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Optimal operating protocol to achieve efficiency at maximum power of heat engines
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Efficiency at maximum power has been investigated extensively, yet the practical control scheme to achieve
it remains elusive. We fill this gap with a stepwise Carnot-like cycle, which consists of the discrete isothermal
process (DIP) and adiabatic process. With DIP, we validate the widely adopted assumption of the C /t relation of
the irreversible entropy generation S (ir) and show the explicit dependence of the coefficient C on the fluctuation
of the speed of tuning energy levels as well as the microscopic coupling constants to the heat baths. Such a
dependence allows us to control the irreversible entropy generation by choosing specific control schemes. We
further demonstrate the achievable efficiency at maximum power and the corresponding control scheme with the
simple two-level system. Our current work opens new avenues for an experimental test, which was not feasible
due to the lack the of the practical control scheme in the previous low-dissipation model or its equivalents.
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I. INTRODUCTION

Designing an optimal heat engine is one of the primary goals
in the recent flourishing studies of heat engines both classically
[1–5] and quantum mechanically [6–8]. One of the most
important characteristics is the output power, which measures
the energy output per unit of time. When the output power
achieves its maximum value, the corresponding efficiency,
known as efficiency at maximum power (EMP) [9–15], is
another important characteristic of the heat engine. The achiev-
able EMP is investigated well via the low-dissipation model
[16], which recently has been proved to be equivalent to the
linear response model [17]. The low-dissipation model simply
assumes that the irreversible entropy generation, characterizing
the irreversibility, is inversely proportional to the operation
time t with a coefficient C , namely, the C /t relation. The
EMP is achieved via optimizing the operation times as well
as the coefficients. However, such a simple model leaves two
major questions: (1) How universal is the C /t relation? and
(2) What is the control protocol to achieve the corresponding
EMP? The second question is critical to the engine design as
well as the experimental test.

The main obstacle to answering the two underlying ques-
tions is the lack of a microscopic model with which the
operating cycle can be shown explicitly and kept simple enough
to allow an analytical proof. To maintain efficiency, it is
meaningful to follow the Carnot cycle, which consists of two
isothermal processes and two adiabatic processes. The main
difficulty is to design a quasi-isothermal process, which refers
to a process with finite operation time while in contact with
a heat bath. We have initialized such an attempt to overcome
the difficulty in our previous work [8] yet have been limited to
two-level system with a simple linear tuning of energy levels.
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In the current paper, we design a discrete isothermal process,
which consists of a series of quantum isochoric and quantum
adiabatic subprocesses. With such a discrete process, the C /t

relation is analytically validated in the low-dissipation region
for an arbitrary finite-dimension system under an arbitrary
control scheme. Moreover, we obtain the exact dependence
of coefficient C on a few parameters of the control scheme
in the discrete isothermal process. Based on this discovery,
we design a two-level stepwise Carnot-like heat engine and
tune energy levels in different ways when it comes into
contact with the high- and low-temperature heat bath. As
a result, the EMP of such a heat engine is found to be
controllable and, in some circumstances, can be effectively
improved.

II. IRREVERSIBLE ENTROPY GENERATION
IN A DISCRETE ISOTHERMAL PROCESS

In this section, we will construct a discrete process operating
under finite time to resemble the isothermal process in a
Carnot cycle and prove the C /t relation. The Carnot efficiency,
ηC = 1 − TC/TH , is the fundamental upper bound which a
heat engine working between two heat baths with temperatures
TH and TC can achieve [18]. Naturally, it is straightforward to
design a Carnot-like process to achieve maximum efficiency
under a given output power. The key question is how to realize a
finite-time operation resembling an isothermal process, which
usually takes infinite time in a Carnot cycle.

The isothermal process is an ideal process based on the
quasistatic assumption that the changing speed of the system’s
energy levels is far slower than the relaxation of the system
contacting with the heat bath, so that the system is constantly
on the thermal equilibrium state with the same temperature
of the heat bath. However, in the finite time quasi-isothermal
process, the system deviates from the thermal equilibrium
state. In our model, we consider the finite-time process, where
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FIG. 1. Schematic illustration of a discrete isothermal process
(DIP). The horizontal axis in this figure is the occupation probability
of the system in its mth energy level, while the vertical axis indicates
the eigenenergy of the ith energy level of the system. The solid
orange curve represents the isothermal process, which follows pm =
e−βEm/

∑
m e−βEm . The red vertical lines and the blue horizontal

dashed lines represent the quantum adiabatic and quantum isochoric
processes, respectively.

the system is not necessarily in thermal equilibrium all the
time.

The system of interest, initially in the thermal equilibrium
state with inverse temperature β = (kBT )−1, has M discrete
energy levels {E(0)

m } (m = 1, 2, . . . , M). The corresponding
occupation probabilities in these energy levels are {p(0)

m } with

p(0)
m = e−βE

(0)
m /

∑
m e−βE

(0)
m . To approach the quasi-isothermal

process, we introduce the discrete isothermal process (DIP)
[19,20], which includes a series of quantum adiabatic processes
and quantum isochoric processes [21,22].

As illustrated in Fig. 1, the ideal isothermal process (orange
solid curve) is decomposed by a series of N alternating short
quantum adiabatic processes (red solid lines) and quantum
isochoric processes (blue dashed lines). One big difference
from the ideal isothermal process is that the discrete quasi-
isothemal process is operated within a finite duration tf . We
assume the j th subquantum isochoric process takes time τj

(j = 1, 2, . . . , N ), while each subquantum adiabatic process
is operated by a sudden quench with no time cost. We assume
that all the instantaneous eigenlevels Em always avoid level
crossing. Therefore, even though the adiabatic process is
quenched, the instantaneous eigenstates keep unchanged and
the quantum adiabatic condition is satisfied [22,23].

The operation time of the j th step τj cannot be infinites-
imal due to the requirement of the thermalization process.
A detailed discussion about the time scale of the step time
will appear later. Through the whole quasi-isothermal process,
the energy spectra of the system are changed from {E(0)

m }
to {E(N )

m }, while the corresponding occupation probabilities
turn from {p(0)

m } to {p(N )
m }. In the j th subprocess, the mth

energy level is pulled from E
(j−1)
m to E

(j )
m = E

(j−1)
m + ε

(j )
m

in the quantum adiabatic process (the occupation possibility
is not changed in this process). The tuning scheme of the
energy levels {ε (j )

m } can be described by a control function
fm(j ) = ∑j

k=1 ε (k)
m , with constraints fm(N ) = E(N )

m − E(0)
m ≡

�m and fm(0) = 0. And the time to reach the j th step is

tj = ∑j

k=1 τk . Each subquantum adiabatic process is followed
by a subquantum isochoric process during which the corre-
sponding occupation possibility is changed from p

(j−1)
m to p

(j )
m

without shifting energy levels. The occupation possibility then
is assumed to relax to the corresponding equilibrium state with
probability

p(j )
m = e−βE

(j )
m∑M

m=1 e−βE
(j )
m

, (1)

noticing the step time τj should be far larger than the typical
relaxation time of the heat bath to fulfill the low-dissipation
condition. The deviation from the equilibrium state is explicitly
evaluated in Appendix A with an example of two-level atom.
In the j th subprocess, there is no heat exchange between the
system and bath in adiabatic process, so the heat transfer
appears only in the isochoric process [22,24] with �Q(j ) =∑M

m=1 E
(j )
m δp

(j )
m , where δp

(j )
m ≡ p

(j )
m − p

(j−1)
m . Thus, the heat

transfer in the whole process �Q = ∑N
j=1 �Q(j ) can be

explicitly written as

�Q =
N∑

j=1

M∑
m=1

[
E(0)

m +
j∑

k=1

ε (k)
m

]
δp(j )

m . (2)

In the high-temperature limit βEm � 1, by keeping the first
order of βEm, the above equation is simplified as

�Q =
N∑

j=1

M∑
m=1

[
− β

M
ε (j )
m + β

M2

M∑
m=1

ε (j )
m

][
E(0)

m +
j∑

k=1

ε (k)
m

]
.

(3)

On the other hand, the change in Shannon entropy S =
−∑M

m=1 pm ln pm (kB = 1) depends only on the initial and
final states of the system:

�S = S (N ) − S (0)

= −β2 ∑M
m=1

(
E(N )

m

)2

M
+ β2

( ∑M
m=1 E(N )

m

)2

2M2

+ β2 ∑M
m=1

(
E(0)

m

)2

M
− β2

(∑M
m=1 E(0)

m

)2

2M2
. (4)

With the heat exchange in Eq. (4) and the entropy change in
Eq. (3), we obtain the irreversible entropy generation S (ir) =
�S − �Q/T as

S (ir) = β2

2M

N∑
j=1

⎡⎣ M∑
m=1

(
ε (j )
m

)2 − 1

M

(
M∑

m=1

ε (j )
m

)2
⎤⎦. (5)

For simplicity, we consider the case that the operation time of
each subprocess is the same, τj = τ , and the total operation
time is tf = Nτ . Then, by introducing the average tuning speed
of each step v

(j )
m ≡ ε

(j )
m /τ , we simplify Eq. (5) as

S (ir) = β2�
2

2(tf /τ )

〈v2〉 − 〈v2〉
〈v〉2

, (6)
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where

〈v〉 ≡ 1

N

N∑
j=1

[
1

M

M∑
m=1

v(j )
m

]
, (7a)

〈v2〉 ≡ 1

N

N∑
j=1

[
1

M

M∑
m=1

(
v(j )

m

)2

]
, (7b)

〈v2〉 ≡ 1

N

N∑
j=1

(
1

M

M∑
m=1

v(j )
m

)2

. (7c)

Here • means the average over the energy levels, while 〈•〉
means the average over the whole process. � = ∑M

m=1 �m/M

is the average energy difference of the system’s energy levels.
Equation (6) is the main result of this paper, and its importance
lies in two aspects. First, Eq. (6) shows that the irreversible
entropy generation follows the C /t relation. With the current
result, we basically answer the first question posted in the
introduction.

Second, the result in Eq. (6) shows the explicit dependence
of the coefficient C on the control scheme via the fluctuation
of tuning speed. To further decouple the system constants and
the control scheme, we define

� ≡ β2�
2

2
, ξ ≡ 〈v2〉 − 〈v2〉

〈v〉2
(8)

and rewrite the irreversible entropy generation as

S (ir) = �ξ

tf /τ
. (9)

Here � is related to the starting and ending points of the
stepwise isothermal process, and ξ shows the impact of differ-
ent control scheme. The coefficient is C = �ξτ . The above
relation clearly shows that the irreversible entropy generation
S (ir) → 0 in the limit tf → ∞(N → ∞), which is consistent
with the quasistatic isothermal process.

When we consider the total operation time of the discrete
isothermal process (DIP), we have two adjustable parameters:
the step operation time τ and the total step number N .
So the total operation time tf can also be increased by
increasing the step time τ . However, the irreversible entropy
generation S (ir) approaches a fixed nonzero value, when the
total operation time tf increases via increasing the step time
τ with fixed step number N . In such a case, the DIP will not
go back to the isothermal process, and thus the requirement of
recovering the Carnot cycle in the limit tf → ∞ will not be
fulfilled. Therefore, in our derivation, we fix the step time and
choose the total step number N to be the adjustable parameter.

In the case of the two-level system (M = 2), whose ground
state energy E1 is taken as 0 in the whole process, Eq. (6)
reduces to

S (ir) = β2�2

8tf /τ

〈v2〉
〈v〉2

, (10)

where 〈v〉 = ∑N
j=1 v

(j )
2 /N and 〈v2〉 = ∑N

j=1 (v(j )
2 )

2
/N are

the average of tuning speed and average of the square of
tuning speed, respectively. � = E

(N )
2 − E

(0)
2 is the energy

change of the excited state of the two-level system. When

TABLE I. Irreversible entropy generation of different typical
control functions for the case of a two-level atom. Here each function
satisfies the constraint f (0) = 0 and f (N ) = �, where � is the
energy level change during the DIP. In the calculation, we have already
assumed that N � 1.

f (k) ξ S (ir)

akn n2

2n−1
n2

2n−1
β2�2

8N

b(eak − 1)
(

1
2 + b

�

)
ln

(
�

b
+ 1

) (
1
2 + b

�

)
ln

(
�

b
+ 1

)
β2�2

8N

a ln (bk + 1) sinh2 (�/2a)
(�/2a)2

sinh2 (�/2a)
(�/2a)2

β2�2

8N

the energy level control function f (k) is linearly dependent
on the step, ξ reaches the minimal value 1, in which case
the irreversible entropy generation takes the minimal value:
S (ir) = β2�2/(8tf /τ ). This result shows that the irreversible
behavior of the system can be effectively reduced by op-
timizing the control protocol of the system’s energy levels
in the DIP. A similar idea was reported in the optimization
of the quantum Otto heat engine [25], where the authors
introduced the superadiabatic process to achieve zero friction
in the thermodynamic cycle. To make sure the system is at
thermal equilibrium in the end of each subprocess, the step
time τ should be larger than the relaxation time 1/γ̃ : τ > 1/γ̃ .
Here γ̃ = 2γ /(βE(0) ) is obtained in the high-temperature limit
(see Appendix A), and γ is the system-bath coupling constant.
For the nonlinear control functions of time, i.e., ξ > 1, the
corresponding irreversible entropy generation is larger than
that of the linear case.

In Table I we demonstrate the exact expressions of the
irreversible entropy generation related to three typical con-
trol functions with the two-level atom example. When the
control function is taken as power function, i.e., f (k) ∝ kn,
the irreversible entropy generation follows a simple relation
as S (ir)

n = n2S
(ir)
1 /(2n − 1), where S

(ir)
1 = β2�2/(8tf /τ ). This

relation is confirmed by the master equation-based numerical
results (the points) as illustrated in Fig. 2, where we plot the
irreversible entropy generation as a function of operation time
with N = tf /τ ∈ [20, 120]. In the simulation we fix the step
time with τ = 1 and increase the number of steps N . The initial
energy of excited state is E

(0)
2 = 10, and the final one is E

(N )
2 =

6. The inverse temperature is β = 0.1, and the decay rate is
γ = 1. The adiabatic process is assumed to be instantaneous.
During the isochoric process, the evolution of the system is
governed by the master equation as shown in Eq. (A1). With
the increase of n of the control function f (k), the irreversible
entropy generation is also increased as illustrated in Fig. 2.
The numerical results are in good agreement with theoretical
prediction in Eq. (10).

With our main result in Eq. (6), we basically answer two
questions: (1) the C /t relation is valid at least in our discrete
isothermal process, and (2) the irreversible entropy generation
coefficientC is proportional to the variance of the tuning speed.
This result allows us to design an optimal heat engine cycle.

III. EFFICIENCY OF A CARNOT-LIKE HEAT ENGINE

In this section, we will construct a quantum Carnot-like
(QCL) heat engine to demonstrate the concrete control scheme
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FIG. 2. Irreversible entropy generation as function of operation
time, where f (k) = �(k/N ) (black), f (k) = �(k/N )2 (blue), and
f (k) = �(k/N )4 (red). The points represent the numerical results,
and the lines represent the analytical results of Eq. (9). Here β = 0.1
is the inverse temperature of the heat bath, E(0) = 10 is the initial
energy of the two-level system’s excited state, � = 4 is the energy
change of the excited state, and γ = 1 is the system-bath coupling
strength.

of achieving the EMP. The isothermal processes in the normal
Carnot cycle will be replaced with our discrete isothermal
processes.

With the well-defined DIP, we construct the discrete Carnot-
like thermodynamic cycle, as illustrated in Fig. 3, with two
discrete isothermal processes (A → B and C → D) and two
adiabatic processes (B → C and D → A). The two discrete
isothermal processes are realized by contacting two heat baths
with temperature TH and TC , respectively. Without losing gen-
erality, we consider the simplest case with the two-level system

A

B

C

D

FIG. 3. Schematic illustration of a discrete Carnot cycle. This
discrete Carnot-like thermodynamic cycle is composed of two dis-
crete isothermal processes (A → B and C → D) and two adiabatic
processes (B → C and D → A) . Here the discrete black dashed
curve represents the discrete isothermal process, while the smooth
orange solid curve represents the corresponding quasistatic isothermal
process in the limit that the operation time approaches infinity. The
gray area encircled by the two discrete curves represents the output
work per cycle. The temperature of the high- and low-temperature bath
is TH and TC , respectively, and the operation time that the working
substance contacts with them is tH and tC , respectively.

as the working substance to clearly show the design scheme.
For the two-level system, in each cycle, the energy of its ground
state |g〉 is fixed at 0, while the energy level of the excited
state |e〉 is tuned by an outsider agent to extract work, namely,
H = E(t )|e〉〈e|. To optimize the heat engine, we consider
two different control functions for the DIPs: E(t ) = E

(0)
H +

fH (t ) (A → B) and E(t ) = E
(0)
C + fC (t ) (C → D). Here E

(0)
H

(E(0)
C ) is the initial energy of the excited state in the high-

(low-) temperature DIP, and fH (t ) (fC (t )) is the corresponding
control function. Noticing that we have the constraint for
the control functions fH (tH ) = E

(N )
H − E

(0)
H and fC (tC ) =

E
(N )
C − E

(0)
C , where tH (tC) is the operation time of the two

DIPs andE
(N )
H (E(N )

C ) is the corresponding finial energy of the
excited state.

The heat transfer of the QCL heat engine is written as∑N
j=1 E(j )δp(j ) [22,24], and we can connect the heat absorbed

(released) from the heat bath �QH (�QC) to the area �H

(�C) encircled by the high- (low-) temperature-related discrete
black dashed curve and the horizon axis. Thus, the power and
efficiency of such a QCL heat engine can be expressed by two
characteristic areas as

P = W

tH + tC
= �H − �C

tH + tC
= ��

tH + tC
, (11)

η = W

�QH

= �H − �C

�H

= 1 − �C

�H

. (12)

Here �� = �H − �C corresponds to the output work per
cycle as represented by the gray area in Fig. 3. We have assumed
the energy level is tuned very rapidly in the two adiabatic
processes (B → C and D → A), so that the corresponding
operation time is ignored. It can be seen from Fig. 3 that
the area �H is smaller than the area �

(r )
H encircled by the

high-temperature-related smooth orange solid curve and the
horizon axis: �H < �

(r )
H , while the area �C is larger than

the area �
(r )
C encircled by the low-temperature-related smooth

orange solid curve and the horizon axis: �C > �
(r )
C . Since �

(r )
H

and �
(r )
C are connected to the reversible heat absorbtion and

reversible heat release, respectively, the following inequality
can be easily verified:

η = 1 − �C

�H

< 1 − �
(r )
C

�
(r )
H

= ηC. (13)

Following from Eq. (9), we obtain �H = TH�SH −
ξH�H/tH and �C = TC�SC − ξC�C/tC , where �SC =
�SH corresponds to the reversible part of the heat transfer
in the whole cycle. We notice that the efficiency in Eq. (12)
and the power in Eq. (11) are now connected with each other
through the operation time tC and tH . Thus, to find the EMP
of the heat engine, one should optimize the power via the two
operation times. With the framework developed by Esposito
et al. [16], the EMP of such a heat engine reads

ηEMP =
ηC

(
1 +

√
TCξC�C

TH ξH �H

)
(
1 +

√
TCξC�C

TH ξH �H

)2 + TC

TH

(
1 − ξC�C

ξH �H

) , (14)
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FIG. 4. Efficiency at maximum power as function of Carnot
efficiency, where the red dashed curve indicates the maximum value
that the EMP can achieve η+ = ηC/(2 − ηC ). The black circle line
represents the Curzon-Ahlborn efficiency withnH = nC = 1: fH ∝ t .
The blue triangle line and pink square line correspond to the control
function in the high-temperature discrete isothermal process taken as
fH ∝ t10 and fH ∝ t100, respectively.

where we have replaced the phenomenological parameter
� in the original result of Ref. [16] by our system- and
control-scheme-related parameters ξ and �: �α → ξα�α

(α = C,H ). Using the definition of � in Eq. (8) we have
the ratio of �C and �H explicitly expressed as �C/�H =
β3

C�2
CE

(0)
C γ −1

C /(β3
H�2

HE
(0)
H γ −1

H ) = γH/γC . Here we fix the
four points A, B, C, and D as the same as that in a nor-
mal Carnot cycle with the relations βHE

(0)
H = βCE

(0)
C and

βHE
(N )
H = βCE

(N )
C . The operation time of each subprocess of

the DIP is taken as τα = 2γ̃ −1
α = βαE(0)

α /γα (α = C,H ). For
a practically designed heat engine, we typically have γH/γC

fixed once the interaction between the system and the heat
bath is given. Therefore, the EMP of such a heat engine
depends only on the scheme of the working substance’s energy
spectra being tuned: ξC/ξH . When the control function is an
exponential function, we choose the system’s energy spectra to
be linearly tuned at the low-temperature bath, that is, nC = 1,
and the control function satisfies fH (t ) ∝ tnH , nH � 1 at the
high-temperature bath. Then the EMP is simplified as

ηEMP =
ηC

(
1 +

√
2TC

nH TH

)
2 − ηC + 2

√
2TC

nH TH

≈ η+

[
1 − η+

√
2(1 − ηC )

nH

]
,

(15)

where η+ = ηC/(2 − ηC ).
In Fig. 4 we show the achievable EMP for different control

functions. The dashed red line shows the maximum value η+
of the EMP, and the black circle line represents the Curzon-
Ahlborn efficiency ηCA = 1 − √

1 − ηC , which can be realized
in our scheme with nH = nC = 1. It can be seen from Eq. (15)
that the EMP of the heat engine can be adjusted via different
control functions and can be significantly improved with nH

increasing. The controllability of EMP is also demonstrated in
Fig. 4 through the exact numerical results. With the increase
of nH , the EMP is deviating from ηCA and getting closer to the
upper bound of the EMP η+. This means that it is feasible to

control the EMP of the heat engines through different control
schemes of tuning the system’s energy levels in the DIPs.
Even with the constraint relation between power and efficiency
[8,14,15], we notice that one can maintain the maximum output
power while increasing the EMP via different control schemes.
A detailed discussion is shown in Appendix B.

The current control scheme with the stepwise Carnot-like
cycle makes it possible for a experimental test by the widely
used setups [26–28] for testing Jarzynski equality. Experiments
concerning EMP were not feasible, to our best knowledge,
because of the unavailability of the control scheme. Our
stepwise control scheme allows a clear separation of heat
exchange and work extraction processes for implementing
measurement. For clarity, we consider the simple two-level
atom case. In the DIP (A → B ), we measure the probability se-
quences p(0)

e → p(1)
e → p(2)

e → · · · → p(N−1)
e → p(N )

e along
with the energy level changes E(0) → E(0) → E(2) → · · · →
E(N−1) → E(N ). The heat absorbed is calculated as

�QH =
N−1∑
i=0

(
p(i+1)

e − p(i)
e

)
E(i+1). (16)

The first test is the C /t relation in Eq. (10) with variation of
the operation time tf as well as different control schemes listed
in Table I. The irreversible entropy generation S (ir) is obtained
as

S (ir) = �S − �QH

TH

, (17)

where �S =p(N )
e ln p(N )

e +[1 − p(N )
e ] ln[1−p(N )

e ]−p(0)
e ln p(0)

e

+ [1 − p(0)
e ] ln[1 − p(0)

e ]. A similar approach is applied for
the DIP (C → D) for the heat �QC directed to the low-
temperature bath. The power of the engine is obtained as P =
(�QH − �QC )/(tH + tC ). To meet the requirement of oper-
ation time for the heat engine achieving the EMP [16], tH and
tC follow tH = 2ξH�H [1 + √

TCξC�C/(THξH�H )]/(ηC�S)
and tC = tH

√
TCξC�C/(THξH�H ). Here ξα is determined by

the specific form of the control function fα (t ) (α = C,H ) as
demonstrated in Table I. �H (�C) is related to the starting
and ending point of the high- (low-) temperature DIP as given
by Eq. (8). The efficiency for one specific control scheme is
obtained as η = (�QH − �QC )/�QH .

IV. CONCLUSION

In summary, by introducing the discrete isothermal process,
we presented a general proof of the inverse relation between
the irreversible entropy generation and time in finite time
isothermal process, S (ir) = C /t , which is widely used for
the actual heat engines within the low-dissipation region.
Besides the system constants, we showed that the coefficient
C of irreversible entropy generation also depends on the
control scheme when the system’s energy levels are tuned
in the discrete isothermal process. Remarkably, the minimal
irreversible entropy generation is achieved when the energy
levels of the system are linearly tuned. This discovery allows
us to design an optimal heat engine cycle. With a two-level
atomic heat engine as an illustration, we demonstrate that
the EMP of the heat engine can be optimized by applying
different control schemes when the working substance is
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in contact with different heat baths. The controllability of
EMP can be experimentally verified with some state-of-the-
art experimental platforms, such as superconducting circuit
systems [29] and trapped ions [26,28].
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APPENDIX A: EVOLUTION
OF THE TWO-LEVEL SYSTEM

The dynamics of the two-level atom, when it contacts a
heat bath with inverse temperature β = (kBT )−1, is described
by the master equation

dpe(t )

dt
= −γ (2nth[E(t )] + 1)pe(t ) + γ nth[E(t )], (A1)

where pe(t ) ≡ 〈e|ρ̂(t )|e〉 is the excited state population of the
density matrix ρ̂(t ), γ the system-bath coupling strength, and
nth[E(t )] = 1/(exp[βE(t )] − 1) the mean occupation number
of bath mode with frequency E(t ). The solution of Eq. (A1)
reads

pe(t ) = nth[E(t )]

1 + 2nth[E(t )]
(1 − e−γ {2nth[E(t )]+1}t )

+ e−γ {2nth[E(t )]+1}tpe(0), (A2)

and applying this to the j th step of the discrete isothermal
process, we obtain

pe(τ ) = p(j )
e

(
1 − e

− 1+e−βE(j )

e−βE(j ) −1
γ τ ) + e

− 1+e−βE(j )

e−βE(j ) −1
γ τ

p(j−1)
e . (A3)

In the high-temperature limit, βE � 1, the above equation can
be simplified as

pe(τ ) = p(j )
e + e

− 2γ τ

βE(j )
(
p(j−1)

e − p(j )
e

)
. (A4)

Choosing τ = βE(0)/γ , one finds exp [−2γ τ/(βE(j ) )] ≈
e−2 � 1, then pe(τ ) → p

(j )
e . The order of the error is

about e−2.

APPENDIX B: DEPENDENCE OF POWER
ON A CONTROL SCHEME

For low-dissipation heat engines, the maximum power in
Refs. [8,16] can be rewritten with our notation as

Pmax = (ηCTh�S)2

4(
√

Thξh�h + √
Tcξc�c )2

(B1)

= (ηCTh�S)2

4Tcξc�c

(
1 +

√
Thξh�h

Tcξc�c

)−2

. (B2)

It is clear that the maximum power depends on ξh/ξc and ξc,
while the EMP depends only on ξh/ξc as shown in Eq. (14).
Therefore we can maintain the maximum power unchanged by
fixing the value of

ξ−1
c

(
1 +

√
Thξh�h

Tcξc�c

)−2

, (B3)

while improving the efficiency by increasing the ratio ξh/ξc.
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