pe(t ) ≈ p0
e (t ) + βε

4γ̃ tf
(1 − e−γ̃ t ). (D5)

Next, the irreversible entropy production is given straight-
forwardly by definition,

�S (i) = �S(tf ) − βQ. (D6)

The heat absorbed from the bath is given by

Q = �U − W = ω(tf )pe(tf ) − ω0pe(0)

− 1

β
ln

1 + e−βω0

1 + e−βω(tf ) − βε2

4γ̃ tf

(
1 − 1 − e−γ̃ tf

γ̃ tf

)
, (D7)

and the entropy change of the system reads

�S(tf ) = −Tr[ρ̂(tf ) ln ρ̂(tf )] + Tr[ρ̂(0) ln ρ̂(0)]

= β

[
ω(tf )pe(tf ) − ω0pe(0) − 1

β
ln

1 + e−βω0

1 + e−βω(tf )

]
−pe(tf ) ln

[
1 + βε

4p0
e (tf )γ̃ tf

(1 − e−γ̃ tf )

]

−pg (tf ) ln

[
1 − βε

4p0
g (tf )γ̃ tf

(1 − e−γ̃ tf )

]
. (D8)

The first term of Eq. (D8) is the entropy change in a quasi-
static isothermal process with the same initial and final energy
spacings, which can be canceled with the first three terms of
Eq. (D7). The last two terms of Eq. (D8) are related to the
entropy difference between the real final state pe/g (tf ) and
the equilibrium state p0

e/g (tf ), the leading term of which is of

the order of t−2
f in the high-temperature limit:

−pe(tf ) ln

[
1 + βε

4p0
e (tf )γ̃ tf

(1 − e−γ̃ tf )

]

−pg (tf ) ln

[
1 − βε

4p0
g (tf )γ̃ tf

(1 − e−γ̃ tf )

]

≈
[

pg (tf )

p0
g (tf )

− pe(tf )

p0
e (tf )

]
βε

4γ̃ tf
(1 − e−γ̃ tf )

= − 1

p0
g (tf )p0

e (tf )

[
βε

4γ̃ tf
(1 − e−γ̃ tf )

]2

.

Therefore, by substituting Eqs. (D7) and (D8) into
Eq. (D6), the irreversible entropy production then reads

�S (i) ≈ β2ε2

4γ̃ tf

{
1 − 1 − e−γ̃ tf

γ̃ tf

[
1 + 1 − e−γ̃ tf

4p0
g (tf )p0

e (tf )

]}
.

(D9)
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When γ̃ tf � 1, we keep only the leading term, thus we have

�S (i)(tf � γ̃ −1) = (βε)2

4γ̃ tf
, (D10)

which is the result presented in the main text. In this minimal
model, the low-dissipation assumption is valid when the oper-
ation time is longer than the timescale of γ̃ −1. When γ̃ tf � 1,
the irreversible entropy production has a finite limitation:

�S (i)(tf � γ̃ −1) = (βε)2

8
. (D11)

In this short time region, the low-dissipation assumption is
not satisfied anymore, thus the constraint relation between ef-
ficiency and power discussed in the main text is not applicable
in this case.

2. Low-temperature limit

We can also obtain an approximated analytical result of the
irreversible entropy production in the low-temperature region
βω0 � 1. By using the fact κ (t ) ≈ γ and cosh2 [ βω(t4 )

2 ] ≈
exp[βω(t )]/4 for low temperature, the excited state popula-
tion can be approximated as

pe(t ) ≈ p0
e (t ) + βε

tf

∫ t

0
e−γ (t−t1 )−βω(t1 ) dt1

= p0
e (t ) + βε

γ tf − βε
[e−βω(t ) − e−γ t−βω0 ]. (D12)

Then the heat exchanged and the entropy change in the finite-
time isothermal process are

Q(tf ) = ω(tf )pe(tf ) − ω0pe(0) − 1

β
ln

1 + e−βω0

1 + e−βω(tf )

− βε2e−βω0

γ tf − βε

(
1 − e−βε

βε
− 1 − e−γ tf

γ tf

)
(D13)

and

�S(tf ) = β

[
ω(tf )pe(tf ) − ω0pe(0) − 1

β
ln

1 + e−βω0

1 + e−βω(tf )

]
−pe(tf ) ln

[
1 + βε

e−βω(tf ) − e−γ tf −βω0

p0
e (tf )(γ tf − βε)

]

−pg (tf ) ln

[
1 − βε

e−βω(tf ) − e−γ tf −βω0

p0
g (tf )(γ tf − βε)

]
.

(D14)

FIG. 7. Irreversible entropy generation as a function of operation
time at low temperature β = 1. The circles are the exact numerical
result, and the dot-dashed line is the analytical result obtained by
Eq. (D16).

The irreversible entropy production is straightforwardly ob-
tained as

�S (i)(tf ) ≈ (βε)2e−βω0

γ tf − βε

[
1 − e−βε

βε
− 1 − e−γ tf

γ tf

− (e−βε − e−γ tf )2

p0
e (tf )p0

g (tf )

e−βω0

γ tf − βε

]
. (D15)

Similarly as the high-temperature case, the long-time behavior
of �S (i) is also of the 1/tf form:

�S (i)(γ tf � βε) ≈ βε

γ tf
e−βω0 (1 − e−βε ), (D16)

and the short time limit is also finite:

�S (i)(γ tf � 1) ≈ e−βω0 (βε + e−βε − 1). (D17)

The low-temperature irreversible entropy generation obtained
by Eq. (D16) is very consistent with the numerical result, as
shown in Fig. 7.
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